CHAPTER VII
KINEMATICS OF A RIGID BODY

§ I. Displacementand rotation of a body about an axis. According to
the definition of a rigid body (p. 231), its points do not change their mu-
tual distances during motion. When the point 4 moved to the point B, the

vector AB was called the displacement of the point (p. 34). During a
change of position of a rigid body, the points of this body undergo, in
general, various displacements.

We shall first become acquainted with certain theorems from geo-
metry which give the resolution of the displacements of the points of a
body. These theorems will be helpful to us in determining the velocities
of these points. '

Parallel displacement or translation. A body is said to undergo a
parallel displacement or a translation if the displacements of all the
points of the body during a change of its position are equal.

The displacement common to all points of the body is called the
displacement vector or the displacement of the body.

The position of the body after a displacement is therefore deter-
mined by the initial position and the displacement vector.

Let us assume that the points 4,, B, moved to the points 4,, B, after
a_translation. Since the displacements of both points are equal,
A4, = BB,. It follows from this that 4,B, = 4,B,.

Therefore: the vectors attached to a body do not change either their sense
or direction during a translation.

Conversely, it is easy to prove that if the vectors in a body maintain
their sense and direction during a displacement of the body, then the displa-
cement is a translation.

For let us assume that two arbitrary points 4,, B, moved to the
points 4,, B, (Fig. 234). By hypothesis, 4, B, = 4,B,; hence A,A,= BB,
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The points A4,, B, therefore have equal displacements, i. e. the change
of position of the body is a translation.

It is easy to see that lines and planes in a body remain parallel to one
another after a translation.

Fig. 234. Fig. 235.

Let us suppose that a body has made two successive translations:
first, from position I to position II, and next, from position II to position
III. Let 4,, B, be two arbitrary points in position I, and 4,, B,and 4,, B,
their corresponding pointsin positions ITand ITI (Fig. 235). By hypothesis,

4,4, =B,B, and A,4, = B,B, Since A,4,— A A, + 4,4, and
B\B; = BB, + B,B,, it follows that A4, = B.B,. Consequently we can
go directly from position I to position ITT by means of one translation. De-
noting the displacements in passing from I to II, from IT to IIT, and
from I to III, by u,, u,, and u, we obviously obtain

u=u, - u,

Therefore: if a body has made several successive translations, then the
final position can be obtained from the initial position by means of one trans-
lation; the displacement of the body from the initial position to the final
position is equal to the sum of the displacements of the separate translations.

This theorem can be called the law of composition of displacements.

Since the resultant displacement is the sum of the component dis-
Placements, then (in virtue of the commutativity of the sum of vectors)
the resultant displacement does not depend on the order in which the
body made the component displacements.

Rotation about an axis. If two points of a body, e. g. K and M,
-remained fixed during a change of position of the body, then, obviously,
all the points of the line I passing through K and M will also remain fixed.
We then say that the body rotated about the line I; this line is called the axis
of rotation.
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If some plane I7, in the initial position of the body passes through
the axis of rotation, then the corresponding plane T, in the final position
will also pass through this axis.

Let us give the axis [ an arbitrary sense. The angle ¢ through which it
is necessary to rotate the plane I, (counterclockwise with respect to
axis l) in order that it fall on I7, and in order that the corresponding
points coincide is called the angle of rotation.

Fig. 236.

The rotation of a body about an axis is determined by giving the
axis and the angle of rotation. During a rotation the points of a body
remain in planes perpendicular to the axis of rotation.

During a rotation every vector 4,B; parallel to the axis of rotation
falls on a vector A,B, parallel to the vector A,B,. Ttis easy to prove that
only vectors parallel to the axis do not change either direction or sense
during a rotation.

Let us note that if a vector 4,C, lies in a plane IT perpendicular to
the axis of rotation, then the angle which this vector makes with the
corresponding vector 4,C, is (relative to the chosen sense of the axis of
rotation) equal to the angle of rotation (Fig. 236).

If the body makes several rotations about this same axis ! through
the angles @y, @, ..., then the final displacement is obviously also a
rotation about the axis [ through the angle ¢ = ¢, -+ ¢, + ... It follows
from this, in virtue of the commutativity of the sum, that the final
position does not depend on the order in which the partial rotations of
the body were made.

