CHAPTER III
DYNAMICS OF A MATERIAL POINT

I. DYNAMICS OF AN UNCONSTRAINED POINT

§ 1. Basic concepts of dynamics. The subject of dynamics is con-
cerned with the investigations of the motion of bodies under the influence
of forces which cause this motion.

In kinematics all frames of reference are, as we already know, equal-
ly valid; it is a matter of indifference how we measure time (i. e. what
intervals of time we consider as equal). The laws of dynamics stated
by Newton, however, are not valid for every frame of reference and every
measure of time.

Inertial frame, absolute time. A frame of reference for which, along
with a certain measure of time, the Newtonian laws of dynamics hold, is
called an inertial frame, the corresponding measure of time — the measure
of absolute time, and the motion of the body relative to the inertial frame
— absolute motion.

Strictly speaking, we do not know at present of any example of either an
inertial frame or of absolute time. Nevertheless, in a great number of problems we
can select frames of reference and methods of measuring time in such a way, that
the application of the laws of dynamics leads to results differing sufficiently little
from experience, so that for all practical purposes the errors can be neglected.

For instance, if we are investigating the motion of small particles near the
earth during a short interval of time, the results will be sufficiently accurate on the
whole, if we take as an inertial frame the frame of reference attached to the earth,
and if we base the measurement of absolute time on the assumption that the earth,
relative to the fixed stars, revolves about its axis so as to make equal angles in
equal times.

In other problems, however (such as Foucault’s pendulum, the gyroscope, the
motion of planets) the application of the laws of dynamics to a frame of reference
attached to the earth does not lead to equally good results. Considerably better
results are obtained here if we select for the inertial frame, a frame of reference
whose origin is situated within the sun and whose axes point to the fixed stars.
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In addition to the previously mentioned method of measuring time, which is
based on the assumption that the earth revolves about its axis uniformly, there
exist still other methods of measuring time which are given in astronomy.

In dynamics we assume that an inertial frame and absolute time are
given.

Mass and force. Dynamics gives rise to new concepts such as mass
and force. We assume that they are known to the reader from physics and
we shall not enlarge upon their definition. We shall give only those of
their properties which we assume about them in dynamics.

The mass of a body is expressed by a positive number which depends on
the choice of the units of mass, i. e. on the choice of an arbitrary body
whose mass is denoted by the number 1.

The ratio of two masses does not depend on the choice of the unat.

Therefore, if we denote by m, and m, the masses of two bodies
expressed in terms of a certain unit, and by m; and m, the masses of these
bodies expressed in terms of another unit, then

/ . ! ’
my [ my = my [ my.

For example, let the mass of a certain body 4 be m, if we take as tlie
unit the mass of the body B. Let us assume, in addition, that the mass of
the body A is m’ and the mass of B is m”, if we select as the unit the mass
of another body C. The ratio of the masses of the bodies 4 and Bism /1,
if the unit is the mass of the body B, and m’ [ m”, if the unit is the mass of
the body C. Therefore, by hypothesis, m /1 = m’ [ m", whence

m = mm".

Hence, knowing the mass of a body in terms of a certain unit, we can
compute it in terms of any other unit.

The mass of a body is independent of the time, i. e. the given body has
the same mass at each moment.

We consider a force to be determined if its magnitude (absolute value),
direction, sense and point of application are given. A force acting on a body
can be thought of as a taut string or a stretched spring fastened to the

body (see figure).
C

Fig. 69.

A force whose magnitude is expressed by the number 0 is called a
zero force. We do not distinguish a direction or sense in connection with
zero forces. '
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The magnitude of a non-zero force is expressed by a positive number
which depends on the unit of force, i. e. on the choice of an arbitrary (non-
zero) force whose magnitude we denote by the number 1.

The ratio of the magnitudes of two (non-zero) forces does not depend on
the choice of the unit.

On the basis of this, from the magnitude of a force given in terms of
a certain unit, we can determine its magnitude in terms of a different unit.

We represent the force acting on a body as a vector. With this in view,
we select an arbitrary unit of length and an arbitrary unit of force. The
given force is represented by a vector whose length is expressed by the same
number as the magnitude of the force, while the origin, direction and sense
are the same as the origin, direction and sense of the force. For example,
a vector having five units of length represents a force having five units
of force. A zero force represents a zero vector.

Operations on forces are defined as operations on vectors which
represent these forces. For instance, if P,, P, ..., P, represent certain
forces, then the sum of these forces is the force which is represented by the
vector P=P, + P, + ... -+ P,.

The moment of a force (represented by the vector P) with respect to
a point O is defined as the moment of the vector P with respect to O.

Material point. In dynamics we shall be concerned at first with the
motion of points, and afterwards with the motion of bodies. As in kine-
matics, we shall sometimes regard a point as a model of the body (e. g. in
the case when the dimensions of the body are small in comparison with the
path).

The mass of a point is defined as the mass of the body which the given
point represents; the point itself is then termed a material point.

If a force acts on a body whose image is the material point 4, then
this force is represented in the form of a vector whose initial point is
at 4.

The force acting on a material point can change with time in magnitude
as well as in direction and sense.

§2. Newton’s laws of danymics. The laws of dynamics stated
by Newton give the relations that obtain in absolute motion among the
mass, acceleration and forces that act upon a material point.

Laws of motion. Let the frame of reference (z, y,2z) be an inertial
frame, and let ¢ denote absolute time. Under these assumptions the laws of
motion can be stated as follows:
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I. If m denotes the mass of a material point, p the acceleration at the
moment t, P the sum of the forces acting on the material point at the moment t,
then

mp = KP, (1)

where K denotes a certain number (positive), depending only on the choice
of units of length, time, mass and force (and hence independent of the
time, mass and force).

From equation (1) it follows that
mip| = K|P. @
Therefore, if of the units mentioned, three are selected arbitrarily,

the fourth can be so chosen that K == 1. For instance, select arbitrary
units of time, length and mass, and for the unit of force select a force

which gives a point of mass 1.an acceleration 1. For m = 1 and |[P| = 1
we have with these units |p| = 1, and hence from formula (2) we obtain
K = 1. Relation (1) then assumes the following form

mp = P. (I)

Henceforth we shall always assume that the units are so chosen that
K = 1. Newton’s law will therefore always be taken in the form (I).

Forming the projections on the axes of the frame of reference, we
obtain in virtue of (I):

mp, = P,, mp, =P,, mp, =P,. (IT)
Equations (I) and (II) are obviously equivalent.
Since p = dv /dt and m is a constant, mp == d(mv) [ d¢. Hence re-
lation (I) can also be written in the form
d(mv) [ dt = P. (I11)
The vector my is called the momentum (quantity of motion).

Therefore: the derivative of the momentum (with respect to time) is
equal to the sum of the forces acting on a matertal point.

On a material point of mass m let there act forces whose sum P is
constantly zero during a certain period of time. Then mp = 0; hence the
acceleration p = 0, and consequently the point moves with uniform
motion along a straight line (or is at rest). We therefore have the following
law, known as Newton’s law of inertia:

II. If forces whose sum is zero act on a material point during a certain

period of time, then the point is either at rest or in uniform motion along
a straight line.
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Conversely, if a point is at rest or in uniform motion along a straight
line, then the acceleration p = 0, and since by (I) mp = P, it follows that
the sum of the acting forces P is zero.

The forces acting on a material point usually arise from the action
of other material points on the given point. For such forces Newton gave
the following law, known as the law of action and reaction:

III. If a material point A acts on a material point B with a certain
force, then the point B also acts on the point A with a force equal in magni-
tude and direction, but opposite in sense; the forces which the points A and B
exert on each other are always directed along the straight line AB joining
these points.

If the force which the point 4 exerts on the point B has a sense
towards A (and hence the force which the point B exerts on 4 has a sense
towards B), then we say that the points 4 and B attract each other; in the
opposite case we say that the points repel each other.

Equilibrium of a point and forces. If a material point is at rest, then
it is said to be in equiltbrium. The forces P, P,, ..., P, are said to be in
equilibrium, or to balance each other, if their sum is zero, i. e. if P, + P, +
+ ... P, =0.

Therefore, if a material point is in equilibrium, then the forces acting
on this point are also.in equilibrium. On the other hand, if the forces
acting on a material point during a certain period of time are in equi-
librium, then in this period of time the acceleration p = 0, and hence the
point is either in equilibrium or in uniform motion along a straight line.

Force of inertia. D’Alembert’s principle. Law (I) can also be written
in the form
P - (—mp) = 0. (IV)

A vector —mp whose origin is at the point m is called a force of
tnertia.

One must not suppose that the vector —mp represents the force
acting on the material point m. It is only for the sake of convenience that
we call this vector a force (of inertia). Only forces whose sum is P act on
the point m.

Relation (IV) can be stated as follows:

The forces acting on a material point are in equilibrium with the force of
tnertia.

The above formulation is equivalent to Newton’s law I and is called
d’ Alembert’s principle. This principle is very useful in connection with
the investigation of the motion of the so-called constrained points.



74 CHAPTER III — Dynamics of a material point

§ 3. Systems of dynamical units. The fundamental units used in
dynamics are the units of length, time and mass. By means of these units
we define the unit of force. As a unit of force we select & force which, gives

~to a mass 1 an acceleration 1.

C. g. s. system. In this system the unit of length is the centimeter
(cm), the unit of mass the gram (g), the unit of time the second (sec)
and that of force the dyne.

At first the meter (m = 100 cm) was to represent one forty millionth
part of the earth’s meridian. A small error, however, was made in
the calculations. Today a meter is defined as the length of a certain
bar preserved in Paris. Similarly, the unit of mass 1 g was at first to
be the mass of 1 cm? of chemically pure water at 4° C under a pressure
of 760 mm of mercury. At present, however, we take as 1 kilogram
(kg = 1000 g) the mass of a certain block of platinum preserved in Paris.

The unit of time 1 sec is defined by means of the so-called mean solar
day whose determination belongs to the subject of astronomy. The mean
solar day = 24 hours (h), an hour = 60 minutes (min), a minute =
= 60 sec.

The unit of force 1 dyne is the force which will impart an acceleration
of 1 cm/sec? to a mass of 1g.

The system of fundamental units (centimeter, gram, second) is called
briefly the ¢. g. s. system.

Measurement of masses and forces. In the vicinity of the earth small
freely falling bodies drop to the earth vertically with a uniformly accele-
rated motion (if air resistance is neglected). This acceleration (termed
gravitational) is the same for all bodies at a given place on earth, but it
changes with latitude. It is denoted by g. We shall take the gravitational
acceleration to be in average g = 981 cm/sec?.

Let m denote the mass of a small body. The force directed vertically
downwards and of magnitude @ = mg is called the weight of this body.

Weight is therefore proportional to the mass of the body; bodies
having equal weights (at the same place on earth) have equal masses and
conversely.

By means of an instrument called a balance (with whose principle we
shall be acquainted in chapter VI) we can compare the weights of two
bodies. Since the equality of masses follows from the equality of weights,
the masses of bodies can be compared indirectly by means of a balance.
Hence it follows that with the aid of a balance we can measure, i. e. we can
determine the masses of bodies.
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Forces are measured by dynamical or statical methods.

The dynamical method rests on Newton’s first law (P = mp). From
this formula we can determine the force P if we know the mass of the body
m and the acceleration p which is imparted to it by P.

The statical method is based on the fact that bodies change their
shape (become deformed) when acted upon by forces. From a knowledge
of the deformations we can infer in certain cases the magnitudes of the
forces which cause these deformations. For instance, if a force directed
vertically downwards acts at the lower end of a spring hanging vertically,
then the spring becomes elongated. When the forces are small the elon-
gation is proportional to the magnitude of the acting force. Instruments
which serve to measure forces by statical methods are called dynamo-
meters.

Metric gravitational system of units. In engineering the so-called
metric gravitational system of units is generally used. In this system we
assume as fundamental units the units of length, time and force. The unit
of length is 1 m, of time 1 sec, and of force 1 kilogram (kg). This is the
weight of 1 dem?® of water (under normal conditions) at a latitude of
45° north (where the gravitational acceleration ¢ = 981 cm/sec? =
= 9.81 m/sec?).

If in the formula |P| = m|p| we put |P| = 1 and |p| = 1, we obtain
m = 1. Therefore the unit of mass will be a mass to which a force of 1 kg
imparts an acceleration of 1 m/sec.

Let m be the mass of a body, @ its weight (at a latitude of 45° N)
and let ¢ = 9.81 m/sec?. Then ¢ = myg, and therefore

m=Qg—=@Q/98L (1)
From the above formula we can determine the mass of a body in
terms of metric gravitational units when we know the weight of the body.
Since the weight of 9.81 dem? of water (at a latitude of 45° N)is 9.81 kg,
the unit of mass in the metric gravitational system represents the mass of
9.81 dem? of water.
In the c. g. s. system the mass of 9.81 dem? of water is 9.81 kg (of
mass) = 9810 g (of mass). Hence:
The unit of mass in the metric gravitational system = 9.81 kg (of
mass) = 9810 g (of mass). (2)
In order to find the relation between the unit of force (kg) in the
metric gravitational system and the unit of force (dyne) in the c. g. s.
system, let us note that 1 dem?® of water (i. e. a mass of 1000 g) falls to
the earth under the influence of its own weight of 1 kg with an accelera-
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tion of 981 ecm/sec?. Consequently 1kg (of force) = 1000 - 981 dynes,
whence
1 kg (of force) = 981 000 dynes. (3)

Dimensions of dynamical magnitudes. In dynamics there occur still
other magnitudes (e. g. work, kinetic energy, etc.) whose units are defined
in the same way as the unit of force by means of the fundamental units,
i. e. length, mass and time. Similarly as for kinematic magnitudes (cf.
Chap. II, § 11), we can introduce the notion of dimension for dynamical
magnitudes. A knowledge of the dimension of a given magnitude enables
one to determine easily the measure of this magnitude when the funda-
mental units are changed.

Suppose that we have chosen two systems of units of length, mass
and time, which we denote respectively by L, M, T and L', M', T’ and
that these units are related as follows

L=, M=uM',6 T =T (4)

Let the measure of some dynamical magnitude A be @ in terms of the
units L, M, T, and o' in terms of the units L', M’, T".

If it is possible to choose numbers «, g, y such that for every two
systems of units L, M, T and L', M', T" satisfying relations (4) there
exists a relation of the form

a’ = al*ufr?, (5)
then the dimension of the magnitude 4 is defined by the expression
LeMATY. (6)

The dimension of the magnitude 4 is denoted by [4], and the unit
of the magnitude A4 in terms of the units L, M, T is represented by the
symbol L*M?T7.

The magnitude of A is therefore aL*M?T"7 in terms of the units
L, M, T, and o’ L'*M’?T"? in terms of the units L', M’, 7", whence

al*MPTY = o' L'*M'*T". (7)

Making use of formulae (4) and calculating formally, we obtain

al*MPT? = a(ALY*(uM')(zT")?, whence
MaL**T" = (al*ufv?) L'*M'*T". (8)

By equating (7) and (8) we get (5). In this manner by means of formal
reckoning we can, if we know the dimension of the magnitude A4, obtain
its measure when the units of length, mass and time are changed.

It is easy to generalize the theorem given on the page 51, which
is very useful for the determination of the dimension.
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Example I. A force of magnitude (absolute value) P acting on a
material point of mass m imparts to it an acceleration of magnitude p.
Therefore P = mp, whence [P] = [m] - [p]. Since [m] = M, and [p] =
= LT,

[force] = LMT2 (I)

The unit of force in the c. g. s. system is the dyne. Hence
dyne == cm1 - g - sec 2. (IT)

Example 2. Represent a force of magnitude 6 m - kg - min™2 in the

¢. g. 8. system.
We have

6 m - kg - min™2 = 6 (100 cm)(1000 g)(60 sec) 2 =
= (6 - 100 - 1000 - 60" )(cm - g - sec %) = 1663 dynes.

§ 4. Equations of motion. One of the principal problems of dynamics

is the determination of the motion of a material point when the mass m

of this point and the force P acting on it are given. In the simplest case

the force P can be given as a function of time, i. e. there are given func-
tions:

P, =F(t), P,= @), P,=¥(Q), (1)

defining at each moment ¢ (of a certain period of time) the projections of
the force P on the coordinate axes.

We shall meet with cases, however, which are more complicated. It
may happen that some region D has the property that a certainforce P acts
on a given material point situated anywhere within the region D.

If the force P depends only on the position of the point and does not
depend on anything else (e. g. velocity), then the region D is called a force
field.

An example of a force field is the earth’s gravitational field: for on a given

material point situated near the earth there acts the force of gravity which depends
on the position of this point (and does not depend on the velocity).

In a force field the force P is therefore a function of the coordinates
z, y, 2z of the given point. A field is defined if there are given functions:

P,=F(x,y,2), P,=®P@,y,2), P,=¥@1y,2), (2)

determining at each point of the field the projections of the force P. There-
fore, if we are investigating the motion of a point in a force field, then we
are dealing with a force which depends on the position of the point.

If a material point moves in a certain medium (e. g. in air), then, in
addition to other forces acting on the material point, there is also the
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force of resistance which the medium offers in opposing the motion. This
force depends, among other things, on the velocity of the material point.
In this case we therefore have a force depending also on the velocity of
the point.

In the most general case we shall assume that the force P depends on
the time, position and velocity of the point. We shall therefore assume
that the force P acting on a material point is defined by the functions:

P:L' = F(x’ y’ z’ x., y., z" t), P']l == @(x’ y’ z’ x., y" z', t)’ (3)
Pz = Yj(xy Y, 2, %, Y, %, 1),

whose values are the projections of this force which depend on- the coor-
dinates of the position of the point (z, y, z), its velocity z*, ¥, 2*, and on the
time ¢. .

Functions (3) are usually assumed to be continuous and to have conti-
nuous partial derivatives in a certain region of the variables z, y, z, x*, y°, 2, t.

Obviously, in particular problems the force P does not have to de-
pend on all the variables z, y, ..., ¢ it can be independent of some of
them.

Theoretically, the force P can depend on higher derivatives (e. g. on
the second, third, etc.) of the variables x, y, z. However, such cases are
not encountered in practical problems and we shall not consider them
here '

Let the motion of a material point be given by the functions:

=), y=¢)., z=yp@). (4)
In virtue of equations (II), p. 72, we obtain
mx =P, my =P, mz =P, (I)

If we assume that P, P, P, are functions of the form (3), then

equations (I) become
mx = Fla,y, 2, x,y,2,1),
my = D, y, 2, z,y,2,t), (IT)
mz = ¥z, y,z x,y,2.1).