The situation is quite different when the body makes successive
rotations about various axes as the example on p. 314 shows.
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Example. A rigid body made two successive rotations about two
parallel lines [ and m which are rigidly attached to the body. The rotations ,
had opposite senses, but the angles of rotation were equal. Prove that
the body can be displaced from jts initial position to its final position by
means of a translation.

Let €' be an arbitrary point of the body. Through C let us pass
a plane IT perpendicular to the given axes of rotation I and m. Let
L and M denote the corresponding points of intersection and ¢ the angle
of rotation (Fig. 237).

During a rotation about the axis ! through an angle ¢ the axis m will
assume the position of the line m’; let us denote the point of intersection
of this line with the plane I7 by M'. Next, after a rotation about the
axis m’ through an angle ¢ the axis ! will assume the position of the
line I'; let us denote its point of intersection with the plane IT by L.

Finally, let C; be the position of the point (' after a rotation about the
line I, and (" the position of the point C, after a rotation about the line m’.

Fig. 238.

The triangle LMC assumed ultimately the position L'M’'C’, while
LL' — MM’ = OC (asin Fig. 237). Since the displacements of the points
situated on the axis I (or m) are equal, the above relation indicates
that the displacements of all the points are equal. It is easy to verify that

LL' = 2LM sin ¢. . ‘ (1)

§ 2. Displacements of points of a body in plane motion. The motion
of a plane figure moving in a plane is called a plane motion.

The position of a figure in plane motion is determined by the position
of two of its arbitrary points. '

For suppose that there are two possible positions of the figure at
which the two points 4 and B would occupy the same positions. Let us
consider an arbitrary point C of the figure which in one position is at C,,
and in the another at C, \F g 238). The triangles ABC, and ABC, are con-
gruent and are situated symmetrically with respect to 4B. Therefore



[§2] Displacement of points of a body in plane motion 311

they cannot be made to coincide without taking them out of the plane.
This, however, is contrary to the hypothesis that in the plane motion the
triangle 4 BC once occupied the position 4 BO,, and the second time the
position 4BC,,.

Rotation about a point. If a figure lying in the plane I7 is rotated
about a line I perpendicular to this plane, then the figure will continue to
remain in the plane 7. Such a rotation is called a rotation of the figure
about a point (the point of intersection of the line I with the plane I7).

Theorem. Every figure in plane motion can be displaced from one
arbitrary position to another by means of one translation and one rotation.

For let 4,, B, be two points of this figure in the first position, and
A,, B, the corresponding points in the second position. Let us first trans-
late the figure so that the point A, falls on 4,. After this displacement the
point B, will fall on a certain point Bj. Let us now rotate the figure about
A, so that B falls on B,. Since the two points 4,, B, coincided with the
corresponding points 4,, B, after a translation and a rotation, the rem-
aining points will also coincide. Thus, we have displaced the figure from
one position to another by means of one translation and one rotation,
q.e.d.

We shall now prove that the most general displacement of a figure in
plane motion is either a translation or a rotation.

I Theorem of Euler. A figure can be displaced from ome position to
another (which it occupies in plane motion) esther by means of a translation
or a rotation.

Proof. Let A;B; be an arbitrary segment of the figure in the initial
position I, and 4,B, the same segment in the final position II.

In the case when the vectors 4,B, and 4,B, are equal, we have
4,4, = B,B,. Therefore, by a parallel displacement of the figure so that
the point 4, falls on 4,, the point B, will fall on B,. Since the figure will
have the points 4, and B, in common with position II after this displa-
cement, it will have all points in common. In this case, therefore, it is
possible to displace the figure from position I to position IT by means of
a translation.

In the case when the vectors 4,B, and 4,B, are not equal, let us
draw the perpendicular bisectors I, and I, of the segments 4,4, and B,B,.

Let us assume at first that these bisectors are distinct and intersect
at the point O (Fig. 239). The triangles O4,B, and 04 ,B, are congruent.
Denote by B; the point symmetrical to B, with respect to the bisector I,.
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The triangles O4,B, and 0OA,B; are obviously situated symmetrically
with respect to /;. They are consequently congruent and not superposable
without taking them out of the plane. Hence if the figure is rotated about
O so that the point A, falls on A4,, then, since the point B, cannot fall on
By, the point B, will fall on B,. After this rotation the figure will therefore
have the points 4, and B, in common with position II, and consequently
all the other points in common.

0]
A A
/1 {2 ‘
Fig. 240.

Next, let us assume that the bisectors of the segments 4,4, and
BB, are identical (Fig. 240). In this case the segments 4,B, and 4,B, are
situated symmetrically with respect to I, (or I,); the centre of rotation will
be the point of intersection of the line A4,B, with l, (or A,B, with 1,). In
this case, therefore, the displacement of the figure from position I to
position II can be made by means of a rotation, q. e. d.

Plane motion of a body. If a body can move only in such a way that
its points remain constantly in planes parallel to a certain fixed plane 17,
then the body is said to be in plane motion, and the plane I7 is called the
directional plane (cf. the definition and example on p. 272);

Let us cut a body in plane motion by a plane I’ parallel to the direc-
tional plane II. Let C be the plane section. The position of the plane
section €' obviously determines the position of the entire body. Since the
plane section C must remain constantly in one and the same plane IT', by
ITheorem of Euler we can displace this figure from the arbitrary position
it occupies to another arbitrary position, either by means of a translation,
or by means of a rotation about a point lying in IT'.

It follows from this that a body in plane motion can be displaced from
one position to another, either by means of a translation, or by means of a
rotation about an axis perpendicular to the directional plane.

§ 3. Displacements of the points of a body. If a rigid body has one
fixed point, then it can rotate about this point, and if it has two fixed
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points, it can rotate about an axis passing through these points.
Giving the position of one or two points of a body is, therefore, not suffici-
ent todetermine the positions of all the other points of the body. But we
have the following '

Theorem 1. The position of all the points of a rigid body is determined
by the position of three of its points, provided the points are not collinear.

Proof. Let us suppose that there exist two distinct positions of
the body at which three non-collinear points 4, B, 0, would occupy the
same positions. Let us consider an arbitrary
point D of this body which in the first position
is at D), and in the second at D,. The tetra-
hedrons ABCD, and ABCD, have a common
base and correspondingly equal edges (Fig. 241).
It follows from this that they are symmetrically
placed with respect to the plane ABC. There-
fore they cannot be brought into complete
coincidence. This is, however, contrary to the
assumption that the first position of the tetrahed- Fig. 241.
ron ABCD is ABCD, and the other one ABCD,.

Rotation about a point of a body. If one point of a body remains
fixed during a displacement of the body, then the body is said to have
been rotated about this point.

Il Theorem of Euler. A rotation about a point is equivalent to a rota-
tion about a line passing through this point.

Proof. Let us suppose that a body has been rotated about the point O.
In the initial position I let us select in the body an arbitrary segment 4, B,
(not passing through O) and let 4,B, be the corresponding segment in the
final position IT. Let us draw the planes of symmetry 7, and IT, of the
segments 4,4, and B,B,.

Let us assume at first that II, and II, are distinct and that they
intersect in the line ! (Fig. 242). The line I passes through O because [ is the
locus of points equidistant from A4, and 4,, as well as from B, and B,,
while 04, = 04, and OB, = OB,. Let C be an arbitrary point (different
from O) on the line .

The tetrahedrons OCA4,B, and 0CA 2B, are equal. It is easy to show
that they are also superposable. The vertices 0,C, 4, and 0,0, 4,
are placed symmetrically with respect to I7 1; hence, if the tetrahedrons
OCA,B, and 0C4,B, were not superposable, the vertices B; and B,
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would have to be placed symmetrically with respect to I1;, which is im-
possible, since B, and B, are placed symmetrically with respect to I7,, and
II, = IT,. We have proved, therefore, that the tetrahedrons OC4,B, and
OCA,B, are equal and superposable.

If we now rotate the body about the axis I so that 4, falls on 4,,
then the tetrahedron OCA,B,; will fall on the tetrahedron OCA,B,. After
this rotation the body will therefore have three points in common (namely
0, 4, and B,) with the body in position II, and consequently all other
points. We have thus displaced the body from position I to position II
by means of a rotation about the line [.

Fig. 242. Fig. 243.

Let us now assume that the segments 4,4, and B, B, have a common
plane of symmetry I7 (Fig. 243). Then the triangles O4,B; and 04 ,B, are
situated symmetrically with respect to /1. The axis of rotation in this case
will be the line of intersection of the plane OA,B, (or OA,B,) with the
plane I1.

Remark |. From II Theorem of Euler it follows that during a rota-
tion of a body about a point, there exists in the body a certain line having
the property that its points do not change their position.