These equations represent a system of differential equations of the
second order, while the sought for functions are the functions (4).

Let us suppose that we are investigating a motion in the neighbour-
hood of a certain moment ¢,. Assume that at the moment ¢, the point had
coordinates x,, ¥,, 24, and its velocity had projections -y, ¥, 2°o. In ad-
dition, let us assume that the functions (3) are continuous, possessing con-
tinuous partial derivatives in the neighbourhood of the values z,, y,, 2y,

o, Y'0r %05 tO'
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From the theory of differential equations it is known that under the
preceding assumptions there exists one and only one set of functions (4)
continuous together with its first and second derivatives in the neigh-
bourhood of the moment 7, satisfying equations (II) as well as the re-
lations:

ko) = 2o, P(te) = Yo, w(te) = 203 ['(ty) = xg, @'(8) = Yo
V' (t) = 2. (5)

This system, as the only system of functions (4) satisfying all the
required conditions, therefore determines the motion of a material point
having at the moment ¢, the coordinates w,, y,, 2, and a velocity whose
projections are z°y, ¥*y, 2°.

We see from this that the motion is completely determined when the
mass of a point, the forces acting on it and the so-called initial conditions
(i. e. its position and velocity at the initial moment #,) are given.

Equations (II) are called Newton’s laws of motion.

Example. The force depends only on the time. Let the force P
depend only on the time and be given by functions (1). The equations of
motion (II} will therefore have the form:

mx = F(t), my = O@), me = ¥(t).
Dividing by m and integrating both sides, we obtain for ¢, = 0

t ¢ t
1 1 1
x'=7—n-fF(t)dt+cl; ?/':Efé(t)dt_}‘cm z':‘ﬁfgy(t)dt"*'cii'
0 0 0

Let us assume that at ¢ = 0, a* = 2y, y =y, 2° = 2’9 (initial
conditions). Substituting ¢ = 0 in the above equations, we get ¢, = g,
€y = Yy, C3 = 2°,. Hence

x = Fit) + 2, y = Oy(t) + Yo 2= Wi(t) + 2, (6)

where
t
1
F(t) = ;;flf’(t) dt, ete.
0

Integrating equations (6), we obtain:

t t
x= [Fy(t)dt + xit + ¢;, y= [Dy(t) dt + ot + ¢},

0 4]

4
z = [W,(t) dt + 25t + c. (7)
0
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Let us now suppose that at £ = 0, x == &y, ¥ = ¥, 2 = 2. Therefore
from equations (7), putting t = 0, we get ¢, = @, ¢y = Yo, €3 = Z,. Hence

x = Fyt) + x gt + g, ¥ = Dy(t) + Yot + Yo 2 = Wy(t) + 2ot + 2, (8)
where

Fyt) = ftFl(t) dt, ete.

From equations (8) it follows that the motion will be defined if at the
initial moment # = 0 the position of the point (i. e. &y, ¥y, 2,) and the
initial velocity (i. e. g, ¥, 2°y) are given.

§ 5. Motion under the influence of the force of gravity. Let a force
P of constant magnitude, direction and sence act on a material point of
mass m.

We have to deal with this situation — when investigating the motion of
small bodies near the earth and taking as the inertial frame a frame attached to the

earth. If air resistance is neglected, then the only force acting on a projected body
is the force of gravity which can be considered constant over a small region.

due to gravity). Let us select a frame (, y, z) so that the sense of the
z-axis is vertically upward. Then

P,=0, P,=0, P,=—myg.
Newton’s laws of motion (p. 72, formulae (II)) become: mx == 0,
my = 0, mz'* = —mg, or
F 0, Y= 0’ 2= -—g. (1)

Integrating the above equations, we obtain:
X =cCy, Y =Cp 2 =—gl+ c; (2)
Integrating once more, we get:
=+, y=cgd+cy, z=hgtt 4 cgt+ ey (3)
The numbers ¢,, ¢4, €3, €1, €y, C5 denote constants of integration which
we shall determine from known initial conditions, i. e. the coordinates x,,
Yo, 2o and the projections x-y, y°g, 2° of the velocity v, of the moving point
at the initial moment f,. Without loss of generality we can assume that
t, = 0; moreover (by selecting a system of coordinates suitably) we can
assume that at £, = 0 the point was situated at the origin of the system
and that the velocity v, lay in the vertical plane 2z.
We are therefore assuming that at ¢ = 0, 2y = 0, y, = 0, 2, = 0 and
yo=0.
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Substituting ¢ = 0 in equations (2) and (3), we obtain
€L = Xg, € =Y =0, ‘f:; =2 €| = & = 0, Cy = Yo = 0,
€3 =2y = 0. ‘
Equations (2) and (3) hence take on the form:
w=we, y =0, &=—gt+t, @)
x=ux9, y=0, z=—3%gl -+ 2z (3)
Since y = 0 constantly, the motion takes place in the vertical

zz-plane.

We shall examine two cases: the so-called vertical projection and the
oblique projection.

Vertical projection. i.et us assume that at the moment ¢ = 0 the
velocity v, was directed vertically (or was zero), and hence that -, = 0.
Putting z* = v and 2z°( = vy, we obtain from (2') and (3')

=0,y =0, z=0,y=0, (4)
V= —gt+ vy, 2= — 4gt® | vl (5)
Since x = 0 and y = 0 constantly, the point moves along the z-axis,

i. e. along a vertical. Moreover, we have v = p = —g.

Therefore: if the initial velocity has a vertical direction (or is zero),
then a point moves with a uniformly accelerated motion along a vertical under
the influence of the force of grawvity.

Assume that v, > 0, i. e. that at the initial moment the velocity had
an upward sense (e. g. that we had projected the point vertically upwards
with a velocity v,). Let us denote the height of the projection by 4, i. e.
the maximum elevation the point will attain. In order to obtain # it is
necessary to calculate the maximum of the function z = — Jg#* 4 vt.
We get ‘

h = v} [ 2g at the moment t = v, /g. (6)

Oblique projection. Let us assume that the velocity v, (= 0) makes
anangle « # 4 4z with the z-axis. Setting |v,| = v,, we get z*y = v, cos «,
z'g = vy sinw. Therefore in virtue of (2') and (3’)

' =1vyc0o8x, Yy =0, 22 =-—gt+ v,sinq, (7)
r=wvgcosx, y=0, z=—1g1 ptsina. (8)

Since cosx + 0 and vy == 0, by the first of the equations (8) ¢ =

= v [ vy cos «, whence

I __a -+ z tan «. (9)

2= ——
205 cos2x

6
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This equation is that of a parabola.

Hence: a point projected obliquely moves along a parabola.

The parabola cuts the z-axis in the points O and D. The length of the
segment OD = d is called the range of the projection. :

In order to calculate d we substitute z = 0
in (9). We obtain

2
d= %"sin 2ax. (10)

Therefore: the maximum range of a projection
Fig. 70. with a given velocity v, occurs for the angle o =
= }mt = 45°.
In order to obtain the height % it is necessary to calculate the maxi-
mum of the function (9). We get

h = vgsin®x [ 29 for x = v2sin2x /2g. (17)

§ 6. Motion in a resisting medium. A material point moving in
a medium such as air, for instance, encounters resistance. Experiments
show that air resistance can be expressed by a force depending only on
the velocity of the point (for bodies the resistance also depends on the
shape of the body). Resistance has the direction ¢ the velocity, but an
opposite sense. The magnitude of the resistance depends on the magnitude
of the velocity, but not on its direction. Let us denote the magnitude of
the resistance by I' and the magnitude of the velocity by ». We can
therefore write

I = f(v).

The function f is an increasing function with f(0) = 0. For velocities less
than the velocity of sound (which is 333 m/sec in air) we can assume with
great accuracy that

I = jo?, (1)

where 1 is a factor depending on the temperature and density of the air.

Vertical projection. Let us investigate the case of the falling point.
Assume that the point falls along the z-axis to which we give a sense ver-
tically downward. Consequently the component of the velocity 2z =
= v > 0. The resistance is directed upwards and hence its projection on
the z-axis is negative. Assuming that the magnitude of the resistance is
expressed by formula (1), by putting 2 = km we obtain:

mz = mgzz mg — kmov?. (2)

ds
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From this
o de i
g—kvt
and hence .
do
f P f dt = t. (3)
Setting
v =12,
we get
dv 1 ki‘%ﬂ o 1 Vo -+ ¥
f}"ﬁﬁ*%‘vi;m“ﬂaﬁwmﬂ;+“
where ¢ is the constant of integration. Hence by (3)
1 Ve + v
I P N AT
2kv ., nvw~v+ =1 (4)

Let us assume that at the initial moment ¢ = 0 the velocity was
v = 0. Substituting v == 0 and ¢ = 0 in formula (4), we get ¢ = 0. Con-

sequently
e2kvet ] 92
v = i T o == (] T | ])vw. (5)

From formula (5) it follows that v is always less than v,,.
Hence: the velocity of a point falling vertically in a resisting medium
does not increase infinitely, but is always less than the limiting velocity v.,,.

Oblique projection. Let us now assume that the point moves in the
vertical plane xz. Let the magnitude of the resistance in all generality
be given by I" = f(v). Denoting the resistance by I', we therefore obtain

I'= @ v, whence I, = _f@) v, and I', = 1) V..
v v )
Therefore
I () DR ()9
z ” s Aoz p .
The equations of motion will hence have the form
“ e e —
mr = %’A(UE)VL, mz == mg 7*11(1)@2" P Vx_z T

The science of exterior ballistics is concerned with the solution of the
preceding equations. This problem is very difficult because the values of
the function f(v) are known only from measurements,
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§ 7. Moment of momentum. Let a material point 4 of mass m move
with a velocity v. We have called the vector mv whose origin is at 4 the
momentum or the quantity of motion (p. 72). If z, y, z are the coordinates of
the point A, then the projections of the momentum on the coordinate axes
are mx’, my, mz', respectively.

Let K denote the moment of the momentum mv with respect to the
origin of the coordinate system. Then (p. 18, formula (1T)):

K,=myz—zy), K,=mrz—zz2), K, =m@ay—y=z). (1)
Take the derivative (with respect to time) of the moment of momen-
tum. We obtain:
K,=m(yz—zvy), K,=mlzwx—az), K,=may—y=z). 2)
Assume that the frame of reference is an inertial frame and that

a force P acts on the point A. Then mx = P,, my- = P,, mz = P,,
whence by (2)

K,=P,z—P,y, K,=P,x—P,2, K,=P,y—P,x. (3)

The expressions on the right hand sides of equations (3) represent the
moments of the force P with respect to the axes of the frame. Therefore,
denoting by M the moment of the force P with respect to the origin of the
frame, we have by (3)

K,=M,, K,=M, K,=M, (4)
The above equations can be written as one vector equation:
K = M. (3)

The origin of the frame could have been chosen arbitrarily.

Hence: the derivative of the moment of momentum with respect to an
arbitrary fixed point is equal to the moment of the acting force with respect to
this point.

From equations (4) it also follows that the derivative of the moment
of momentum with respect to an arbitrary fixed axis is equal to the moment
of the force with respect to this axis.

Principle of conservation of areas. Let us suppose that the moment
of the force P with respect to a certain axis [ is constantly zero; therefore
either the line on which the force P lies cuts the [-axis, or the force P is
parallel to that axis. Let us choose the [-axis as the z-axis. Hence we
have M, = 0. In virtue of (4), K, = 0 or K, = const. ¥rom this and (1)
we obtain

m(xy — y'x) = const, or x'y— y'x = const. (6)
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Let A’ be the projection of the point A on the xy-plane. The point
A’ has the coordinates x, y. Therefore the areal velocity (p. 47) of 4’ is
— }x'y — y'x). From formula (6) it follows that the areal velocity of
the point 4’ is constant.

Therefore: if the moment of a force with respect to a certain awis is
constantly zero, then the moment of momentum of the motion with respect fo
this axis is constant, and the areal velocity of the projection of the motion on
a plane perpendicular to this axis is constant.

This theorem is called the principle of conservation of moment of
momentum ot the principle of conservation of areas.

§ 8. Central motion. If a material point movesinsuch a manner that
its acceleration at each moment is directed along a line passing through
a certain fixed point O, then the motion of the point is called a central
motion and the point O the centr > of motion.

For instance, the uniform motion of a point along the periphery of a circle is
a central motion because the acceleration is constantly directed towards the centre
of the circle which in this case is the centre of raotion (p. 43).

Since the acceleration has the direction of the force acting on the
material point, the line of action of the force in central motion passes
through the centre of motion.

A force field in which the lines of action of the forces pass through
a_certain fixed point O is called a central field and the point O the centre
of the field.

A point of mass M situated motionless at a fixed point O and attract-
ing another point of mass m with a force depending only on mutual dis-
tance of these points forms a force field. This field is a central field
because the force acting on the point m has — according to the law of
action and reaction (p. 73, III) — a line of action passing through the
point M.

The material point moves in a central ficld with central motion; the
centre of motion obviously lies at the centre of the field.

Let us choose the origin of the coordinate system at the centre of
the field. Since the line of action of the force constantly passes through
the origin of the system, its moment with respect to each axis is zero. By
the principle of conservation of areas the motion of the projection of the
point on each of the coordinate planes has therefore a constant areal
velocity, consequently:

yz—zy=a, 2zx—x2="0 xY—YT=_C, (1)
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where a, b, ¢ are certain constants. Multiplying the first equation by «, the
second by y, the third by z, and adding, we obtain
axr + by + cz = 0. ‘ (2)

Hence we see that the coordinates of the point constantly satisfy
equation (2). This is the equation of a plane passing through the origin
of the system (i. e. through the centre of the field). Therefore the point
moves in a plane passing through the origin of the system.

If we select © and y axes in this plane, then from (1) it follows that
the areal velocity in the plane of motion is constant; the radius veectors
consequently sweep out equal areas in equal times.

Therefore: the path in a central motion is a plane path lying in a plane
passing through the centre; the radius vectors emanating from the centre
sweep out equal areas in equal times.

We shall now prove the converse theorem:

If the path of a point is a plane path and the radius vectors emanating
from a certain fixed point O (lying in the plane of the path) sweep out equal
areas in equal times, then the line of action of the force constantly passes
through the point O. ‘

Proof. Choose the origin of the system at O and the z and y axes in
the plane of the motion. The point therefore moves in the xy-plane. Since
the areal velocity is constant, x'y — yx == const. Differentiating both
sides we get oy — y & = 0; hence (mz'*) y — (my*') x = 0, whence

P.y—P,x=0. (3)

Since z* = 0, P, = mz = 0. The force P therefore lies in the xy-
plane; in virtue of (3) the moment of the force P with respect to O is zero;
hence the line of action of the force P passes through O, g. e. d.

Remark. Let us assume that the areal velocity in a central motion
is zero. Then x'y — yw = 0, or (in polar coordinates) 72p- == 0. It follows
from this that either » = 0 constantly, i. e. that the point is at rest, or
@' = 0 constantly, or ¢ = @, = const, i. e. that the point moves along
a line passing through the centre (and inclined at an angle ¢, with the
x-axis).

Hence: if the areal velocity in a central motion is zero, then the point
moves along a straight line passing through the centre.

On the other hand, if we assume that the areal velocity is different
from zero, then r2¢p* == 0, or r == 0.

Therefore: if the areal velocity in a central motion is different from zero,
then the point never passes through the centre.
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Binet's formula. A point 4 of mass m moves in a central force field
in the zy-plane with an areal velocity differen’ from zero. Let us intro-
duce the polar coordinates r, ¢ and denote by P the projection of the force
P on the radius vector OA. Then P, = P cosg and P, = P sin¢; hence
P, cosp + P,sing = P, whence

P = m(z cosp + y sing). (4)

Since x = r cos g, y = rsing (cf. p. 47, formula (2)),

2 cosp + ysing = r—re?,
whence in virtue of (4)
P =m(r —re?). (5)

Let us denote the areal velocity by 4c. By assumption ¢ = 0. Since
the areal velocity in polar coordinates is 1r2@* (p. 47),

g =c, or " =c [r% (6)

Suppose that the path has the equation r = f(¢). Then
dr  drdp drc d(1/7)

= W‘_C—d(p—ﬁ, ) (7)

Tdt  dp dt  der®
and hence
L dr drdp Ld%1/r) 1 "
G A P A o ®)
From formula (5) in virtue of (6) and (8) we obtain:

P m(__cldﬂ/")_ 02)

2 d(pz—~ =

and therefore
 omc*(d¥(1)r) 1
P —_ —‘772— (“a&" 7‘ . (I)
The above formula is called Binet’s formula.
This formula enables one to determine the force acting in a central
motion if one knows the equation of the path. Conversely, knowing the
force P as a function of r and ¢, we can determine the path.

§ 9. Planetary motions. Kepler’s laws. On the basis of observations
Kepler gave the following three laws relating to planetary motions:

1. The planets describe ellipses with the sun at one focus.

2. The radius vectors emanating from the sun sweep out equal areas
in equal times.

3. The squares of the periods of two planets are proportional to the
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third powers of their mean distances from the sun (where by the mean
distance is meant the semi-major axis of the ellipse along which a planet
moves).

The third law is not quite exact. The reason for this we shall know
later. Let us further observe that Kepler’s laws are strictly kinematic.

Corollaries from Kepler's laws. From Kepler’s laws Newton deduced
(by means of dynamics) the law defining the forces which cause the motion
of the planets. From the first two of Kepler’s laws it follows that the
planets move along plane paths with a constant areal velocity. Therefore,
in virtue of the converse theorem on p. 86, the forces acting on the pla-
nets are central forces whose lines of action pass through the sun.

Let us select axes z, i in the plane of motion of the planet, placing
the origin of the frame in the sun as the focus of the ellipse along which
the planet revolves. As the direction of the z-axis let us choose the direc-
tion of the major axis of the ellipse, and give to the z-axis a sense such
that the centre of the ellipse will lie on the negative side of the z-axis.
Denote the major axis of the ellipse by 2, the minor axis by 2b, and the
distance between the foci by 2e. The equation of the ellipse in polar
coordinates will then have the form

ol —€?)
Y " U Fecosg M)
b . m  Where / B
| 2_  h2
| : e— 2 Ja -0 (2)
a g / x a a
\/ From Binet’s formula (p. 87, (I)) we can
Fig. 71 obtain the force acting on the planet. We have in
g virtue of (1)
I 14 ecosp d*1l/r)  ecosp
T Al e VRO T T T ey
and hence by (2) and Binet’s formula
) mec2a

The arca of an ellipse is 7ab; denoting the period of the planet by T,
and noting that ic is the areal velocity, we obtain 3c = zab /T, or
¢ = 2nab | T. Therefore in virtue of (3) we get

4m2ma?®

P——Tr0m (4)
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Since P < 0, the force is directed towards the sun.

By Kepler’s third law we have for two planets T2 | T? = a3 /a3, or
a® [ T? = af | T. The ratio a® / T? therefore has a constant value for all
planets. Putting

w=ar /T (5)
we obtain from (4)
4mPum
P——=5 (©)

L]

Hence: the force under whose influence a planet moves is directed
towards the sun, and is directly proportional (in magnitude) to the mass of
the planet and inversely proportional to the square of the distance from the
sun.

Law of universal gravitation. The preceding result deduced from
Kepler’s laws suggested to Newton the supposition that the force acting
on the planet is due to the mutual attraction of the planet and the sun.
Newton generalized this reflection in the form of the law of universal
gravitation:

Any two material points attract each other with forces whose magnitude
18 directly proportional to the product of the masses and tnwversely proportional
to the square of the distance between them.

According to the law of action and reaction, the fcrees with which the
material points attract each other are equal in magnitude, opposite in
direction and act along the line joining these points. Denoting by m, and
m, the masses of the points, by r the distance between them, and by P the
magnitude of the force with which they attract each other, we therefore
obtain

mm
P — K7, (I)

where K is a certain constant, the so-called gravitational constant which
depends only on the units of length, mass, and time.

From equation (I) we have K = Pr2 [ mym,; consequently [K] =
= [P][r]? | [m;][m,], and hence [K] = LM 72 Measurements have
shown that in the c. g. s. system:

K=66-10%cm?.g!.gec2

The gravitational constant can be measured by means of the so-

called Jolly’s balance. It is a balance having anupper and alower pan on

one side and a single pan on the other side. A body @ of mass m is placed
on the upper pan and balanced by a weight of mass m on the opposite pan.
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Body a is next transferred to the lower pan; this will not disturb the
equilibrium. However, if a body b of mass M is placed under the lower
pan, then the balance will tilt. In order to restore equilibrium we must
add a mass p to the mass m.

In the experiment the body b was a
lead sphere. Since, as can be shown, a ho-
A mogeneous sphere attracts an exterior point
m+u  as if the entire mass of the sphere were
concentrated at its centre, denoting by r
the distance from the centre of the sphere to

the body @, we have KmM [ r® = ug, or

Fig. 72. K = ugr | mM.

Mass of the earth. It can be shown that a sphere composed of con-
centric layers of constant density attracts an exterior point as if the
mass of the sphere were concentrated at its centre. Assuming that the
earth satisfies the preceding condition, and denoting by M the mass of
the earth, by R its radius and by @ the weight of a body of mass m (on the
surface of the earth), we obtain @ = KmM | R2. @ = myg, therefore mg =
= KmM | R?, or

M = gR* | K. (7)
Using g = 9.81 m - sec %, R=6300km, K =6.6-10 % cm?® - g™" - sec 2,
we obtain (after changing m and km into em)
M =6-10"g.
. The density of the earth is obtained from the formula
o= M |4{R7 = 3¢ [ 4KRn = 5.6 g/em®

Kepler’s equation. We shall now determine the position of a planet
at a given moment of time. Let us choose a system of coordinates in the
plane of motion of the planet as on p. 88. In a rectangular coordinate
system the ellipse along which a planet moves has the equation

(& + e [a + 2 [ b = 1.
Let us introduce an auxiliary angle « defined by the equations:
(x+e)/a=cosu, y/[b=sinu. (IT)

The angle w is called the eccentric anomaly.
Equations (II) define the angle  unambiguously. From (IT) we get

x = afcciu—e [a), y=bsinu.
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Substituting e = ¢ /a, b = a]/l_———?, we obtain
x = a(cosu — &), Y = a,]/l_—_«aé sin u. (8)
The radius vector r is obtained from the equation
r? = 2% 4 y? = o}l — ¢ cos u)?.

Therefore
r = a(l — & cos u). (I11)

The angle ¢ which » makes with the z-axis is called the true anomaly.

From the equation of the ellipse in polar coordinates (p. 88, (1)) we
get re cos ¢ = a(l — &) — r; hence

re(l + cos @) = (1 — &)[a(l + &) —r],
whence by (III), #(1 + cos¢) = a(l —e&)(1 4 cosu). Since 1+ cosgp =
== 2 cos?}p and 1 4 cosu = 2 cos?iu,
]/r_cos%— = ]/a(l — &) cos u, (IV)
and similarly - -
]/r sin fg = l/a(l -+ &) sin Ju;

tan ¢ 21/

Formulae (IV) and (V) determine ¢ unambiguously in terms of w.

whence

=1
[

tan Lu. V)

-

o

Let us suppose that at the moment ¢ = 0, v = 0, and hence ¢ = 0.
The area of an ellipse is zab. If T denotes the period of revolution of a
planet, then the areal velocity is wab/T'. Hence the radius vector sweeps

b .
out an area %t during the time from 0 to ¢. This area can also be re-
presented in the form of an integral
(4
b
’%z:%fﬂ dg. (9)

0
Differentiating (V) we obtain

de V1+s du

cos?tp | 1— & cos?iu

Therefore by (IV)
14 ¢ e 12
dg :Vu_e Ay, ey,

1—¢ r

Substituting in (9) we obtain
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whence in virtue of (I1I),
b, a1l —¢
T 2
From this and the fact that aP]/T_;_sZ = ab, we get
u—esinu = 2nt | T. (VI)

The expression 2t | T' is called the mean anomaly.

Equation (VI) is called Kepler’s equation.

By means of Kepler’s equation we can determine w at each moment ¢,
and then by equations (III), (IV), (V) the radius vector » and angle .
Astronomy gives numerous methods for solving Kepler’s equation.

(v — e sin u).

In astronomy the eccentric anomaly w is usually denoted by the letter E, the
true anomaly @ by v, and the mean anomaly 2t / T by M.

§ 10. Work. Suppose that a material point was displaced from point
A to B and that during this displacement a force P (there can be other
forces besides) acted on it.

Constant force. Let us assume that the force P acting on a material
point during its motion from 4 to B was constant in magnitude, direction,
and sense (even though the motion could take place along a curve).

The work of the force P through the displacement 4B is defined as
the scalar product

P.AB.
If work is denoted by L, then
L=P-AB. (I)-
Let o be the angle between P and 4 B. Consequently
L = |P| . |AB| cos o. (IT)

Work can be a positive or negative number, or zero. The work of
a force P is zero if P = 0 or AB = 0 (i. e. when there is no displacement), or
when « = } (i. e. when the force is perpendicular to the displacement).
If P+0, AB =+ 0, and cosw = 0, then work is a pcsitive or negative
number depending on whether « is an acute or obtuse angle.
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If « = 0 or & = x (i. e. if the force has the direction of the displace-

ment), we have

L= 4 |P|.|AB],
where the sign depends on whether the force and the displacement have
the same or opposite senses.

From theorems on a scalar product (Chapt. I, p. 7) it follows that
the work of the force P through the displacement AB is equal to the
product of the displacement and the projection of the force on the
direction of the displacement, or the product of the force and the project-
ion of the displacement on the direction of the force.

Tt should be noticed that — according to the definition — work does
not depend on the time it takes the material point to be displaced from A to B.

Let us denote the projections of the displacement AB on the coordin-
ate axes by Az, Ay, Az. Hence in virtue of (I)
L =P, Ax - P, Ay + P, 4z. (1)

L Z
If the point A has the coordinates z, ¥y, 2o, and B z,, ¥, 2, then
Ax = x, — z,, ete. Consequently

L = Py(x; — %) + Py(y1—¥Yo) + P (2, — 7). (2)

Variable force. Let us now assume that the point moves along a curve
C defined parametrically by the functions:

z = f(o), y=¢l0), z= (o) (0'<o=0"). (3)
Suppose along with this that if 6, < ¢,, then the position of the point
corresponding to the value o, occurs sooner than the position correspond-
ing to the value o,.
Let us further assume that there acts on a material point. a variable
force P whose projections at an arbitrary point (z, y, 2) of the path are
given by the functions:

P,=F,y,2), P,=®xvy2), P,=W¥kuy,-2). (4)

Of course, we assume that the functions
F, @, ¥ are defined at every point of the
path. Let us form an arbitrary subdivision ¢
of the interval ¢’¢” by means of the points
¢ = 04, 04, 7., 05 = 0". To these values of
the parameter o let there correspond the
points
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A" = Ay, Yo» 20)s As(®1, Y1, 21)s s A(@ny Yo 2a) = A7,
on the curve C.
In virtue of (3)
x; = f(03), yi= @(0)), 2 = p(oy) for i =0,1,...,n (5)
Let us put:
Az;=w;— %y AYi=Yir1— Y A2; =241 %4
, G=01,...,n—1) (6)
Finally, let us denote the forces acting at the points d,, 4, ..., 4,
by Py, Py, ..., Pa. By (4)

P =F(x;yi2)), Piy= O, Ys,2:), Pun—= V(@ Yur 2:)- (7)
If the force P acting through the displacements A A, AA,,-... were
constant and equal to Py, Py, ... respoctively, then the work on these
displacements would be expressed by the formulae:
Ly = Py Axy + Py, Ayy + Po A2, »

leleAxl+P1yAy1+Plez1,

Putting L' = Ly + Ly + Ly + ..., we therefore obtain
n—1
L' = Z(sz Ax; + Py, Ay; + Py, 42,). (8)
=0
The expression on the right side of the above equality obviously
depends on the subdivision ¢ of the interval ¢’c”.
1f I’ tends to a certain limit for every normal sequence’) of sub-
divisions {8} of the interval ¢'¢”, then this limit is called the work of the
force P along the curve C (or along the length of the curve C).
Expression (8) can be considered as the approximate value of the
work L of the force P.

The limit of expression (8) is the so-called line integral along the
curve C

L= [(P,dx + P,dy + P,dz). (ITT)
- ¢

The line integral can be reduced to an ordinary definite integral by
expressing the variables , y, z as functions of the parameter a. Making use
of equations (3), we obtain

1) i, e. such that the length of the maximum interval of subdivision tends to
zero.
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L= [[P.f(0) + P, ¢'(o) + P.y/(o)] do,

where P, = F(f(o), ¢(0), v(0)), P = D(f(0), p(0), w(c)), etc. In particular,
if ¢ denotes the time, then f'(¢) = 2, ¢'(c) = ¥, v'(s) = z'. Consequently

L= f[me' + P,y + Pz]di. (IV)
;

Since z, y*, z* are the projections of the velocity v, P,z + P,y -
+ P,z» = P .v. Hence

I

L= [(P-v)dt. (V)

Remark. Formula (ITI) is correct when the positions of the moving
point on the curve follow each other in the order which corresponds to an
* increase of the parameter o. However, if the contrary is true, i. e. if
g, > d,, then the position corresponding to ¢, occurs later than that cor-
responding to -7,, and hence it is necessary to substitute in formula (III)
—dz, —dy, -—dz for dz, dy, dz. We obtain then

L=— [(P,dx+ P,dy + P, dz).
%

Therefore, if a material point has moved along curve C from 4’ to 4"
and the force P has done work L, then, if the point moves along the curve ¢
from A" to A’ (in this case the positions will follow each other in an order
opposite to that before), the same force P is going to do work — L.

Work of a sum of forces. Let us suppose that a material point moving
along a curve (' was acted upon by two forces P and Q. Put R = P 4 Q.
Denote by L the work of the force R, by L’ the work of the force P,and by
L” the work of the force Q. Then

L = f(Rwdx + R, dy + R, dz) =
:Cf (P, + Qm)c de + (P, + @,) dy + (P, + @) dz] =
=Cf(Pw dz + P, dy + P, dz) +Cf(Qx dzr + @, dy + @, dz) =
=L +1I,

and hence
L=1L +L". (VI)

We can therefore say that the work done by a sum of two (or more)
forces along a certain curve is equal to the sum of the works done by the
separate forces along this curve.
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Dimension and units of work. By (II), p. 92, we have [work] =
= [force] - [distance] = LMT 2L, and hence

[work] = L2MT2,

The unit of work in the c. g. s. system is the erg. It is the work done by
a force of 1 dyne acting through a distance of 1 cm. Consequently

erg = cm? - g - sec” .

A greater unit is the Joule (J) = 107 ergs. In the metric gravitational
system the unit of work is the kilogram-meter (kgm). It is the work done
by a force of 1 kg acting through a distance of 1 m. Since 1 kg (of force) =
= 981 000 dynes, and 1 m == 100 cm,

kgm = 9.81 - 107 ergs == 9.81 J.

§ 11. Potential force field. We called the region D (p. 77) a force
field if on a material point, situated anywhere in the region D, there acts
a force depending only on the position of that point.

The force field is defined by the given functions:

Pm = F(x7 [ K z)’ 'P’l/ == ¢<x’ Y 3 z)? PZ = T(x7 y’ Z)) (1)

which determine the projections of the acting force P at the point with
coordinates z, v, z.

Stress field. It can happen that a force P is proportional to the mass m
of a material point. Then the force acting on a unit mass (i. e. the force
P/m) at a certain point of the field is called a stress field at this point.

An example of such a field is the earth’s gravitational field. The
weight of a body is proportional to the mass of the body. On the earth’s
surface the stress field is equal in magnitude to g (gravitational accelerat-
ion).

Lines of force. Certain curves in a force field called lines of force
deserve special consideration. These are curves haviag the property that
a tangent at an arbitrary point has the same direction as the force acting
at that point. For instance, in the earth’s gravitational field the lines of
force are vertical lines. Lines of force are defined by the system of diffe-
rential equations:

dr /P,=dy |/ P,=dz /P, (2)

Definition of a potential field. If a material point in a force field
moves from a point 4 to a point B along some arc A B, then the work done
by the acting force P (p. 94, (III)) is

L= [(P,dx + P,dy -+ P, dz). (I
AB
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The work will in general depend not only on the points 4 and B, but
also on the path described, i. e. on the arc AB. Fields in which the work
depends only on the points 4 and B, and not on the arc AB, play an
important role in mechanics. Therefore, if a material point moves from 4
to B along various paths in such a field, then the force P always does the
same work. Such fields are called potential or conservative fields.

Therefore: a potential field s a force field tn which the work does not
depend on the path, but only on its origin and end points.

If a point ir: a potential field has traversed a closed path (or has left
the point 4 and 1eturned to 4), then the work done throughout the length
of the path is zero. The work in a potential field depends only on the origin
and end points, hence, if they coincide, the work is such as if the point
had not moved at all.

Conversely, i a force field has the property that the work along every
closed path is zero, then the field is a potential field. Let us choose two
arbitrary points 4, Band arc AMB, ANB. Denote by L' the work along
arc AM B and by L” along arc ANB. By hypothesis, the work along the
closed curve AM BN A is zero. This work can be represented as the sum
of the works: from 4 to B alongthe arc AMB and from B to A along the
arc BNA. Since the work along the arc BNA is equal to —L", L' +
+ (—L") = 0, whence L' = L". Therefore the work along both arcs is the
same.

We can therefore say that for a force field to be a potential field, it is
necessary and sufficient that the work along every closed curve in the freld
be zero.

Potential. Let-us select an arbitrary coordinate system (x,y, z) and
a point 4 in a potential field. If we look upon the point 4 as fixed, then
the work L, 5, where B is an arbitrary point of the field, will depend only
on the coordinates x, y, z of the point

B. Therefore the work L,, will be a B B
function of the coordinates x, ¥, z. De- M
noting this function by V(z, y, 2), we N
obtain A 4 &’
¢ Fig. 75. Fig. 76.
Lyp="V=y,2). (3) g ®

The function V(z, v, z) is called a force function or a potential.

Let us consider some point B’ with coordinates x’, ¢’, 2. The work
along an arbitrary curve A BB’ 4 is zero. Therefore L ;s + Lyp + Ly 4 = 0.
7



98 CHAPTER III — Dynamics of a material point

But Ly,=—L,p=—V(,y,2). Hence by (3) V(z,y,2) +
+ Lpp — V', ¢, 2") = 0, whence
LBB' = V(-’IJ', ?/,, z’) - V(x’ Y, z) (II)

Formula (IT) can be stated as follows:

In the passage from one point to another the work is equal to the differ-
ence of potentials between these points.

We have defined the potential as a function depending on the choice
of the point 4. Had we chosen another point 4'(z’, ¥, 2’), the potential
would have been expressed by another function V'(z, v, 2).

Since by the definition of a potential we have for an arbitrary point
Bz, y, 2)

Vi(x,y,2) = Lyp= V(z, y,2) — V', y', 2),
hence
Viz,y,2) —V'(x, y,2) = V(2', y', ') = const.

Therefore the difference of both functions V and V' is constant. We
see from this that in a potential force field the function is defined to
within a certain constant (as in an indefinite integral). As formula (II)
shows, this constant does not play any role, since for the magnitude of the
work there enters only the difference of the potentials at the two points.

Dimension of the potential. Since by definition the potential is equal
to work, the dimension of the potential is the same as the dimension of
work. Therefore

[potential] = LZMT 2.
The units of work are equally units of potential.

Relation between force and potential. Let us move a material point
from the point A(x,, ¥, 2) to the point B(z, y, z) along a line parallel to the
z-axis. By (I) and (II) the work is:

L,y =V, y,2)— Vg, y,2), or Lyg= [(P,dx + P,dy + P, dz).

AB

Since the point was translated along a parallel to the z-axis, dy = 0
and dz = 0. Therefore

L,p= fo de = me dz,
AB T,
whence

Vi, y,z) — V(g ¥, 2) = [P, dx.
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Taking the partial derivative with respect to & we get oV [ ox = P,; we
obtain analogous formulae for the remaining partial derivatives.