Remark 2. If a body makes two successive rotations about two axes
passing through one point O, then the body can be displaced from its
initial position to its final position by means of one rotation about an axis
passing through O, because the point O did not change its position. There-
fore the composition of two rotations about an axis passing through
one point is a rotation about an axis passing through the same point.

Example. A body made two successive rotations about the axes of
a fixed coordinate system: first about the z-axis and then about the
x-axis, both rotations counterclockwise through a right angle.
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Since the origin O of the system remained fixed during both rotations,
we can displace the body from its initial position to its final position by
means of one rotation about a certain axis I passing through O (Fig. 244).

Let us consider the point 4(0, 0, 1) on the z-axis in the initial position.
After a rotation about this axis the point 4 did not change its position,
and after a rotation about the

x-axis it assumed the position z 2
A'(0, 1, 0). ' P / p A
Let us next consider the Y
point B(0,1,0) on the y-axis //
in the initial position. After a 4
rotation about the z-axis the A B % A X
point B occupied the position 7 B B g
B'(1, 0, 0) on the z-axis, and )
then during a rotation about Fig. 244. Fig. 245.

this axis the point B’ did not
change its position any more. The sought for axis I will therefore be the
intersection of the planes of symmetry of the segments AA’ and BB’

The plane of symmetry of the segment 4.4’ has the equation y = z,
and the plane of symmetry of the segment BB’ has the equation x = .
The axis I, being the intersection of both planes, consequently has the
equation

T =y =z

Let us now suppose that the body had made the same rotations in
the reverse order, i. e. first about the z-axis, and then about the z-axis
(Fig. 245). The points A4(0, 0, 1) and B(0, 1, 0) after a rotation about
the z-axis will occupy the positions A4,(0, 1, 0) and B,(0, 0, —1), and
then, after a rotation about the z-axis, they will assume the positions
A,(1, 0, 0) and B,(0, 0, —1). The planes of symmetry of the segments 44,
and BB, have the equations = z and y = — 2. The axis I, about which
it is necessary to rotate the body in order thatit go from its initial position
to its final position will therefore have the equation

x:::——-y:z.

It follows from this that the final position depends on the order in
which the rotations were made.

Chasles’ theorem. A body can be displaced from. one arbitrary position
to another by means of one translation and one rotation about an axis.

In general, this can be done in infinitely many ways, but the axes
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of rotation will always be parallel and the angles of rotation equal (if the axes
have the same sense).

Proof. Let O, be an arbitrary point of the body in the initial position
I, and O, the corresponding point in the final position II. Let us first trans-
late the body to the position I’ so that O, falls on O,. If the position I is
identical with II, then the body has been displaced from the position
I 'to the position IT by means of one translation, conformably to the requi-
rements of the theorem. '

Let us assume, therefore, that the position I’ is different from II.
Since the positions II and I’, of the body have the point O, in common
(Fig. 246), it follows that, by IT Theorem of Euler, we can displace it from
the position I’ to the position IT by means of a rotation about a certain
axis ! passing through the point O,.

Fig. 247.

In each case we have therefore displaced the body from the position
I to the position IT by means of one translation and one rotation; thus we
have proved the first part of the theorem. ,

Had we chosen a different point O; in the beginning, then in general
we would have obtained a different translation and a different rotation
about a different axis. We shall show, however, that in every case the axes
of rotation would be parallel. ‘

In the position I let us consider in the body an arbitrary vector 4,8,
parallel to the axis of rotation ! (Fig. 247). The corresponding vector
4,B, in the position II will have the same direction and sense as the
vector 4,B;. For neither a translation nor a rotation (about a parallel
axis) changes the direction or sense of a vector.

Let us now assume that the body has been displaced from the posi-
tion I to the position IT by means of a different translation and rotation
about a different axis I’. After this displacement let the vector A,B, fall

on the vector A;B; (Fig. 247). Obviously, after a rotation about the
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new axis I’, the vector AiBi will fall on the vector Z;E; Since the dis-

placement changes neither the direction nor Sense ( (_)f the vector, A1B; has
the same sense and direction as the vector A,B,. It follows from this

that the vector ZE will also have the same sense and direet_io_n as the
vector 4,B,. Hence the axis of rotation I’ must be parallel to 4,B,, i. e.
to the axis /.