Hence: the partial derivatives of the potential are equal to the correspond-
ing projectior.s of the force on the coordinate axes, i. e.

oV oV oV
= P, i p, = = P (I1I)
Conversely, if we assume that in a given force field there exists
a function V satisfying relations (I1I), then the field is a potential field.
For let a given function V satisty relations (IIT). Then the work from the

point A(x,, ¥4, 2,) to the point B(x,, ¥/,, 2,) along an arbitra,ry arc 4B is:
7
LAB=f<dex+Pydy+ Pzdz):f(” a4+ 2 d + 2 )
An iB

Since the expression in the parenthesis of the last integral is the total
differential dV, we obtain the formula

Lyg :Ajl;dV = V(@3, Yo, 22) — V{21, Y1, 21)s (4)

expressing the fact that the work does not depend on the path, but only
on the end points. In virtue of (4) the function V is therefore a potential.

Hence: if for a force field there exists a function V satisfying relations
(I11), then the force field is a potential field and the function V is a potential.

Potential surfaces. If ¢ is an arbitrary constant, the surfaces defined
by the equation

Vg, y,2) = ¢ (5)
are called potential surfaces.

Therefore: a potential surface is one along which the potential has a
constant value.

In differential geometry it is proved that the direction cosines cos s,
cos f8, cos y of the normal to the surface (5) at the point (, ¥, 2) satisfy the

conditions: .
oV oV oV
cosx :cosf:cosy == ?77/ s

whence, by (11I),
cosx:cosfficosy =P, P, P,

Since the direction cosines cos «’, cos ', cosy’ of the force P satisfy
similar conditions: cos«’:cosf’ :cosy’ = P,: P,: P, the force P is
normal to the potential surface.
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Therefore: at every point of a potential surface the acting force is per-
pendicular to this surface. 1t follows from this that the lines of force are
perpendicular to potential surfaces.

Let us select two neighbouring potential surfaces § and 8’ having
potentials ¢ and ¢’, where ¢’ > ¢. From an arbitrary point 4 of the surface
S let us draw a normal to this surface intersecting

P the surface " at the point A4’.
The work along the displacement from 4 to 4’
is Ly, = ¢ —c¢ > 0. Since the work is positive,
the force P has the sense of the displacement AA'

Hence: with respect to a potential surface the
force points in the direction of increasing potential.

Fig. 77. Approximately we have L,, = |P|4A4' =
=c¢ —c¢, or [Pl =(c'"—¢)]AA".
Hence: on one and the same potential surface the force is approximately
tnversely proportional to the segment of the normal enclosed between this
surface and a neighbouring potential surface.

§ 12. Examples of potential fields. Let us now look at several kinds
of potential fields which are frequently dealt with in practice.

Constant field. If a force P in a certain field is constant in magnitude,
direction and sense, then the field is called a constant field.

The earth’s gravitational field in a small neighbourhood of a given
point on the earth-surface is a constant field.

Let us select a coordinate system (x, , 2), giving to the z-axis the
direction of the force P, but an opposite sense. Putting |P| = mg, we obtain

P,=0 P,=0 P,=—nmyg.
It is easy to verify that the function
V = — mgz .
is a potential because we have
oV /]ox=0=P, oV /|/oy=0=P, oV ]0z=-—mg=P,

Hence: a constant field is a potential field.

The work from the point A(x,, ¥y, 7,) to the point B(x,, ¥,, 2,) along
an arbitrary path is L, = — mgz, — (— mgz,); hence

Lyp = mg(z, — z,). (1
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By hypothesis, the force P is the force of gravity, and it is clear that
2y — 2, = h is the difference between the levels at which the points 4
and B are situated. Therefore, putting |P| = @ = myg, we obtain

L, p=Qh.

The potential surface has the equation V = const.; hence — mgz =
= const., or z = const. Therefore, potential surfaces are level surfaces
(i. e. perpendicular to the direction of the force). Since the lines of force
are perpendicular to the potential surfaces, the lines of force are straight
lines parallel to the z-axis, i. e. vertical lines.

Central fields. If the direction of a force in a force field always passes
through a certain fixed point O, then the field is called a central field and
the point O the centre of the field (p. 85).

Let us assume that in a given central field the magnitude of the force
at an arbitrary point A depends only on the distance r of the point 4 from
the centre 0. Denote by P the projection of the force P acting at 4 on the
direction of OA. Therefore P is a function of 7. Set

P = {(r)
Let the origin of the coordinate system be at O. Denoting by z, y, 2

the coordinates of the point 4 and by « the angle which 04 makes with
the z-axis, we obtain cos « = z / r. Therefore

P, %Pcosoc-—l'a and similarly P, —pY 7 P, _Pé (2)

Put V = [Pdr = [f(r)dr. Since r:]/mz—!—yz—l—zz, or | ox =
=ux/r, or/oy=y/r, and or/ 0z = z [ r. Therefore

oV __dV or _ x >
w4 == =P Abcyg)
and analogously
ov oV
—ag == P”, & = Pz.
Our field is hence a potential field and the function ’ Fig. 78.

V is a potential.

Therefore: a central field in which the force depends only on the distance
of the point from the centre is a potential field, and the potential is expressed
by the formula

V= [Pdr. (3)
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Since the potential at the point 4 is a function of the distance r of
the point 4 from the centre O, the potential has a constant value on
spheres with centre at O. Hence the potential surfaces in this case will be
spheres with centre at O. The lines of force are obviously straight lines
passing through the point O.

Newtonian gravitational field. Let us suppose that a point of mass m
is attracted with a force P by a fixed point of mass M according to New-
ton’s law of gravitation (p. 89, (I)), i. e. that

' IP| = KmM [ 2.

Since the force is directed towards the point M, the field is a central

field whose centre is the point M. Therefore, according to the definition

of the number P, P = — KmM [ »*.
We have
V= [Pdr=— [KmMdr/r
Consequently
V=KmM]|r. (4)

Hence the work along an arbitrary arc 4’4 is
1 1
L, =KmM (7 - ;,—),
where r and 7’ denote the distances of the points A and 4’ from the
centre. If, in particular, we select the point A’ at infinity i. e. if we put
7" =00, then we shall obtain

Los=KmM][|r=V. (5)
Therefore: in a Newtonian gravitational field the potential at a point A

s equal to the work a force would do in bringing a material point from
nfinity to A.

Axial field. A force field having the property that at every point of
the field the line of action of the force cuts a certain fixed line [ at right
angles is called an axial field, and the line [ is called the axis of the field.

Let us assume that the magnitude of the force P acting at an arbitrary
point A depends only on the distance r of the point from the axis of the
field. Put P = — |P| or P = |P| depending on whether the force P is
pointed towards or away from the axis I. Since the magnitude of the force
P is a function of 7 (i. e. the distance of the point 4 from the axis I), we can
write

P = f{r).

Let us select a system of coordinates in which the axis of the field is

the z-axis. It is easy to see that the projections of the force P acting at the
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point A(z,y,?) are P, = Pxz/r, P, = Py/r, and P, = 0, where r =
= /2?42 Put
V = [Pdr = [f(r) dr.

Therefore
oV dVv or x
moarwm Ly e
Similarly
14
a—y =P,

Since V does not depend on z Toecause  does not
depend on z),
oV
=
It follows from this that the given field is a potential field and V is
the potential.

0=P,.

Hence: an axial field in which the magnitude of the force depends only
on the distance of the point from the axis is a potential field and the po-
tential is

V= [Pdr (6)

It is easy to see that in this case the potential surfaces are cylinders
whose common axis is the axis of the field. The lines of force are straight
lines cutting the axis at right angles.

For instance, if P = maw? (w constant), then V = [P dr = [maw?rdr,
and hence V = {maw?? = Jmw*(2® + 2). The potential surfaces are obtai-
ned by setting V = const. Therefore imw?(a? + y?) = const, whence
2% 4 y? = const; this is the equation of a cylinder whose axis is the
z-axis.

Sum of potential fields. Let there be given several force fields
P,, P, ... in a certain region D. A force field P = P, 4+ P, + ... in the
region D is called the sum of the force fields Py, Py, ...

If the force fields Py, P,, ... are potential fields, then — as is easily shown
— the sum of the fields is also a potential field whose potential V is equal to
the sum of the potentials V,, V,, ... of the separate fields.

Forletus pwt V.=V, 4+ V,+ ... We have

v, W, _
=l SiL =P 4 Pyt =P,

and analogously
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14 oV
a—y'—_P% 'a—z

Therefore V is the potential of the sum of the given fields.

=P,

Let us suppose, for example, that a point of mass m is attracted
according to Newton’s law by two fixed points of masses m, and m, with
forces P, and P,. The resultant force will therefore be P = P, + P,. On
p. 103 we have shown that the forces P, and P,
have potentials. Hence according to (4), p. 102,
denoting the distances of m from m, and m, by r,

and r,, we obtain:
2

mim, mm,.

and V,

7 T

Fig. 80. V,=

The force P therefore has the potential V = V, -+ V,. Consequently,
V = Km(m, | r; + my | r,). Similarly, if a point of mass m is attracted by

n fixed points of masses m,, m,, ..., m, according to Newton’s law, then
m, m m

fe= Km |24 2+ .+ 2 7

V A 7ﬂ(rl+72+ +rn)’ (7)

where 7y, 75, ..., 7, denote the distances of the point m from the points

My, My, ., My, respectively.

§ 13. Kinetic and potential energy. Let a force P act on a material
point A(x, y, z) of mass m. Then (p. 78, (I)):
mx = P,, my- =P, mz =P,
Multiply both sides of the first equation by «-, of the second by ¥,
of the third by z*, and add. We obtain
mxx + yy -+ zz) = P,x + P,y + P,z. (1)
Let us denote the absolute value of the velocity of the point 4 by v.
Then v = z2 + y'? 4+ 22, whence d(v?) [ dt = 2(x'z + y'y + z2), and
hence d(3mwv?) [ dt = m(x'x* + yy - -+ z'z). Substituting this equation
in (1), we obtain
d(dme?) /dt = P,x + P,y + P,z
Integrating both sides (with respect to t) from the initial time ¢, to ¢,
we geot
t t
f %(;’”’ dt = f [P,z + P,y + P,z]dt. (2)

te s
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Let v, be the absolute value of the velocity at the initial moment #;
the left hand side of (2) becomes yme? — Imwv?, and the right hand side
equals (p. 95, (IV)) the work that the force P did during the time from
to to t. Let us denote this work by L,,. Equation (2) can therefore be
written in the form

Im? — Imvg = L, ,. (3)

The expression §me? is called the kinetic energy of the point.

Putting

E = imv?, E,= tmv} (4)
we obtain:
E—E,=L,,. (I)

Hence: the increase in kinetic energy in o certain time is equal to the
work of the acting force in this time.

This theorem is called the equivalence of work and kinetic energy.

In particular, if the work of the force P is constantly zero, then
E—E,=0,i.e. B = E, and hence by (4) v = v,. Therefore the point has
a velocity which is constant in magnitude. Hence, if the force is e. g.
constantly perpendicular to the path, then the point moves with a uniform
motion. An example is the uniform motion along a circle of a point under
the influence of a force constant in magnitude and directed towards the
centre of the circle.

Let the point now move in a potential field. Denote by V and V, the
potentials the point possesses at the moments ¢ and ¢,, respectively. Then
L,,=V—V,, whence by (I) £ —E, =V —7V,, i.e.

E—V=E,—YV,. (5)

The expression —V is called the potential energy.

Setting — V = U, and — V= U,, we obtain

E +U=E,+ U, = const. (IT)

The sum of the kinetic and potential energies, i. e. the expression
E + U, is called the total energy.

Hence: if a point moves in a potential field, then its total energy is
constant.

The preceding theorem is called the principle of conservation of total
energy.

Dimension of kinetic and potential energies. By (4) [F] = [m][+*];
hence
[kinetic energy] = L2MT 2
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Therefore kinetic energy has the dimension of work. The units of
work are consequently also units of kinetic energy.

. By definition, potential energy has the dimension of a potential and
therefore also has the dimension of work (p. 98).

§ 14. Motion of a point attracted by a fixed mass. Motion along a
curve of the second degree. Let a material point 4 of mass m be attracted
by a fixed point of mass M with a force P acting according to Newton’s
law. Let us place the origin O of the coordinate system at the point M.
Denoting (as on p. 101) by P the projection of the force on the direction of
OA, we obtain

mM

P=-—K T (1)
Denoting the coordinates of the point 4 by z, y, z, we obtain (p. 101):
P =pPE— g™ T e
r rt r
Therefore the equations of motion of the point 4 are:
o mM x L mM y o , mM z
mrt — — 2 7, my: — — 72—7, mz —'-“'K—TT7 (I)

In our case the force P has the potential V = KmM |r (p. 102), and
therefore the potential energy U = — KmM [r. By the principle of
conservation of total energy 4mv? — KmM |r = const, whence putting
u= KM,

v® = 2u [r + h, where h = const. (2)

Since the motion in the problem under consideration is central
(p. 85), the path is a plane curve. Let us assume, therefore, that the mo-
tion takes place in the zy-plane and that the areal velocity is different
from zero.

From Binet’s formula (p. 87, (I)) we obtain by (1)
_ KmM _ mc? [d2(1 /7) 1]

72 - 72

der " r
and since KM = u,
d1/r) 1 g

de? +7:c'2. (4)

Let us set 1 /7 = u. We obtain

d2u
dg?

+u=h e
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A particular solution of the above equation is u = u [ ¢2. The general
solution of the homogeneous equation
d2u
de?
is -— as is easily verified — ot the form u = a cos ¢ + b sin ¢. The general
solution of (5) will therefore be

+u=20

u=pu/ct+ acosp -+ bsing,

where a and b are arbitrary constants. Setting @ = p cosg,, b = g sing,
(where g and ¢, are arbitrary constants) and substituting 1 / » = % back
again, we obtain the general solution of (4)

L/r=p/c - ocos (p— @) (6)

Now the general equation of a conic section, if the pole is at a focus,
has the form .
€ cos (
p ¢ (7 — @),
where p is a parameter, ¢ the distance between the foci, and ¢, the angle
the axis of the curve makes with the axis of the coordinate system. Equa-
tion (6) is therefore the equation of a conic section. By comparing them
we get

1 l
T

p=c/p and &= o/ p. ' (7)
Such a curve is an ellipse, hyperbola or parabola, depending on
whether ¢ << 1, ¢ > 1 or ¢ = 1. In order to recognize the type of conic
section, we must calculate the constant g. We shall determine it from
formula (2).-
We have v? = r2 -+ r2p2. Since }c is the areal velocity, §c = $7%¢-
i. e. " = c [ r?; therefore (p. 87, formula (7))

a(1 / )\ ¢

2 . p2y N7 —_—

el
By (6) we obtain

VP = p® [ ¢® + 2pp cos (¢ — @) + c*o* (8)

Determining r in terms of ¢ from formula (6) and substituting in

formula (2), we obtain v? = 2u? [ ¢ - 2up cos (p — @,) + k, whence by

comparing with formula (8)
b
9=V%+g; (9)

aad hence by (7)
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T hee
F25

Therefore ¢ = 1 depending on whether & = 0. Setting ¢ = ¢;,, v = v,,
r = r,, we obtain from formula (2) b = vZ — 2u / ry; consequently:

h = 0 depending on whether v:= 2u | r,.

It follows from this that the type of conic section does not depend on the
direction of the velocity, but only on its magnitude.

We can therefore determine the type of conic if we know one position
of a point and its speed at that position.

Comets, for instance, move within the limits of the solar system wunder

the influence of the sun’s attraction and hence move (with respect to the sun)
along conics.

Let us now assume that a point moves along an ellipse whose equation
is1/r=1/p+ (¢]p)eos{p — ¢y). From Binet’s formula we get

__KMm — _e ™. whence KM = ¢? | p.
72 p 7

Let a and b be the axes of the ellipse and 7' the period. The areal velocity
will then be }¢ = abn | T'. Since p = b* [ a, KM = 4n?a® | T?, whence
ad | T2 = KM | 4n2. (10)

It follows from this that the ratio a® | 1 depends only on the mass of the
attracting body and not on the mass of the moving point.

If the sun were at rest, then the ratio a® / T? would be a constant for the
planets (such as is required by Kepler’s third law). The sun, however, is not at rest,
since it is attracted by the planets. This fact accounts for the deviations from
Kepler’s law.

We shall consider this matter later in connection with the problem of two
bodies (chap. V).

Motion along a straight line. Let us examine, in addition, the par-
ticular case when the areal velocity is zero. The motion in this case takes
place along a straight line passing through the centre of the field, i. e.
through the point M (p. 86). Since v denotes the absolute value of the
velocity,

v=|rl (11)

Let us suppose that at ¢ = 0, »r = r, and v = v,. From equation (2),

p- 106, it follows that

v = 2u/r -+ h, (12)
whence

ho=v:—2u/r,. (13)
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Let us assume that at ¢ = 0 the velocity vector of the moving point
was directed away from the point M, that is, that the point was receding
from M. Therefore at t = 0, » > 0. ‘

Let us consider the two cases depending on whether A >> 0, or A < 0.

1° b > 0. By (12) v* > 2u /r constantly; hence v > 0; therefore
v > 0 constantly. It follows from this that the point will never stop, but
will always move away from M. Hence »* > 0 constantly, whence by (11)
v = r* during the entire time of the motion. From (12) we obtain

r‘:v:]/2,u/r+ h, whence dr/|2u]r+ h = dt. (14)
Consequently

o _
f Vo n 1o

From the above equation it follows that when ¢ tends to oo, r also
tends to oo, and hence the point recedes to infinity.

2° h < 0. In this case there exists an r = r; for which v = 0. We
obtain the value of 7, from (12) by putting v = 0 and r = r,. We get

ry == -—2u:h. (16)

It is easy to show that , > r,. For we have 2u > 2u — rp? =
= 19(2 | 7o — v§) = ro(—P). Since h < 0, — 2u / h < r,, and therefore
by (16) r, > r,.

At the beginning of the motion, so long as r > r,, the point will
move away from M. During this period » > 0 constantly; therefore by
(11) 7 = v and as a consequence of this, formulae (14) and (15) will hold.

Substituting r, for the upper limit of integration in formula (15), we
obtain the time ¢, for which r = r,. Therefore

Y
S
f ]/2/47*1:71, :

Att = ¢ we shall have v =0, and for ¢ > ¢, the point returns and will
come closer to M.

Assuming that the earth is a sphere composed of concentric homo-
geneous layers (i. e. of constant density), it can
be shown that the earth attracts an exterior R
material point as though the entire mass of
the earth were concentrated at its centre O. The
results obtained can therefore be applied to the Fig. 8l.
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motion of bodies attracted by the earth, denoting the mass of the earth
(concentrated at its centre O) by M, and assuming that the origin of the
coordinate system is at the point O, while the moving point is above
the surface of the earth, i. e. that » >> R, where R is the radius of the
earth (Fig. 81).

Example. Let us assume that a material point was thrown from the
surface .of the earth vertically upwards with a velocity v, Therefore
ro = R and by (13) & == v2— 2u [/ R. From formula (7), p. 90, it follows
that u = KM = gR? where g denotes the gravitational acceleration.
Hence

h = vi—2gR.

If vy < ]/2gR, then A < 0, and hence the point will return to the
earth again. On the other hand, if v, > |/2gR, then & > 0, and hence the
point will never return to the earth again.

Assuming that B = 6300 km, g = 9.81 m/sec?, we obtain Vﬁ = 12 km/sec.
Therefore, if the body is thrown upwards with a velocity v, = 12 km/sec, then

it will never return to the earth again. This result does not take into account the
resistance of the air.

§ 15. Harmonic motion. Simple harmonic motion. On a material
point of mass m in a central field let there act a force P which is always
directed towards the centre O, and whose magnitude is proportional to the
distance of the point from O.

The force P is called an elastic force.

Let us assume for the present that the point moves along the x-axis
whose origin is 0. Denoting the coordinate of the point m by x, and the
component of the force by P, we shall therefore have

P =— A%, (1)
where A? is the constant of proportionality. Hence ma** = — A%x. Putting
k% = 2* [ m, we obtain '* = — k*», whence

x4+ k= 0. (2)

From equation (2) it follows that the magnitude of the acceleration
of the point is proportional to the distance of the point from O and always
directed towards O. '

A motion having this property is called a simple harmonic (or oscilla-
tory) motion.

The differential equation (2) is a linear equation of the second order
with constant coefficients. The roots of the characteristic equation
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r® + k* = O are r,, = o ki. The general solution of equation (2) is there-
fore

x = ¢, sinkt 4~ ¢, cos kt. (3)

Writing constants c,, ¢, in the form ¢, = a cos kt;, ¢, = — a sin kt,,
(where a and ¢, are arbitrary constants and @ > 0), we obtain

x=asink (t— i), (4)

whence, starting the calculation of time from the moment ¢,
x = asinkt. _ (I)

The constant a is called the amplitude.

Since |sin kt| < 1, the amplitude a represents the greatest deviation of
the point from O. For t = + n / 2k we get # = - a. The path of the point
is therefore the line segment from —a to a. Let us put

T=2x]k. (5)

Then asink(t + T') = a sin (kt + 27) = asin kt. Therefore by (I)

the point occupies the same position at the times ¢ and ¢ + 7. The motion
is therefore periodic of period T'.

Substituting in (I) for k£ the value determined from (5), we obtain

r=aq sin%ﬂt. (II)

If n denotes the number of periods in 1 second, then n = 1 /7.
Hence in virtue of (II) »
‘ x == q sin 2namt. (111)
Differentiating (II), we obtain:

2a 27 dan® ., 2nm
x :vacos—Tt, T =P = s1nTt. (6)

By (II) and (6) we can form the following table giving the position,
velocity, and acceleration of the point at t = 0, 37, 37, T, and T':

i : ; 0 v } b f i ; T
T ‘ 0 ‘ a ' 0 ’ —a 0
v b 2am )T ] 0 —2an | T 0 2ar | T
P ! 0 — dam? | T? 0 dand| T 0

From the table we see that during the period 7' the point moves
from the origin of the coordinate system to the point # = a, then returns
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through the point O and arrives at the point £ = — a, then returns to O
etc. The maximum velocity is at O, whereas at the end points of the path (i. e.
at the points x = + a) the velocity is zero. The acceleration, on the other
hand, is greatest at the end points, i. e. for = -4 a; at O the acceleration
is zero.

Example. A sphere of mass m is attached at the lower end of a spring
hanging vertically (Fig. 82). Let O denote the point at which the massis at
rest (in equilibrium). If the sphere is depressed along the vertical from its

~ position of equilibrium, then the sphere will begin to oscillate

'——25“ vertically. If the mass of the spring is small, then we can as-
<>,4 sume as an approximation that the spring acts on the
<> ° sphere with a force P proportional to the extension (or
op contraction), and is directed constantly towards the point
j> P A, which was the position of the end of the unstretched
> spring before the sphere was attached to it.
o) Let O be the origin of the x-axis directed vertically
x downwards. Putting 4,0 = d, we obtain
Fig. 82.

P—— 2z +d),

where 1 is a constant depending on the spring. Since the sphere is in
equilibrium at O, and P = — 2*d (because x = 0), it follows that
— 2d + mg = 0, whence A2 = mg | d. During the motion mzx* = P + mg =
= — A%z + d) + mg; hence ma + A% = 0; therefore x-* 4 k%xr = 0,
where
BR=2/m=gqg/d.

By (I), p. 111, the solution of the above equation is x = a sin kt;

therefore

q
L

x = a sin
The sphere will therefore execute a simple harmonic motion about
the point 0. By (5) the period of the motion is
T = 21 | k — 2a)d [ g = 2x|/m | A
The period of the motion therefore depends on the mass of the point.

Plane harmonic motion. Let a point move in a central force field in
which the force P is directed towards the centre of the field andis (in
magnitude) proportional to the distance of the point from the centre.

Let us select the centre of the field as the origin O of the coordinate
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system. Since a central motion is a plane motion, we can assume that it
takes place in the zy-plane.

According to Newton’s law mp = P, where p denotes the accelera-
tion. The acceleration is therefore directed towards the centre of the field
and is (in magnitude) proportional to the distance of the point from the
centre.

A motion having this property is called a plane harmonic motion and
the force P is called an elastic force (cf. p. 110).

By hypothesis, we have

P,=-—2, and P, = -— %,

where 4 is a constant of proportionality. The equations of motion will
have the form -

mx = — A%, my == — A%
As before, putting k2 = A2 / m, we obtain
X = — kP, oy o= — k. (7)

On p. 111, formula (4), we showed that the solution of the above
equations is: :
x=a sink(t—1,), y=a"sink{t—t), (8)

where @', a”, t,, t; are arbitrary constants.
As is easily shown, this motion is also periodic of period 7" = 2 / k.
From equations (8) we obtain:

” " ’ ’ [N . e ’
a"x cos kty —a'y cos kt, = a’a” cos kt sin k(t, — t,),
’

a"x sinkty — a'y sinkty = a’a” sin kt sin k(t; — t,).
Squaring each of the equations and adding, we obtain
a"%? + @'y — 2a’a"xy cos k(ty — t;) = [a'a” sink(t” — t')]2. (9

Ifa’ = 0, 0ra” = 0, or t, — t; = nx | k (where # is an integer), then
equation (9) is the equation of a straight line. In the remaining cases (9)
is the equation of an ellipse whose centre is at the origin of the coordinate
system.

Hence: a plane harmonic motion takes place along a straight line pass-
tng through the centre of the field, or along an ellipse whose centre is the centre
of the field. :

A plane harmonic motion along a line is obviously a simple harmonic
motion.

Damped harmonic motion. On a material point moving along the
x-axis, let there act in addition to an elastic force P (i. e. a force which is

8
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proportional to the distance from the centre and directed towards the
centre), another force Q (damping or retarding the motion) which is
in magnitude proportional to the velocity, but directed opposite to it.
The motion which the point will then execute is called a damped
harmonic motion,
Denoting the components of the forces P and Q by P and ¢, we can
write:

P=—2%, and @ = -—2ux, (10)
where 42 and g > 0 are constants of proportionality. Therefore ma =
= — A% — 2ux-. Putting

A/m=1Fk, and u/m=c¢, (11)
we therefore obtain
2 + 2ex + kx = 0. (IV)
Equation (IV) is a linear differential equation of the second order
with constant coefficients. Its characteristic equation is
72 - 2er -} k2 = 0 (12)
hence :
rio=—¢ |/ — k. (13)
We shall consider three cases here, depending on whether the dis-
criminant 2 — k? is negative, positive, or zero.
1° & — k? <« 0. This case arises when ¢ is small, i. e. when the
damping force Q is small. Let us set
Ve —e = k. (14)
Therefore, by (13) r, , = — & &+ ik,t. Hence the general solution of
equation (IV) in this case is
x = e e, sinkyt + ¢, cos kyt).

Writing constants ¢, ¢, in the form ¢; = A4 coskyt, and ¢, =

" = — A .sin k,t,, where 4 >0 and ¢,
x=qe* X are arbitrary constants, we obtain
o AN x = Ae sin ky(t —1t,). (15)

Xolf b\ .
2 T /N e S Let us select as a new initial
L\l 6 ‘1_'_‘___&11 —————— t time, the time {f,; therefore let us
:JL_ i substitute ¢t —t, = t’. We get x =

1 L . —e(t' 1) o3 v, o .
ol o sinkt Ae sin k¢’ vs'zrltlng ! again
x- instead of ¢ and putting de—* = q,

Fig. 83. we obtain
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x = ae ! sin k,t, where a > 0. (V)

The g:aph of the above function is shown in the Fig. 83. In order
to determine the extrema of this function, it is necessary to determine
the places where the derivative x* = ae*!(k, cos k,t — & sin k,t) is zero.
Hence z* = 0 for those values of ¢, for which

tank,t =k, /¢ (16)

If ¢, is the smallest positive root of equation (16), then the remaining
roots have the form
tn = t0 + nw / k19 (17)

where » is an arbitrary integer. Examining the sign of the second deriva-
tive, we establish that a maximum occurs for an even #», and a minimum
for an odd n. It follows from this that at the times £, the derivative x
changes its sign and therefore the velocity changes its sense.

The times ¢, are called times of return, while the corresponding
positions of the moving point — points of return.

The points of return occur periodically every = / &, seconds, successi-
vely, once to the right and once to the left of the origin O.

The time Ty = 2z / k, is called, as before, the period of the motion.

The time 7', = n / k, between two times of return is called a period
of oscillation.

Hence by (17) we have

ty =ty + 4nT. (18)

Let us take under consideration two successive points of return
X, Ty +1, Which correspond to the times ¢, ¢, ;. By (V) and (18) we have
[, = ae™ G TIsin byl |, 4| = ae DT Igin g,
whence
|Cnsa| [ |0, = eHT

It follows from this that the coordinates z, (in absolute value)
decrease to zero in geometric progression.

Hence: if the damping force is small, then the maximum displacements
of the points follow each other in equal intervals of time (period of oscillation)
and decrease to zero in geometric progression.

2° ¢ — k* > 0. This case arises when the damping force is large. It
is easy to verify that the roots of the characteristic equation (13) are in
this case negative. Denoting them by —p, and —pg,, we obtain the
general solution of the equation (IV) in the form
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= Ae %" -+ Bemot (VI)
where 4 and B are arbitrary constants with g, > 0 and g, > 0.

When the time ¢ increases, then z tends to zero rapidly. It is not
difficult to verify that there exists at most one point of return. The velocity
is therefore zero at most once.

3° ¢ —k?* = 0. With this assumption the characteristic equation
(13) has a double root —e. The general solution of (IV) has the form

x = ¢ At + B), (VII)

where A and B are arbitrary constants.

When the time increases, « tends to zero rapidly. As before, there
exists at most one point of return, and therefore the velocity becomes
zero at most only once.

Forced harmonic motion. On a material point moving along the z-axis
let there act, in addition to an elastic force P and a damping force Q,
a force R directed along the x-axis and depending only on time.

The component of the force R will therefore be
B = muw f(t),
where w is a constant.
Let us suppose that the force R is periodic, e. g. that
R = mw sin (a8 + B), - (19)

where o« and B are constants. The equation of motion has the form

(cf. (IV), p. 114):
x + 2ex - kPx = wsin («t + B), (20)

where the meaning of the constants ¢ and % is the same as before. In order
to obtain the general solution of equation (20), we determine one parti-
cular solution of the form

x = b sin (ot + y). (21)

Having the determination of b and y in mind, let us substitute (21)
n (20). We get

(K — a®) b sin (a1 -+ p) -+ 20eb cos (at + ) = wsin (at + f).  (22)

Setting ot +- y = 0 the first time, and a¢ -+ y == }z the second time,

we get
20eb = wsin (B —vy), (k2 —a2)b = wecos (B —y), (23)

whence
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w? 2xe
F st ang W) = (24)

and from these equations we determine b and y.

On the basis of (24) it is easy to verify that (21) satisfies (20) identi-
cally for every f.

Let us consider the case &2 — k% << 0. The general solution of the
homogeneous equation ' 4 2ex- -+ k%x = 0 is given by formula (15),
p- 114. Therefore the general solution of equation (20) is

x = Ae—tsin ky(t — t,) -+ b sin (x¢ + y), where k; = ]/k_g——:?z (25)

b? =

As t increases, the first term tends to zero rapidly, and the motion
" becomes approximately harmonic with the equation

x = b sin (at + ).

The amplitude of this motion is 6. The force R is periodic with period
7" = 2z [ . The period of the damped harmonic motion is 7'y, = 27 | k,.
Let us suppose that the periods 7" and 7', differ little from each other, so
that « differs little from k;. If the damping force is small, then & is small;
hence k, = |/k* — ¢ differs little from k. Therefore k also will differ littlo
from «. By (24), b can therefore be large even when w is small (i. e. when
the force R is small),

We see from this that a small periodic force with a period near that
of the motion can cause large displacements of the point from the centre if
the damping force is small.

A company of soldiers marching across a bridge will cause it to vibrate. If the
periods of the steps and the vibration of the bridge differ little from each other, the
displacements of the bridge can becomo large so rapidly that the bridge will collapse.
Similarly, when an automobile experiences bumps on a bad road, even small bumps,
but ones whose period is mear the natural period of the car springs, then the vibra-
tions can become so large that the car springs will break.

Lissajous’ curves. On a material point let there act a force P whose
projections on the coordinate axes are (in magnitude) proportional to
the eoordinates of the peint and directed towards the origin of the
system. We can therefore assume that:

Py =— }{%x’ I)y = lg?/) P, =— 132,
where 4,, 4,, 4; are constants. The equations of motion have the form:
ma = — x, my=-—y, mz =— Nk

Putting A} /m = k}, 25 /m = k% and 72 /m = k2, we obtain:

wr=—Fklx, - =-—ykly, =z =—rkk& (26)
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The solutions of the above equations (cf. p. 111, formula (4)) are the
functions:

© = a sink,(t—t), y=agsinky(t-—12y), 2= agsinky(t—1g). (27)
The periods of these functions are (p. 111, formula (5)):
T,=2n|ky, Ty=2n/k, T3=2n]ks (28)

If the motion is periodic of period 7', then the ratios T': T, T : T, T : 7,
must be integers. Therefore the ratios Ty : T, Ty : T, and T'y: Ty (or
because of (28) the ratios k,: ky, ky:ky, and ky: k;) must be rational
numbers. Therefore, if not all of these ratios are rational numbers, then
the motion is not a periodic motion.

In the case of motion in the plane, the paths of the motion defined
by equations (27) are called Lissajous’ curves; they play an important
role in acoustics.

Example. The motion takes place in the xy-plane. Let ky: k; = 2,
and ty = t, = 0.
Putting &, = k and k, = 2k, we obtai.l by (27):
x = a, sinkt, and y = a,sin 2kt

Since y = 2a,sinktcoskt, it follows that sinki=x/a, and
cos kt = a,y | 2a,%, whence (x [ a,)? + (ay | 2a,x)® = 1; therefore

da,xt — dalale? + aty® = 0.
The path will therefore be a curve of the fourth degree.

§ 16. Conditions for equilibrium in a force field. If a material point
in a certain force field is in equilibrium at the point 4, then obviously the
force P acting at A is equal to zero. Conversely, if at a certain point
A(q, Yo, 2o) of the field the force P = 0, then the material point situated
at A at the time t = f, without initial velocity (i. e. v, = 0) will remain
constantly at rest, i. e. in equilibrium. This follows from the fact that the
initial conditions determine the motion unambiguously, and rest (i. e.
motion defined by the equations x = zg, ¥ = ¥o, 2 = 2,) satisfies the initial
conditions and the equation mp = P; for, we have constantly p = 0
and P = 0.

In a potential field the partial derivatives of the potential V are
equal, as we know, to the projections of the force on the axes of the co-
ordinate system (§11, p. 99). Therefore, if the point 4 is a position
of equilibrium, then at the point A:

oV | 0x =0, 0V | oy=0, oV joz=0. (1)



{§16] v Conditions for equilibrium in a force field 119

The above equations hold in particular at those points for which the
maxima or minima of the putential occur.

Hence: the points at which the extrema of a potential occur are the
positions of equilibrium.

The positions of equilibrium can also arise, however, at such points
for which the potential does not have an extremum; for, equations
(1) represent only the necessary conditions for the existence of an
extremum.

Stable equilibrium. Let a material point be in equilibrium at the
point A in a force field.

Equilibrium is said to be stable if a material point, after being displaced
slightly from the point 4 and after receiving initially a small amount
of kinetic energy, will constantly move at a small distance from 4 and
possess constantly a small amount of kinetic energy. Strictly speaking,
equilibrium at A is stable, if for every two numbers B > 0and ¢ > 0, we
can choose numbers B, > 0 and g, > 0, such that a material point si-
tuated anywhere at a distance less than R, from A, after receiving ini-
tially kinelic energy in amount less than &, will move at distance from
A constantly less than R and possess kinetic energy constantly less
than e.

If the equilibrium at the point 4 is not stable, then this point is
said to be in an unstable equilibrium.

Dirichlet’s theorem. In a potential field a point at which the potential
attains a proper maximum is the position of stable equilibrium.

Proof. In a certain potential field let the potential V attain a proper
maximum at the point A (a function is said to attain a proper mazimum
at the point 4 if, in a certain region about this point, it assumens its
greatest value only at the point 4).

Let us assume that the potential has the value zero at A; this we can
always obtain by adding a suitable constant, since a potential is defined
only to within a certain constant (p. 98).