Finally, we shall show that the angles of rotation about the axes [ and
I" are equal, provided that the axes [ and I’ are given the same senses. In
the position I let us select in the body an arbitrary vector a, perpendicular
to I and obviously to I’ at the same time. The angle which vector a, makes
with the corresponding vector a, in the position II relative to the chosen
sense of the axis is the angle of rotation (p. 309). The angle of rotation is
therefore in both cases the same, q. e. d.

Theorem 2. A body can be displaced from one arbitrary position to
another by means of two successive rotations.

Proof. Let O, be an arbitrary point of the body in the position I, and
O, the corresponding point of the body in the position II. Let us rotate the
body through 180° about the axis [;, which is the axis of symmetry of the
segment 0,0,. By means of this rotation the point O, will fall on the
point O,. The body will assume the position II" which has the point O, in
common with the position II. Consequently we can go from position IT’ to
position II by means of a rotation about a certain axis ! passing through
O;. In this manner we have displaced a body from position I to position IT
by means of two rotations about the lines 7, and [, q. e. d.

Twist. If a body makes a translation and then a rotation about an
axis parallel to the translation, then the body is said to have made a
twist.

In particular, a translation or a rotation is also called a twist.

Theorem 3. A body can always be displaced from one arbitrary position
to another by means of a twist and this can be done in only one way.

Proof. Let us consider in the body in position I an arbitrary triangle
4,B,0, lying in the plane IT, perpendicular to the possible axes of rotation.
Let us denote by 4,B,C, the corresponding triangle and by IT, the corres-
ponding plane in the position 1I. The planes I, and I, are therefore
parallel. Let us now displace the body from position I to position I’ by
giving the body a displacement perpendicular to I7, so that the plane I7,
assumes the position of the plane IT, (Fig. 248). By means of this displa-
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cement the triangle 4,B,C; coincides with the triangle 4;B;C; lying in
the plane I7,in which the triangle 4,B5,C, also lies.

We can displace the body from position I' to position II first by
means of a translation so that 4] falls on 4,, and next by means of a ro-
tation about a line perpendicular to I7, and passing through 4,. It follows
from this that the triangle 4;B;C|, remaining constantly in the plane /7,
will fall on 4,B,C,. Hence by II Theorem of Euler we can displace the
triangle 4;B,C} to 4,B,C; by means of a translation or of a rotation (about
a certain point O lying in IT,, i. e. by means of a rotation about an axis l
perpendicular to IT, at the point 0). By this translation (or rotation) the
body is displaced from position 1" to position II.

Tt follows from this that a body is displaced from position I to posi-
tion II either by means of a translation (if the displacement from I’ to
II is a translation), or by means of a translation and of a rotation about
the axis [ parallel to the translation, q. e. d.

The axis I is called the axis of twist.

During a twist the axis of twist slides along itself. Every other line
changes its position during a twist. It follows from this that a body cannot
be displaced from position I to position IT by means of a twist along any
other axis I'.

Fig. 249.

§ 4. Advancing motion and rotation about an axis. Advancing
motion. If every position that a body assumes during motion can be ob-
tained from the initial position by means of a translation, then the body is
said to move with an advancing motion.

From the definition of an advancing motion it follows that every two
positions of a body in an advancing motion can be obtained from each
other by means of a translation.
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Let 4 and B be two arbitrary points of a body. In an advancing
motion the vector 4B changes neither its direction nor its sense. There-
fore, if the path of the point 4 is translated so that the displacement of
all its points is equal to the vector AB, then the path of the point 4 will
coincide with the path of the point B (Fig. 249).

Therefore: in an advancing motion the paths of all points are congruent
and they can cover one another by means of a translation.

The advancing motion of a body is therefore determined by the
motion of one of its points and the position of the body at the injtial
moment. For if we know the motion of the point 4, for example, then the
displacement vector of the body from its initial position to its position at
the time ¢ will also be known, because it is equal to the known displace-
ment of the point 4.

Conversely: if the vectors attached to o rigid body do not change their
direction, then the body moves with an advancing motion.

Indeed, let us consider a fixed system of coordinates (z, y, z) and two
points in the body A(,, y,, 2y) and B(x,, y,, 2,). By hypothesis, the vector
AB does not change its direction (that it does not change its length is
obvious); we shall show that it also does not change its sense. During the
motion the projections of the vector A5 on the coordinate axes are con-
stant in absolute value. Hence |z, — 2, [ya—yl, and |z, — 2|, are
certain constants. Since. Ty — ¥; is a continuous function of the time ¢,
therefore from the fact that |€; — @,| = const. it follows that Zy— &,
is also a constant. Similarly g, — %1 = const. and z, — z; = const. Con-
sequently the vector AB does not change its sense.