Let us take arbitrary B > 0 and & > 0. Without any loss of generali-
ty of proof we can also choose an R so small that in a sphere K with
centre at A and radius R, the potential is negative everywhere outside
of A. Let us denote the maximum potential on the surface of the sphere K
by L; therefore L < 0. ‘

Now let g, be an arbitrary number satisfying the inequalities:

gy > 0, &g < — 3L, & < %5' (2)
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Since the potential is zero at A, there exists a sphere K, with centre
at 4 and radius R, < R, such that

~—e&e << V << 0 in sphere K,. (3)

Let us place the material point anywhere at a distance < R, from 4
(i. ¢. in sphere K,) and give it an initial kinetic energy
By < g, (4)
By (5), p- 105,
E—V =FE,—V, (5)

constantly during the motion.
Since by (3) — &, << V,, we have on account of (5) and (4)

B —V < 2, (6)

As E > 0, we obtain — V < 2, whence by (2) —V < — L, so
that V' > L. Therefore the material point never goes outside the
surface of the sphere K (because the potential onitis < L); its motion will
hence take place inside the sphere K, i. e. at a distance from A4 less than R.
In addition, within the sphere K, V < 0 constantly, i. e. — ¥V > 0;
therefore by (6) £ < 2¢,, whence by (1) E < e. Hence the equilibrium at
Ais stable, q. e. d.

Example. Let us consider a force field in which P, = — k%, P, =
= — k¥, P, = — k%. The field is hence a potential field with a potential
V = — 12, where 72 = a? - 2 - 22, '

The point A4(0, 0, 0) is the position of stable equilibrium because at
this point the potential attains the largest value zero, and beyond it is
negative.

We shall prove now directly the stability of equjlibrium at 4.

Let B> 0 and & > 0 be given arbitrary numbers. Let us place
a material point at a distance ry from 4 and give it a kinetic energy E.
Therefore E + 4k = B, k22 whence

E By + ek (7)

In addition $k*? < B, + 1k%2, whence

If we therefore choose ¢, and R, such that

5

€0 + 2R; < ¢ and ]/kiz & + R < R
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simultaneously, then we obtain for every ¥, < & and r, < R, by (7) and
(8) I < e and r < R. Thus we have proved that the equilibrium at 4 is
stable. ,

II. DYNAMICS OF A CONSTRAINED POINT

§ 17. Equations of motion. So far we have examined the motion of
an unconstrained material point, i. e. one which could execute arbitrary
motions when acted upon by suitable forces. However, we shall also
encounter problems in which the motions of the point are subject to
certain restraints, e. g.; that the point must always remain on a certain
line, surface, etc.

Example. Let us imagine that a small sphere is strung on a stiff wire (e. g. in
the form of a circle). Whatever the forces acting on the sphere, it can execute only
those motions during which it will always remain on the wire. Therefore, the

problem in this case is that of investigating the motion of a material point which
must always remain on a certain curve.

Such a point is said to be constrained, and the restraining conditions
which the motions of the constrained point must satisfy are called con-
straints.

Reaction. When inquiring into the motion of constrained points, we
shall assume that there acts on the constrained point (besides the given
forces) a certain additional force which causes the point to maintain
constraints. This additional force is called the reaction.

We attribute this reaction to the action on a material point by the bodies

causing the constraints. The reaction of the wire is therefore e. g. the force with
which the wire resists its being left by the sphere strung on it.

Let a material point A be constrained to remain on the curve C
(i'ig. 84). Let the reaction at a certain position of the point 4 be R. The
component N of the reaction, perpendicular to the tangent, is called the
normal reaction, the tangential component T is called the fangential
reaction or friction.

A T

Fig. 84, Fig. 85. Fig. 86.
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Similarly, if a point is constrained to remain on a certain surface S
(Fig. 85), then the vector component of the reaction perpendicular to the
surface S is called the normal reaction, whereas the tangential vector
component is called the tangential reaction or friction.

Therefore, every time we assume that there is no friction, we are
assuming equivalently that the reaction is perpendicular to the curve
(surface). If there is no friction, the curve (surface) is said to be smooth.

If we only assume that a point A4 lying on a certain side of a surface
cannot pass to the other side (even though it can leave this surface),
then the reaction is regarded as being directed towards that side of the
surface on which the point lies (Fig. 86).

For instance, if a small ball lies on a table, then the reaction of the table is
directed upwards.

Equations of motion. We have defined the reaction as an additional
force which causes the constrained point to maintain constraints. There-
fore, if we add the reaction R to the acting force P, then we can regard the
material point as an unconstrained point. Denoting the mass by m, and
the acceleration of the point by p, we therefore obtain

mp = P + R. (T

In this manner the investigation of the motion of a constrained point
is reduced to the investigation of an unconstrained point. If we assume
in addition, that the reaction satisfies certain special conditions, e. g. that
there is no friction, then (as we shall show later) equation (I) is sufficient
to determine the motion.

Example. Let a point of mass m slide down a

R plane, inclined at an angle « with the horizontal,
™ ~ under the influence of its weight @ = mg.
Let us assume that there is no friction. The re-
Q action R™is therefore perpendicular to the plane
Fig. 87. (Fig. 87).

Denoting the acceleration of the point by p, we
have by (I) mp = Q + R. Forming the projections on the inclined
plane and putting p = |p|, we obtain mp = mg sin «, whence

Pp = ¢ sin «.

Kinetic energy. The increase in the kinetic energy of a constrained
point is equal to the sum of the works of the acting force P and the
reaction R. Under the assumption that there is no friction, the reaction is
perpendicular to the path, and therefore the work of the reaction is zero.
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It follows from this that, if there is no friction, the increase in kinetic
energy is equal only to the work done by the force P.

In particular, if there is no friction, then the sum of the kinetic and
potential energies of a point moving in a potential field s constant.

§ 18. Motion of a constrained point along a curve. Motion along a
plane curve. Let us assume that a point 4 of mass m is to remain on a
plane curve C, and that the force P acting on the point lies in the plane of
the curve C. Let us supposethat there is no friction, i. e. that the reaction
R is perpendicular to the curve. ~

Denoting the acceleration of the point by p, we have (cf. formula (1),
p. 122)

mp = P - R. (1)

Let us give the tangent ¢ a sense agreeing with that of the curve, and
the normal z a sense towards the centre of curvature (Fig. 88). Let p, Pn,
P, P, be the projections of the acceleration p and the force P on the
tangent and the normal, and let R be the projection of the reaction R
on the normal. Forming the projections on the tangent and normal,
we obtain from equation (1)

mpt:Pt, mpn:Pn+R (2)
Let v denote the projection of the velocity on the tangent, and o the
radius of curvature. Then (p. 41):
Py =V, Pp=10]0,
whence by (2):
mv':Pt, mv? /o =P, + R (I)

The first of the equations (I) enables one to determine the motion
if one knows the force P or its projection P,. This equation can also be
written in another form, namely:

ms = P,, (3)

where s denotes the arc coordinate on the curve C.
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The second of the equations (I) enables one to calculate the reaction
R if one knows the velocity v.

Motion along a space curve. Let us assume that the path is a space
curve C and that there is no friction.

Let us give the tangent ¢ a sense agreeing with that of the curve, the
principal normal n a sense towards the centre of curvature, and finally
the binormal b a sense such that the system (¢, n, b) has a sense agreeing
with that of the coordinate system (Fig. 89).

Let us form projections on the tangent, the principal normal,and the
binormal. Since the projection of the acceleration on the binormal (p. 42)
and the projection R on the tangent are zero, we obtain from the equation
mp =P + R:

mp, = Py, mp, = R, + P,, 0=2P,+ R,,
whence
mv = P, m?/o=P,+ R, P,+ R,=0. (IT)

The first of the equations (I1) enables one to determine the motion;
from the remaining two equations in (II) one can calculate the compo-
nents R, and R,, and hence the reaction R.

Motion of a heavy constrained point. Let the force of gravity act on
a constrained material point of mass m. Let us assume that there is no
friction. The potential of the gravitational force is V = — mgz (the z-axis
being directed vertically upwards). By the principle of conservation of
total energy we therefore obtain ymv? -+ mgz = const, orafter simplifying

v? + 29z = h. (IIT)
Knowing the velocity v, and the coordinate z, at a certain moment ¢,

we can determine the constant h. We get
h = v+ 29z, whence v* -4 29z = v} + 2gz,. 4)

From (IIT) it follows that 2¢gz < h, and hence z < & / 2g. Hence the
maximum height to which the point can rise is

1 1
Zmax T (%) h = (55) Ug + Zo- B (5)

If a point is situated several times at the same level z = z’ during
the motion, then by (ITI) we have v2 = h — 2g2'.
Hence: on one and the same level a point has one and the same velocity.

Example I. A curve C along which a point falls is situated in the
vertical xz-plane. The equation of the curve C is z = f(x). Let us assume
that at the time £ = 0 the point is at A(x,, z,) and has a velocity v, = 0.
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Denoting the arc coordinate by s and noting that v = s, we get
by (4):
82 4 2gz = 2gz,, whence s2= 2g(zy — 2).

Let us select a sensc on the curve € which agrees with the initial
motion =f the point (i. e. a downward sense). Up to the time when the
material point arrives at the point B, situated at the same height as the

point 4 (Fig. 90), we have s* = ]/Zg (zo — 2), and hence ds /l/2g (2o —2) =
= dt. Since ds = Vl -+ f’2

1+ =) .
H/zg o) — 1 >]d“t' 6

The above formula gives the time at which a material point
arrives at the point D having coordinates x = &, y = f(&). If 2, denotes
the abscissa of the point B, then for z, < & <C «; integral (6) has a finite
value, and hence the time ¢ is finite. For & = z, the integrand becomes
infinite because by hypothesis z, = f(x,) = f(z;). In this case the value of
the integral can be finite or infinite. It follows from this that the material
point may arrive at the point B or not: this will depend on the shape of the

curve C. It is easy to show that if the tangent at the point B is not
horizontal (i. e. if f'(x,) == 0), then the value of (6) is finite, and hence the
material point will arrive at the point B.

Example 2. Let a point slide in a vertical plane along a curve C,
a portion of which, namely, BEDF is a circle with centre at O and radius r.
Let us assume there is no friction. Let us also assume that the point need
not always remain on the curve C, just so that it does not go over to the
other side; the reaction will therefore be directed towards the side on
which the point is situated (Fig. 91).

Let us ask from what height 2z, should a point be released, without
initial velocity, in order to traverse the periphery of the circle BEDF.

Let us select an arbitrary point E on the circle. Denote by v the
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velocity of the point at £ and by ¢ the angle which the radius OF makes
with the vertical. By (I), p. 123, mv? / r = mg cos & + R, whence

R = % (v2 — gr cos 9).
Since R > 0 (because the reaction must be directed towards the side
of the point, i. e. towards the centre of the circle),

v2—grcosd > 0. (7)

Since the point was released from a height z, without initial velocity,
denoting the ordinate of the point K by z, we shall have v2 + 29z = 2gz,.
Determining »2 from this equation and substituting in (7), we obtain
29z, — 29z — gr cos ¢ = 0, whence '

Zy = % - &r cos 9. . (8)

The inequality (8) is the necessary and sufficient condition which
must be satisfied by the height z, in order that the point traverse the
periphery BDEF. The right side of this inequality attains its maximum
value at the highest point on the circle, at which z = 2r and 4 = 0.
Substituting these values in (8), we obtain

2o > 51/ 2.

B

Hence, if a material point is released from a height zy > 52 / 7, then
the point will go completely around the circle.

If, on the other hand, z, < 5r /2, then at a certain point of the
circle, namely, at that point at which z, = z + $r cos ¢ our material
point will leave the circle. This is so, because were the point to move
farther along the circle, then, as is easily verified, we should have B <0,
which is impossible, since this would mean that the point is pressed to the
curve. After leaving the circle the point will obviously fall only under the
influence of its weight.

Example 3. A point of mass m moves under the action of the force
of gravity alonga helix

x=rcosep, y=rsing, z=rFke (9)
We have
X = —rp sing, y = rp coseg and 2z = ke,

hence v? = x% 4 y2 4 22 = (2 + k?) @2, whence by (III), p. 124, we
obtain (r2+ k) @2 + 2gke = h, and therefore

dt | dp = + /" + &) | | (h— 2gke),

and finally
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t = j;;}—ll-c—Vr2+k2]/h~2gk<p+c.

The sign on the right hand side and the constant ¢ depend on the
initial conditions. Expressing ¢ in terms of ¢ and substituting in (9), we
" obtain the equations of motion.

§ 19. Motion of a constrained point alongasurface. Let a force Pact
on a material point of mass m. Let us assume that there is no friction and
that the point is to remain constantly on the surface § whose equation is

F(x,g, z) = 0. : (1)

The reaction R is therefore perpendicular to 8. From differential
geometry it is known that the direction numbers of the normal to the sur-
face are proportional to the partial derivatives 0F / ox, oF | oy, OF | oz.
Since the reaction R has the direction of the normal

R,=10F jox, R,=A0F |0y, R,=10F]0z, (2)
where 1 is a factor of proportionality depending on time. Therefore
A= A().

From the equation mp = P + R we obtain by (2):
oF

oF oF
mx =P, +A— my =P, +A— me =P, + 1 (I)
ox oy oz

Equations (1) and (I) taken together determine the unknown func-
tions of time x = f(t), ¥y = ¢(t), z = p(¢) and A = A(t). After determining
these functions we can calculate the reaction R from equations (2).

Example I. A heavy point of mass m moves over the surface of
a right circular cylinder (the z-axis being directed vertically upwards)
@+ oy? =2

We have here F(x,y,z) = 2® + 42— 2 =0, P, =0, .P, =0, and
P, = — mg; hence by (I):

mx = 22x, my- = 2y, mz = —mg. (3)
The third of the equations (3) gives after integrating
z=—%gt? + at + 0, 4)
where a and b are constants. Let the initial conditions for ¢ = 0 be:
xg=7r Y=20, 2=0x;,=0, Yo =, 25= W, (5)

where u and w denote certain constants (z, = 0, because at the time
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t = 0 the velocity v, is tangent to the cylinder, and hence perpendicular
to the x-axis). By (4) and (5) we get b = 0, and @ = w; therefore
2 = — Lgt* 4 wt. (6)

Since v? + 2gz = v + 2gzg, ' + y* + 2% 4 292 = u? 4 w? whence
by (6) 2+ y? + (— gt + w)? + 2wgt — ¢*? = w? 4 w?, and therefore

x4yt =l (7)

Hence the projection of the point on the horizontal plane moves
along the circle #® + %2 = > with a constant velocity w; the angular
velocity is therefore & = w [ r. From this x = rcos(ut [/ r - @), and y =
= rsin(ut | r + @,). Since af t = 0, according to (5), x, = 7 and y, = 0,
we can take g, = 0. We thereforc get:

% .U
x =:rcos—t, y=rsin—1 (8)
r 7

Equations (6) and (8) define the motion of the point. We obtain the
factor A from equations (3) by substituting for z** and x the values ob-

tained from (8). We get 4 = — mu?® | 2r%, whence by (2):
mu? mu’
Rx _ '7)’2“ X, ]{u = — —‘;2" :l/, .Rz == O,
and finally
. LRI M
R=|R:- W :

Hence: the reaction is constant in magnitude and always perpen-
dicular to the axis of the cylinder.

Example 2. A point of mass m, under the influence of gravity, moves
on a sphere (the z-axis being directed vertically upwards)

22yt 22— =0, (9)
In virtue of (I), p. 127
mx = 2Ax, my- = 2y, mz = 2z — my. (10)

Equations (10) cannot be solved by means of elementary functions.
Nevertheless, we can decduce certain consequences without solving these
equations.

Let us note that the reaction R is constantly directed towards the
center of the sphere, and hence that its projection R" on the horizontal
plane is constantly directed towards the origin of the coordinate system.
Consequently, R’ is a central force.
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Since the projection of the force of gravity on the horizontal plane
is zero, denoting by p’ the projection of the acceleration of the point on
the horizontal plane, we obtain mp’ = R’.

It follows from this (p. 86) that the motion of the projection will
be a central motion. The path of projection will therefore be eithera straight
line I passing through the origin O, or a curve ¢' which will never pass
through the origin (p. 86).

In the first case the motion of the point itself will take place in
a vertical plane whose trace is I; hence the point will move along a me-
ridian. This case will occur if the point is given an initial velocity tangent
to the meridian, because then the projection of the velocity (on the
wy-plane) will be directed towards the origin O, the areal velocity of the
projection will be zero, and the path of the projection will be a straight
line passing through the centre O.

In the second case, when the path of the projection is the curve C
never passing through O, we will have, denoting by r, and , the smallest
and the largest distance of the projection from O, r2 < a2 4 2 < ¢2. -

By (9) 2> = 72 — (2® 4 ¢?); hence 72 — 7 < 22 < r2 — 2, whence

]/72 — <7 < Vrz —d.

It follows from this that the point goes around the sphere between
two horizontal planes. This case will occur if the initial velocity v, of the
point is not tangent to the meridian, because then the projection of the
velocity v, on the zy-plane will not be directed towards O and the areal
velocity of the projection will be ditferent from zero.

§ 20. Mathematical pendulum. A mathematical pendulum is a ma-
terial point m suspended in a gravitational field by a weightless and
inextensible string fixed at one end at the point S.

The string acts on the material point only when it is in tension; the
reaction R is directed along the string towards the point 8. The distance of
the point m from S is constantly not greater than the length I of the
string. The point can therefore move within and on the surface of a sphere
K with centre at S and radius /.

Let the string be in tension and make an angle << 1z with the vertical
80. If we release the point m freely (i. e. without an initial velocity), then
the point will move in a vertical plane passing through § along a circle
with centre at § and radius I.

Taking an arbitrary sense on the circle, let us denote the position
of the point 4 (lying on the lower half of the circle) by means of the arc

9
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coordinate s, calculated from the lowest point of the circle O. Let us de-
note by ¢ the angle between SO and 84, and let the sign of the angle ¢
agree with the sense of the arc OA4. Therefore

s = lp. (1)

Forming the projections of the force of gra-
vity Q and the reaction R on the tangent at the

point 4, we obtain ms* = — mg sin ¢, and since by
(1) s = lp*, it follows that mlp = — mg sin g,
and hence

Fig. 92. = % sing. (@D

Suppose that at ¢ = 0, we had ¢ = @, > 0. During the entire motion
obviously — ¢, < ¢ < ¢, since the point cannot rise to position higher
than the initial position.

If ¢, is sufficiently small, then we can assume with a good appro-
ximation that sin ¢ = ¢. Therefore by (1) we obtain

@+ %(P =0,
and since according to (1) ¢ = s /1,
s+ %s = 0. (2)

Comparing equation (2) with the equation of harmonic motion
(p. 110) we see that the point will move with a harmonic motion. In our
case k = ]/g / 1, so that the period of motion (by (5), p. 111) is

T = 2a)i [ g. (3)
Formula (3) is an approximate formula derived on the assumption

that the angle ¢, is small. It is interesting to note that the period T does
not depend on the angle of the displacement.

Let us now discard the assumption that angle ¢, is small. Let us
multiply both sides of equation (I) by ¢* and integrate. We obtain:
ot = %cosgo + c. (4)

@ = ggand s = 0 for ¢ = 0; therefore by (1) ¢* = 0. From equation
(4) for t = 0 we get 0 = g cosg, /! 4 ¢, whence ¢ = — g cosg, /I, and
hence 3¢ = g(cos ¢ — cos g,) / I; thercfore
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¢ = 4 |29 [ 1 ]/cos o — cos g (5)
Let us suppose that we are investigating the motion of the point from

the time ¢ = 0 to the time when the point reaches the same elevation on
the opposite side of the line OS. Therefore ¢* < 0, and (5) will be

l/ J/cos g —cos pg, whence — L7—L: dt.
29 |/cos p—cos @,

Denoting the period of oscillation by 7', we obtain

=¥

_JVE _de
29 VEOS — SR
@—Cos @,
Po

. %
—Vzl dy 2 l/gé fﬂ_é?i_u (6)
Veos ¢;Toé% g B ]/cos P— oS @, '

Let us introduce a new variable % by means of the equation sin}g =
= sinw sing,. Since cos g — cospy = 2(sin®¢p, — sin?}p), we obtain

im
74|/t du
Ve J /1 — sin?u sin?}g, (7)

Evaluating the integral by means of a series expansion, we obtain:
T 2
T = 2n]/~;— [1 + (3 sin(ig) + (;-%) sin(3pe) +

1.3.5)
— 22} sin®(L
+ (2 ' 4.6) sin®(sgo) + ]
For small ¢, we obtain formula (3) by omitting the terms of the series
beginning with the second term.

therefore

§ 21. Equilibrium of a constrained point. If a constrained point is

in equilibrium it means that the acting force P balances the reaction R.
Therefore-

P4+ R=0. (I

The above equation represents the necessary condition for equilibrium,

If there is no friction and the point is constrained to remain on the
surface, then — as we know — the reaction is perpendicular to the sur-
face. In the case of equilibrium, therefore, the acting force P must also be
perpendicular to the surface.

Conversely, if at a certain time ¢ the force P is perpendicular to the
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surface S, and the point has a velocity v = 0, then P 4+ R = 0, so that the
point will remain at rest. For, suppose that P -+ R == 0; then the point
would move along a certain curve C lying on a surface S. Let us note that
at the time ¢ the normal accelerationis p, = 2 / g = 0. From the equation
mp = P + R, after forming the projections on the tangent to C, we obtain
mp, = 0, because P and R are perpendicular to the tangent. Since p,, == 0
and p, = 0, it follows that p = 0. Therefore we would have P + R =
= mp = 0, which is contrary to hypothesis.

Hence: the necessary and sufficient condition for equilibrium of a
constrained point having to remain (without friction) on a certain surface is
that the acting force be perpendicular to the surface.

A similar theorem holds for a curve.

Stable equilibrium. We define the stable equilibrium of a constrained
point in a manner similar to that for an unconstrained point (p. 119),
with this difference, that the displacement from the position of equilibri-
um has to be consistent with the constraints. A point will therefore be in
stable equilibrium if after a small displacement (consistent with the con-
straints) from the position of equilibrium, and after receiving initially
a small amount of kinetic energy, it will move constantly in the vicinity of
the position of equilibrium and possess constantly a small amount of
kinetic energy.

Equilibrium in a potential field. Let a material point in a potential
field be constrained to remain on a certain surface whose equation is
F(x, y, z) = 0. Let us assume that there is no friction.

If at a certain point A(x, y, 2) of the surface S the potential V attains
an extremum with respect to the points on that surface, then the point A is
the position of equilibrium, '

For, by hypothesis, the point 4 is an extremum of the function ¥/
with the subsidiary condition F(z,y,z) == 0. Therefore by a theorem
from the theory of maxima and minima there exists a constant A such
that:

oV .. ,0oF ov . oF 514 oF
w T iy =t w it
Therefore
oF oF oF
Pot dgo=0, Pyl =0, P.tip =0

Since oF [ ox, oF | oy, oF |0z are proportional to the direction
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cosines of the normal at A, the force P has the direction of the normal, i. e.
the point 4 is actually the position of equilibrium.

If a point A is a proper maximum of a potential with respect to the
points of a surface S, then the point A is the position of stable equilibrium.
The proof is similar to that on p. 119.

The above remarks apply equally to the case when the material point
is constrained to remain on a curve.

Let a point in a gravitational field be constrained to remain on
a surface S whose equation is z == f(z, y) (the z-axis being directed ver-
tically upwards). The positions of equilibrium are those points at which the
force of gravity is perpendicular to the surface, i. e. at which the tangent
plane is horizontal. These points can be the highest or lowest points
(relative to the surrounding ones) or so-called saddle points. The proper
maximum of the potential V = — mgz occurs at those points for which the
function z = f(»,y) attains a proper minimum. Stable equilibrium
therefore occurs at the lowest points. The points A, B are then positions
of stable equilibrium; whereas C' is a position of unstable equilibrium (see
Fig. 93.).

If we displace the point from the position 4, e. g. to A’ and impart to
it a small velocity, then it will move in the depression around the point
4 with a small velocity. If, on the other hand, we displace the point (even
ever so slightly) from the position C to the position C’, then obviously it
will move away from ¢ under the influence of its weight.

Fig. 93. Fig. 94. Fig. 95.

Example I. A heavy material point hanging on a string making an
angle &« with the vertical is in equilibrium under the influence of a horizon-
tal force P (F'ig. 94). The point is acted upon by the reaction R of the string
directed along the string (towards the point of suspension), the weight Q,
and the force P. Therefore

R+ Q1+P=o.
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Putting |R| = R, |P| = P and |Q| = mg, we obtain from the triangle
formed by the forces R, Q and P

P =mgtan «, R = mg/cos «.

Example 2. The equation of a curve C lying in the zz-plane is z =
— f(x). A heavy point on the curve C is attracted towards the origin O of
the coordinate system by a force P whose magnitude is proportional to the
distance of the point from O. In what position will the point be in equi-
librium if we assume that there is no friction?

In a position of equilibrium the force P, the weight Q, and the reac-
tion R balance each other (Fig. 95, p. 133); hence

P+Q+R=0. (1)

The projections of the force P on the axes of the coordinate system
are:

P,— — M, P,=—j%, (2)

where 1 is a constant of proportionality. Let « denote the angle which the
tangent at the position of equilibrium makes with the z-axis. Projecting
on the tangent, we obtain from (1) and (2) — A% cos & — A% sina —
—myg - sinx = 0. Dividing by cos « and noting that tan « = 2’, we get

Ax + A%z’ + mgz’ = 0. (3)
Knowing the function z = f(z), we can determine the x coordinate of
the position of equilibrium from equation (3).

For example, if the curve C is the parabola z = 2* — a, then by (3)
we have A%x - 24%(x? — a) x + 2mgzr = 0, whence

2(20 — 1) — 2
z; =0, and xy3 = :{:‘l/z( 2 212 .

The solutions x,4 exist provided that the expression under the
radical is positive.

Let us ask now: what is the curve on which a point is everywhere in
equilibrium ?

For such a curve equation (3) must be satisfied identically. Integrat-
ing it, we obtain }2%x% + }A%2? -~ mgz = const., whence

x? + (z —i—?—;q) == const.

Such a curve is therefore an arbitrary circle with centre at the point
(0, —mg | A%).
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III. DYNAMICS OF RELATIVE MOTION

§ 22. Laws of motion. Let us suppose that we are investigating the
motion of a material point in a frame (x, ¥, 2) moving relative to the
inertial frame. Considering the inertial frame (vide p. 69) as fixed and the
frame (2, y, 2) as moving, we obtain (p. 60):

Po=P, + P+ Pc OO P.=pP,— P —Pe (1)
where p,, p,, P, o denote the accelerations: absolute, relative, trans-
port and Coriolis. Multiplying (1) on both sides by the mass m of the given
point, we get

mp, == Mp, — MmPp,— MmP, . (2)
Let us put:

Pa:mpa’ Pt:"—'mpt’ PC:*_mPC‘ (I)

Since p, is the acceleration of a point relative to the inertial frame,
P, is according to Newton’s law the force acting on the given material
point; it is called the absolute force. The vector P, is called the force of
transport or the centrifugal force, and the vector P the force of Coriolis or
the compound centrifugal force.

It should be noted that the vectors — mp, and — mp, do not repre-
sent any forces; we have called them forces of transport and of Coriolis
only for practical reasons.

By (2) and (I)

mp, = P, + P, + Pg. (1I)

According to Newton’s law we have mp = P in an inertial frame; we
see that equation (II) has a similar form.

Hence: the laws of motion in a moving frame of reference are such as if
the frame were an inertial frame, subject to the condition, however, that to the
acting forces we add the force of transport and the force of Coriolis.

The sum of the forces: absolute, transport, and Coriolis, is called the
relative force and we denote it by P,.

Therefore ‘
P, = P, P,+ Pg. 3)

Equation (II) can therefore be written in the form
mp, = P,. . (II1)

An observer, being at rest relative to a moving frame and taking it as the
inertial frame, will judge that the force acting on the material point is just the relat-
ive force P,. If the frame began its motion at a certain time t,, then it will seem to
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the observer that in addition to the force P, acting previously, a new force P, + Pg
began to act from the time #,. For instance, a person riding on a merry-go-round
judges that in addition to the force of gravity, there acts on him still another force
directed from the centre of motion and trying to throw him off the merry-go-round
(the centrifugal force). However, to an observer at rest relative to the inertial frame,
the forces of transport and Coriolis obviously do not exist.

If a moving frame moves with an advancing motion with a constant
velocity relative to a certain inertial frame, then p, = 0 and p, = 0
(vide p. 61); because of this P, = 0 and P, = 0, and by (II)

mp, = P,.
Therefore for such a moving frame hold the Newton’s laws.

Hence: every coordinate system which moves with an advancing motion
with a constant velocity relative to an ineriial frame is also an inertial
frame.

We see from this that the laws of mechanics will never enable us to
decide whether a given inertial frame is at rest or not.

If we are investigating the motion of a material point in a certain
frame of reference (x, ¥, z), then we can obtain the relative force P, from
equation (IIT). If we know in addition the absolute force P, from another
source and if we observe that P, = P,, then we shall be able to establish
that the frame (x, ¥, 2) is not an inertial frame and hence that it moves
relative to every inertial frame. '

§ 23. Examples of motion. Advancing motion of a frame. If a frame
moves with an advancing motion, the acceleration of Coriolis py = 0
(p- 61), and hence the force of Coriolis P, = 0. The acceleration of trans-
port is constant for all points and is equal to the acceleration of the origin
of the frame (relative to the inertial frame). Therefore the force of trans-
port is constant. It follows from this that the force of transport forms
a potential field (p. 100). By (II), p. 135, we then have

mpr:Pa +- Py (I)

Example I. An inclined plane moves with a constant horizontal
acceleration a. A heavy point of mass m is situated on the inclined plane.
Friction is not considered. What acceleration will the point m have with
respect to the inclined plane?

The absolute forces are: the weight Q and the reaction R perpendi-
cular to the inclined plane. The force of transport is -—ma. Let us select
as the x-axis the intersection of the inclined plane with the vertical
plane passing through m and give to it a downward sense (Fig. 96). Denot-
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ing by « the angle which the inclined plane makes with the horizontal
and forming the projections on the z-axis, we obtain from (I)

P == gsinx —a cos v, . (1)

where p = Pr,, and a = [a|. We see from this that p > 0 or p < 0, de-

pending on whether @ < gtan~ or @ > ¢ tan«.

atmg ™,
Fig. 96. Fig. 97.

Example 2. A frame (z, y, z) moves with an advancing motion with
a constant horizontal acceleration a in a gravitational force field. Let us
assume that the z-axis is directed vertically upwards and that the z-axis
has the direction of the acceleration a, but an opposite sense.

The force of transport is P, — — ma; putting ¢ = |a] we obtain
P, = ma, Pty = 0,and P, = 0. It is easy to see that the force of trans-
port forms a potential field having the potential ¥, = max; the potential
of the force of gravity is V', = — mgz. The relative force therefore forms
a field having the potential

V = max — mygz. (2)

If only the force of gravity Q acts onthe material point, thenapplying
the theorem on the conservation of total energy and setting v = lv,|, we
obtain by (2) {me? — ¥V == const, whence

v?— 2ax -+ 29z = h, (3)
where A is a certain constant.

Let us suppose now that we are investigating the motion of a con-
strained point which is to remain on a curve z = 22 lying in the az-plane
(Fig. 97).

Let us assume that at ¢ = 0,2 = 0 and v = 0. If friction is neglected,
then the reaction is perpendicular to the path and does no work. Hence

equation (3) applies to the motion. From the initial conditions it follows
that A = 0; hence v — 2azx + 2ga? = 0, whence

»” = 2x(a — gx). (4)
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Since v? > 0, 2z(a — gx) > 0; it follows from this that 0 <z < a /9.
The motion will therefore take place along the arc closed between the
abscissae #, = 0 and @, = a [ g. Since v = ds /df = (ds /dx)- (dz /dt) =
= o)1 + (dz/ de)? = z’}1 4 422, it follows in virtue of (4) that
%1 + 42?) = 2x(a — gx), whence

and hence

The above formula is valid from the momet ¢ = 0 until the time when
the point reaches the abscissa 2, = o /g. For x, = a /¢ in virtue of (4)
we have » = 0. After that the return motion will take place until the
time when the point reaches the abscissa z = 0, ete.

Rotary motion of a frame. Let a frame (x,
y, z) Totate about the z-axis with a constant
angular velocity w (Fig. 98). The acceleration
of transport has the projections: p, = — ww?,
Py, = — Yot and p,, = 0. Therefore for the force

of transport we have:

P, = maw?, P, = myw? P, =0.

It is easy to see that the force of transport forms a field having the
potential :
V = jmar(a® + 7). (5)

The acceleration of Coriolis will be po= 2v, X w (p. 62). The
projections of the relative velocity on the z, y, z axes are °, y°, 2', where-
as wy = 0, o, = 0, and w, = w. Therefore py, = 2y'w, py, = — 2r'w
and pg, = 0, whence

P, =—2myow, P, =2mro, Py =0.

The equations of motion will therefore have the form (p. 135, for-
mula (IT)):

my = P, + mxe? — 2myw, my- = P% -+ myw? + 2mzxw, (6)

mz = P, .

The work of a force in relative motion is called relative work.
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Since p is perpendicular to v,, P, is perpendicular to v,; therefore
the force of Coriolis does no relative work. The relative work of a relative
force is hence reduced to the work of the absolute force and the force of
transport. '

If the absolute force is the force of gravity, then taking the z-axis
as directed vertically upwards, we obtain V, = - mgz as the potential of
the force of gravity. The force of gravity together with the force of
transport forms a potential field having the potential

V = —mgz -+ Imw?a? 4+ y?).

Therefore, if we set v = |v,|, then by the principle of equivalence of
work and kinetic energy (p. 105) we get 3mv? — V = const; hence

Fmo? -+ mgz — Imo?(x? + y2) = const.
Therefore
W 207 et + y?) = b, (7)
where h is a constant.

If we are investigating the motion of a constrained point along a
curve (or surface) motionless relative to a frame (z, v, 2), then under the
assumption that there is no friction, the reaction does no relatlve work;
hence formula (7) also applies in this case.

Example 3. A plane curve C revolves with a constant angular velo-
city o about a vertical axis lying in its plane. Determine the motion of
a constrained point moving along a curve C under the influence of the
force of gravity.

Let us choose the z-axis directed vertically upwards as the axis of
revolution, and the az-plane as the plane of the curve C. Let the equation
of the curve (' be z = f(x). Because y = 0, we get by (7): v2 + 29z —
— w%? = h. Assuming that a,t =0, x =, 2 = 25 = f(z,),and v = 0,

we obtain h = 2gz,— wxj; ds = da}/1 + [*(x), whence v = s =
= 2 |/1 4 f*=x); therefore
1 + f'%(x)) + 2¢ f(®) — w2a? = h. (8)

From this equation we can determine x as a
function of the time ¢.

Example 4. In particular, let the curve C (in
above example) be the straight line ! passing
through the origin O of the frame and inclined at
an angle ¢ with the z-axis (Fig. 99).
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In order to determine the motion of a point along the line I, one
could apply formula (8) by substituting z = f(x) = x cot ¢. However, we
shall derive the equations of motion directly.

The force of transport is perpendicular to the z-axis and equal to
maw?. Let s denote the length of the segment OA. Since the force of
Coriolis and the reaction are perpendicular to the line I, the projection
of the relative force on I is equal to —mg cosgp - mrxw?sing. As
x = § 8in p, we obtain

ms = — myg cos @ -+ msw? sin’p,
whence
§ — sw? sin*p = — g co8 . (9)
The homogeneous equation s'* — sw? sin?p = 0 has a general solution

of the form s = aevtsine | pe—wisine, Since a particular solution of
equation (9) is

s go0sg
? sinfyp

2

the general solution of this equation will be

. o g cosg
— wtsing wtsing v . 1
§—=ae + be T w? sin’p ‘ ( O)
The constants ¢ and b are determined from initial conditions. In
particular, if ¢ = =, i.e. the line [ is the z-axis, then

s = ae” -+ be e, (1)

§ 24. Relative equilibrium. If a material point is in equilibrium (i. e.
at rest) relative to a moving frame, then the relative acceleration p, = 0,
and the relative velocity v, = 0. It follows from this that the acceleration
of Coriolis p,, is also equal to zero, and hence the force of Coriolis Py = 0.
From equation (II), p. 135, we therefore obtain

P, + P, = 0. (1)

Hence: when a point is in relative equilibrium, the absolute force is in
equilibrium with the force of transport.

Relative equilibrium in a frame moving with an advancing motion.
If a frame moves with an advancing motion, the acceleration of transport
has a constant value for all points; hence the force of transport must also
be the same at every point.