Therefore, denoting by 4, B and A', B’ the positions of the given
points at two arbitrary moments ¢ and t', we obtain 4B — 4'B’ , Whence
AA" = BB'. The displacements of two arbitrary points are consequently
equal, and we can displace the body from the position at the moment ¢ to
the position at the moment ¢’ by means of a translation. Hence the motion
of the body is an advancing motion.

In a body moving with an advancing motion let us consider two
arbitrary points 4,, 4, at the moment ¢ and the positions 47, 4, of these
points at the moment ¢ + Ay, Denoting by v, and v, the velocities of the
points 4, and 4,, we obtain (p- 35):

Since the body moves with an advancing motion, ;1:2{ = A,4,,
whence v, = v,
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Therefore: in an advancing motion the velocities of all the points of
a body at an arbitrary moment t are equal to one another.

The velocity of an advancing motion at the inoment t is called the com-
mon velocity of all the points of a body at this moment.

Let the body now move in such a way that at each moment ¢ the
velocities of all the points of the body are equal to one another. Let
us select two arbitrary points of the body A(xy, y;, 2;) and B(x,, ¥s, 2,).

Since the velocity of the point 4 at each moment is always equal
to the velocity of the point B,

N L J— . [ J— . . | Jp—
X = ¥y, Yi=1VYs 2{ ==z, Wwhence x —x{=0.

Consequently x, — x; = ¢; and similarly y, — y, = €5, 23— 2, = €3,
where ¢,, ¢;, and ¢, are certain constants. It follows from this that the
vector A B has constant projections on the coordinate axes, and hence does
not change either its direction or sense during motion. The motion is
consequently an advancing motion.

Therefore: if all the poinis of a body have equal wvelocities at each mo-
ment, then the body moves with an advancing motion.

Rotation about an axis. If a body moves so that all the points on a
certain line ! remain at rest, then we say that the body rotates about the
axis | (p. 308).

During a rotation all the points move in circles lying in planes per-
pendicular to the axis of rotation; the centres of these circles lie on the
axis of rotation.

The radii joining the points of the body with the centres of the
circles along which these points move sweep out equal angles in equal
times. It follows from this that during a rotation about an axis all the
points have equal angular velocities at each moment. Their common
angular velocity is called the angular wvelocity of the rotation about
the axis.

From the definition of the angular velocity vector (p. 45), it follows
that during a rotation of a body about an axis all the points have the same
angular velocity vector lying on the axis of rotation. This vector is called
the angular velocity vector of the rotating body.

Example 1. If the vertices 4 and D of a parallelogram ABCD are
fixed, then the sides AB and DC can rotate about the vertices 4 and D.
During these rotations the side BC remains constantly parallel to 4D.
Consequently BC moves with an advancing motion.
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Example 2. A circle with centre O’ and radius r moves with an
advancing motion and remains constantly tangent to the circle K with
centre O and radius B. Determine the path of an arbitrary point 4
(vide Fig. 284 on p. 368).

The centre O’ obviously moves along a circle K’ with centre O and
radius @ = R — r. The path of the point 4 (dotted in Fig. 284) will con-
sequently be a circle of radius a. The centre O, of this circle is obtained
by giving the centre O a displacement 00, equal to the vector O'A.

§ 5. Distribution of velocities in a rigid body. When a rigid body
moves, its points can in general have various velo-

cities at a given moment. |
v 1
Relations among the velocities of the points of A//; r i

2

a body. Let us consider in the body two points 4,

and A4, whose velocities are v, and v,. Let O be the ! \O/
origin of the coordinate system (Fig. 250). Let us Fig. 250.
put:

r,=04,, r,=04, r=A4,4,=r,— r.
Consequently (p. 35, (ILL)):
PI=Vy, ry=V, I'=1r,—7rF=V,—YV,, (1)

We have r? = |r|%. Since |r| = const., forming the derivative, we
obtain 2rr = 0, i. e. r'r = 0; hence by (1) r(v,— v,) = 0, whence

v, =rv,. (2)
From the definition of a scalar product it follows that
rv, = |r| Projgzv; and rv,= |r| Projzzv,.
Hence by (2) we obtain, after dividing by |r|, ‘
Projgzv1 = Projzzv.. (3)

We have proved, therefore, that ¢n a rigid body the projections of the
velocities of two points on the segment joining these points are equal.