If, in particular, the moving frame moves with an advancing motion
with a constant velocity, then p, = 0, whence P, = 0, and equation (I)
expressing the condition for equilibrium reduces to the form P, = 0.
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Example I. A heavy point of mass m is hanging on an inextensible
string in an elevator moving with an acceleration p. Let the string have
a vertical direction and let the point be in equilibrium relative to the
elevator (i. e. to the frame attached to the elevator). The acting forces,
namely the weight Q and the tension in the string T, are therefore ba-
lanced by the force of transport (Fig. 100). Let us put p = |p| and 7 = |T|.

r

moq

mp R !
Fig. 100. Fig. 101. Fig. 102

The acceleration of transport is p. Let us assume that it is directed
upwards. Therefore the force of transport is directed downwards and is in
magnitude equal to mp. Forming the projections of the forces on the axis
directed vertically upwards, we obtain 7’ —mg—mp = 0, whence 7' = mg +
+ mp. The tension in the string is therefore greater than the weight. If
one held the body in one’s hand, one would feel an increase in its weight.

Conversely, if the acceleration is directed downwards, then 7' =
= mg — mp; the tension in the string is smaller than the weight and
the body seems lighter in this case.

Finally, if p = 0, then T = mg. Hence the tension in the string is
equal to the weight during the uniform motion of the elevator.

Example 2. A carriage of a cog-wheel railway moves with an acceleration
p along a path inclined at an angle « with the horizontal. A material point
hanging on an inextensible string is in equilibrium relative to the carriage.
Let § denote the angular deviation of the string from the vertical.

The weight Q of the point and the tension T of the string are in
equilibrium with the force of transport P, (Fig. 101); therefore

T+Q+P,=0. &)

The acceleration of transport is p. Let us assume that it is directed

upwards. P, is hence directed downwards, and |P,| = m|p|. Forming the
projections on the horizontal and vertical axes, we obtain from (1):

Tsinff—mpcos o =0, T cosf— mpsina—mg =0, (2)
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where T' = |T|, and p = |p|. From equations (2) we obtain:

P cos &«
g+ psina’

In particular, when « = 0, i. e. when the path is horizontal, T' =
= m]/ijk?, and tan = p/ g. Hence in the railway carriage we can deter-
mine the acceleration of the carriage from the angular deviation of the
string from the vertical: because we have p = g tan .

T = m|p*+ ¢* + 2pgsinx, tanp =

Example 3. A railway carriage moves along a horizontal curved path
with a constant velocity v. We may suppose that the carriage turns about
a certain vertical line I. Let a heavy point of mass m hanging on an
inextensible string be in equilibrium relative to the carriage (Fig. 102).

Let us denote by « the angle made by the string with the vertical,
and by r the distance from the point of suspension of the string to
the line I. The distance of the point m from the [-axis is therefore
r = r 4+ x = r + dsinx (where d is the length of the string). The accele-
ration of transport p, of the point m is perpendicular to I and directed
towards [, while |p,| == v /(r 4+ x). The force of transport, having an
opposite sense, is |P;| = me? | (r +- x). Since the weight Q and the tension
T in the string are in equilibrium with the force of transport, we obtain
from the triangle of forces

tana = |Py| /|Q| == v? [ g(r | x).
When z is small in comparison with r, then tan x = v* / gr.

Example 4. A heavy point of mass m is constrained to remain on a
curve C revolving about a fixed vertical line | with an angular velocity w.
Friction is not considered. In what position will the point be in equili-
brium relative to the curve C'?

Let us choose a moving frame (z, y, z) revolving together with the
curve C about the l-axis with an angular velocity o, taking I as the z-axis
directed upwards. Let the curve C' which is at rest relative to the frame
(x, y, z) be given parametrically by means of the functions:

z = f(o), y = @lo), z = p(0). (3)

In a position of relative equilibrium the weight Q, the reactionR,and

the force of transport P, balance each other (Fig. 103). Therefore the sum
Q + P, is perpendicular to the curve €. Denoting the coordinates of the point
in relative equilibrium by x, y, z, we obtain p, = — ze?, p, =—ye?,
and p, = 0, from which P, = mzo?, P, = myo* and P, = 0. There-

fore the sum P, + Q has the projections: maw?, myw?, and —myg.
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The direction numbers of the tangent are proportional to the deriva-
tives 2’ = f'(0), ¥’ = ¢'(0), 2’ = y'(0). From the condition that P, + Q is
perpendicular to the tangent it therefore follows (after dividing by m)
that

xx'w? + yy'w? — gz’ = 0. (4)

From this equation we can determine the value of the parameter
o corresponding to the position of relative
equilibrium. B
In particular, if the curve C having the
equation z = y(x) is a plane curve lying in
the xz-plane, then for the position of equilib-
rium we obtain from equation (4) (putting M
z =0, y = 0,and 2z = y(o)) or directly from
the figure:

Fig. 103.
tan &« = () = xw? /g. (h)

For example, if the equation of the curve € is z = — ]/172“—? (i. e.
the lower portion of the circle a2 4 22 = #2), then from (5) we get
x| —a? = zo? /9, whence @, = 0, and x,, = 4 ViTz——g]ETw—“ The
solutions x,; exist only when r — g2 [ @* > 0, i. e. when o > Vg I+

We ask now: what are the curves on which a point is at every position
i relative equilibrium ?

For such curves equation (4) must be satisfied identically, i. e. for
every value of the parameter ¢. Therefore we obtain from (4)

2 2
R
Integrating, we get (x® + %) w? — gz = const, whence
— wz 2 2
2~§(96 + ¥ +e (6)
where ¢ = const.

Equation (6) represents a system of paraboloids of revolution gener-
2
ated by revolving the parabola z = -2%9& + ¢ about the z-axis. By (6)

the curve lying on any one of these paraboloids satisfies equation (4)
identically. The plane curves satisfying equation (4) are obtained by
forming section of the paraboloid with an arbitrary plane. We get ellipses
and parabolas as sections. In particular, the section with the vertical

2
plane y = 0 will be the parabola z = %w“’ + ¢.
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§ 25. Motion relative to the earth. Force of gravity. Let us take as
a frame of reference an inertial frame whose origin is in the sun and whose
axes are directed towards the fixed stars. The earth is not at rest relative
to such a frame. When investigating the motion of a point during a short
interval of time, we can confine ourselves to the rotary motion of the
earth only about a certain axis.

Let a point hung on a string in a certain place on the earth’s surface
be at rest relative to the earth. The absolute forces are: the attraction of
earth A and the tension T in the string (equal in magnitude and direction
to the weight, but opposite in sense).

The earth’s force of attraction is not equal to the weight because,
in the contrary case, it would be in equilibrium with the tension in the
string, and the point would be at rest or in uniform motion along a straight
line. However, this is not the case because the point rotates together with
the earth about its axis.

Applying the conditions of relative equilibrium (§ 24, p. 140) to the
frame attached to the earth, we can say that the attraction A of the earth
and the tension T in the string are in equilibrium with the force of trans-
port P,. Hence

AL+ T+ P, =0

Since the weight of the bgdy == —T, it follows that A-— Q +

-+ P, = 0, whence
Q=A+P,. (I

Hence: the weight of @ body is the resultant of the centrifugal force (force

of transport) and the earth’s force of attraction.

Magnitude and direction of the earth’s attraction. Let us suppose
that the earth has the form of a solid of revolution whose axis is the
earth’s axis of revolution. In addition, let us suppose that the density of
the earth is distributed symmetrically with respect to the centre of mass.
Then it can be proved that the force of attraction is directed constantly
towards the earth’s centre of mass.

Let « be the angle which the force A ma-
kes with the vertical, i. &. with the weight Q
(Fig. 104). Let us denote the radius of the pa-
rallel of latitude on which the material point
lies by o, the latitude of this point by ¢ (i. e. the
angle made by the vertical passing through the
point and the equatorial plane), and finally the
Fig. 104. angular velocity of the earth rotating by w.
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The force of transport lies in the plane of the parallel of latitude and is
directed away from the axis of revolution, while |P,| = mgw?. Let us form
the projections of the force A, Q, and P, on the z-axis directed vertically
as well as on the horizontal y-axis (i. e. perpendicular to the vertical)
lying in the plane of the meridian (i. e. in the plane of the forces) and
directed southwards. Setting 4 = |A|, and @ = |Q}, we obtain by (I)

— Q= — A cosx + mpw?cosp, — Asinx 4+ mpw?sing = 0.
Therefore:
A cosx = @ + mow? cosp, A sinx = mpw? sin ¢. (1)

Hence, knowing @), ¢, w, and ¢, we can calculate 4 and x. On the
equator ¢ = 0; therefore by (1) we get & = 0. Denoting by 4,, @,, and g,
the corresponding values on the equator, we obtain

Ay = Qy -+ mo,w?. (2)
Knowing ¢, and g,, we can calculate 4,. Knowing 4,, we obtain
mogw® [ Ay = ks = (77)° (3)
If the velocity of the earth were w, = 17w, then me.w} /4, =1,
whence 4, = mp,w?. From this and (2) we obtain @, = 4, — me.w: = 0;
hence if the earth were to turn 17 times faster, then bodies on the equator
would be deprived of their weight.

Let us now assume that the earth is a sphere composed of concentric
layers of constant density. Then, as can be demonstrated, 4 must be
constant on the earth’s surface. Therefore A = 4,. Denoting the radius of
the earth by R, we obtain

o = R cos (p — x). ‘ (4)
By (1)
mBw?

a, cos (p — «) sin ¢,

Sing =

and since gy = R, by (3)
sin & == 544 cos (p — «) sin ¢.

Angle « is very small; hence taking as an approximationsinx = «,
and cos(p — «) == cos g, we get
— 1 in 2
X = mﬂn Q.
We see from this that o has the greatest value for ¢ = 45°. Putting
a = 0, we get by (1) and (4)
10
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2
Q = Ay — mRo? costyp = A, (1 — ”—%@« cos2<p),

0

whence by (3), as g = R, we obtain
Q = Ay(1 — cos?p | 289).

Force of Coriolis. When investigating the motion of a point relative
to the earth, it is necessary to add the forces of transport and Coriolis to
the absolute forces. Let us assume that in addition to the force of attrac-
tion A, a force P acts on a material point. Denoting the acceleration re-
lative to the earth by p, we obtain mp =P + A+ P, P,, and since
A + P, is equal to the weight Q,

mP:P+Q+Pc- (5)

Therefore: when inguiring into the motion of a point relative to the earth
it is necessary to add the force of Coriolis P to the force P and the weight Q.

At a given place on the earth let us select
a z-axis directed vertically upwards, a horizontal
z-axis directed towards the east and a horizon-
tal y-axis directed towards the south (Fig. 105).
The axis of revolution will lie in the yz-plane
and make an angle of 90° — @ with the z-axis
(cf. Fig. 104). Since the earth revolves from
west to east, the vector of angular velocity w
lying on the axis of revolution is directed from
the south pole to the north pole. Putting
|w| = o, we obtain

Fig. 105.

w, =0, w,=—wecosp, w,=wsing (N)
on the northern hemisphere, and

w, =0, w,=—wcosp, w,=—wsing (8)
on the southern hemisphere.

Denoting by v the velocity of the point relative to the earth, we
obtain py = 2v X w; therefore P, = —mp, = — 2mv X w, whence

P,=2mw X v, (6)
whence by (N), for the northern hemisphere:
Py, = — 2mo(v, sing + v, cos ¢), Py, = 2mov, sing, (IT)

Pg, = 2mov, cosg.
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If the point has only a vertical velocity, i. ¢. if v, == 0 and v, == 0, we
obtain Pcm = — 2mwv, Cos @, Pc,, == 0,and Py = 0. When the point rises,
v, > 0; hence Py < 0 and P is directed horizontally towards the west;
whereas when the point fails, v, << 0, P > 0,and therefore P, is directed
horizontally towards the east.

1t follows from this that a falling body is deflected towardsthe east under
the influence of the force of Coriolis.

If a point moves constantly in a horizontal plane, i. c. when v, = 0,
then P, = — 2Zmov,sing, and P, = 2mwv,sing. The horizontal
component of the force of Coriolis is therefore perpendicular to the velo-
city and has with respect to it a sense to the right.

Therefore: @ point moving in « horizontal plane in the northern hemi-
sphere tends to be deflected (under the influence of the force of Coriolis)
to the right of the direction of the velocity.

It is for this reason, for example, that the right rail is pressed down more than
the left rail by moving trains.

The effects of the force of Coriolis are small because the force. is
small. For in virtue of (6) we have |P;| = 2mw|v| sine, where & denotes
the angle between v and the axis of revolution. Since

2 2s
W = —,jzfsoc L= _;4—76;— Y sec~1 = 0.00007 sec—1,
where 7' denotes the period of one revolution of the earth about its axis,
thus P is small.

Let us form the projections of (5) on the @, ¥ and 2z axes. By (1) we
obtain:

mx = P, — 2mo(y sing -+ 2 cos @), my = P, + 2moz sin g,
mz = P, —mg - 2mwzx cos ¢. (LLI)

Deviation to the east of a falling body. We shall concern ourselves
with the determination of the deviation from the vertical of a freely fall-
ing material point.

Let us assume that for ¢ == 0 we have

=0, y=10, 2=0, == (), (7)
By (I1I), under the assumption that P = 0, we obtain:

x = — 20y sing -+ 2° cosg), Yy = 2wx sing,
2= -—¢ + 2wx cos . (8)
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Integrating and making use of the initial conditions (7), we get

@ = —20(ysing 4z cos @), Y = 2wx sing,
20 = —gt + 202 cos g. (9)

Substituting the values y and 2- in (8), we obtain
= — dwPr 4 2wt cos p.

The above equation could be integrated and the result substituted in
(9) from which y and z could be determined. We shall obtain an approxi-
mate solution by neglecting the term — 4w?z, which is very small in
comparison with 2wgt cos . We get x* = 2wgt cos ¢, whence

x = towgt? cos ¢. (10)

Omitting the term 2wz cos ¢ in the third of the equations (9), as
being small compared with — gt, we obtain z- — —gt, whence z —
= — }gt*. When the point reaches the level z = —, then — & = —— }g¢?;
therefore ¢ = ]/2775 Hence by (10)

z = Zwh cos q;]/ﬁ—,—g (11)

This formula represents the deviation to the east (because x > 0)
of a body falling from a height #.

At Harvard University experiments were performed with % — 23 m and
¢ = 42°. From about a thousand experiments deviation between 1.3 mm and
L.7mm was obtained. From the approximation formula (11) one gets instead
1.8 mm. The difference is therefore not great.

Foucault’s pendulum. Let us investigate the influence of the force
of Coriolis on the motion of a pendulum. Let us place the origin of the
coordinate system (, y, z) at the point of suspension of an inextensible
string at whose end a heavy point of mass m is fastened. Let I be the
length of the pendulum (i. e. of the string). Since the reaction P of the string
acts on the point along the string, denoting the coordinates of the point
m by x, y, z, we obtain

P, = kmx, P,=Imy, P,= imz,
where 4 is a factor of proportionality depending on time.
By (IIT), p. 147, after dividing by m, we obtain
&= Ar — 2w(y  sing + z' cos ¢), ¥ = Ay + 20z sin @, (12)
z ==z —g 4+ 20z cos ¢. (13)

We shall concern ourselves only with an approximate solution of
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equations (12) and (13). Let us assume that the angle of oscillation is
sufficiently small so that we can take as an approximation

g=-—1[ z=0, 2= 0. (14)

From equation (13) we then obtain 0 = — Al —g + 2wz cos ¢,
whence 1 = (— ¢ -+ 2wz cos ¢} / I. Omitting the second term inthe nu-
merator as being small compared with the first one, we get

A=—g/l (15)
The factor 4 can therefore be considered approximately as a constant.

By (14) and (15) the equations (12) take the form

x"-z—ng—.‘Zwy' sin @, y":—%y—{— 2 sin . (16)

Multiplying the first of the equations (16) by z°, the second by ',
and adding, we obtain

e ——%(xx' + ),
whence after integrating
2 _1_ y.z — ____'(Z]_(x2 + y?) _+_ a, (17)

where « is a certain constant. Multiplying the first of the equations (16)
by ¥, the second by x, and substracting, we get

yr — a2y = — 20(yy" + xx) sin g,
whence after integrating
yr —xy = — w(@? -+ y*) sing + b, (18)
~where b is a certain constant. Let us introduce the polar coordinates:
T = 1 COS Y, == rsiny.
From (17) and (18) we obtain
r2 4 r2y? = ——lgrz + a, (19)
ry = rfwsing —b. . (20)

Let us introduce a new coordinate system (x,, %,, 2;) having with the
preceding system (z, y, 2) a common origin as well as a common z-axis,
and revolving about the z-axis with an angular velocity w siny in the
direction from east to south, i. e. from x to y. For the polar coordinates
71, Y, We obtain in the new system the formulae:

r=r;, Y=y + otsing. (21)
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By substituting (21) in (20) we obtain in terms of the new coordinates
r1, 1 the equation r%(y; +  sing) = r’w sin ¢ — b, whence

7'%'/’-'1 R [)s (22)
and by substituting (21) in equation (19) we get
ri¥ 4+ iy 4 2o sing 4+ rlo? sintg = — g2 /1 + a,
from which after neglecting the term 7Jn? sin’p as being very small and
applying equation (22), we obtain

12 19)1 e !/7% [+ ay, (23)

where a4, == a + 2bw sin ¢ = const.

It is easy to verify that (22) and (23) are the equatlons of the motion
whose equations in terms of the coordinates x,, ¥, 2, are:

vy =—gx, /1, yi=-—gy /L (24)
Indeed, this is the form which equations (16) assume for w = 0.
Hence, introducing polar coordinates, we obtain, as is seen from equations
(19) and (20) for w = 0, equations (22) and (23).
Equations (24) represent the motion of a point under the influence of
a force P whose projections are:

P, =—gmzx, [l, P, =—gmy, |l (25)

This is an elastic force, i. e. one directed constantly towards the origin
of the coordinate system and directly proportional to the distance of the
point from the origin of the system. On p. 112 we showed that motion
under the influence of an elastic force takes place along an ellipse. Hence
a material point will execute a motion in the system (z,, y,, 2,) along an
ellipse. Because this system also revolves about the z-axis with anangular
velocity o sing, the axis of this ellipse will revolve with an angular
velocity o sin ¢ from east to south. The period of revolution is

T = 2x | wsing.

Since one revolution of the earth lasts 24 hours it follows that, 27/ @ =
= 24 h, whence T' = 24 /sing h. For ¢ = 45° we get T = 34 h.

This phenomenon was first confirmed experunentally by L. Foucault; it
constitutes a proof of the earth’s rotation about its axis.