We can also say that the components of the velocities of two points
with respect to the segment joining these points are equal.

Example I. Let the velocities v, v,, v, of three non-collinear points
A4,, 4,, 4; of a body be given. Let us choose an arbitrary point C, not ly-
ing in the plane 4,4 ,4;, and denote its velocity by v (Fig. 251). From the
point C let us draw the vectors CB,, CB,, CB;, equal to the projections
of the velocities v,, v,, v on the lines A4,C, 4,0, A,C.

9l
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According to the theorem proved, these vectors will also be the
projections of the vector v with its origin C on the lines 4,C, 4,0, and
A,C. If planes perpendicular to these lines are passed through the points

B,, B,, and B,, then the point of intersection of

A p2\~ these planes will be the terminus of the vector v.
/ B, ,/ K In order to determine the velocity of a point
A= C}:“é"v D lying in the plane A4,4,4,, we first determine
AN the velocity of an arbitrary point C not lying in

&/ \\ the plane A4,4,4, and then the velocity of the
f——\-’A, point C as before (by taking from among the points

Fzg- 051 A, A, A, and C, three points which are not com-

planar with D).

Therefore: the velocities of all the points of a rigid body are determined by
the velocities of three of its non-collinear points.

Example 2. Velocities of points of a straight line and a plane. Let us
give an arbitrary sense to a moving line ! and take on it a point O whose
coordinates are x,, ¥, z,.- Denote the angles which the axis [ makes with
the coordinate axes by «, §, y, and put:

@ =cosx, b=cosp, c=cosy.
For an arbitrary point 4(x, y, 2) of the axis /, having the coordinate r
on this axis, we have:
x=2x,+ ar, y =y, - br, 2 =z, + cr. (4)
Denoting the velocity of an arbitrary point A by v and calculating
the derivative of (4) with respect to time, we obtain (because r = const.):
ve=2 =x;+ar, v,=y =y,+br, v,=2z=2z F+cr. (5

From the point 4 let us draw the vector A4’ equal to the velocity v
of the point 4, and denote by &, 7, {, the coordinates of the point 4’.
Since & = z + v, etc., we get in virtue of (4) and (5) the equations

§=x0+x6+(a’+a’.)r7 n:y0+yo+(b+b.)r’
=2+ 2+ (cH+c)r.

Being equations of the first degree of the parameter r, they are the
equations of a line.

Therefore: if velocity vectors are drawn from points lying on a straight
line, then the ends of these vectors lie on a straight line.

By making use of this theorem similar theorem for a plane can easily
be proved.
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Namely: ¢f velocity vectors are drawn from points lying in a plane, then
the ends of these vectors lie in one plane.

Knowing the velocities v, and v, of two points 4; and 4, of the line !,
the velocity v of an arbitrary point 4 of this line can be determined in the
following manner (vide Fig. 252):

We pass a line m through the ends of the velocity vectors v, and v,
drawn from the points 4, and 4,. The end of the velocity vector v drawn
from A lies on this line. On the line ! we determine a point B so that the
vector AB is equal to the projection of
v, (or v,) on the axis [. According to the
theorem proved on p. 321, AB is the
projection of vonl. If we pass a plane
through B and perpendicular to [, then
the point 4’ in which this plane cuts m
will be the end of the vector v drawn
from 4.

Instantaneous motion of a rigid body. Let us consider in a rigid body
an arbitrary point 4 with coordinates z, ¥, z at a certain time ¢ and denote
by v its velocity. Since v depends on the point A4, v is a function of the
coordinates z, y, z at the time ¢. We can therefore assume that

v = Fz,,2). (8)

The vector function (6) defines the velocity at the time ¢ at every
point of the body.

The distribution of the velocities in a body at a certain instant is
called the instantaneous motion of the body.

The instantaneous motion of a body is consequently determined by
giving the vector funection (6).

In an advancing motion all the points have the same velocity. Func-
tion (6) will therefore assume the form v = const.

Denoting by o the angular velocity vector, and by O an arbitrary
point on the axis I we have for the point A4, in a rotating motion
about the axis I (cf. formulae (2) and (I11), p. 46):

v=Momuw or v=04 X . (7)

The instantaneous motion of a body at the moment ¢ is called the
instantaneous advancing motion if all the points of the body have the same
velocity. This velocity is called the instantaneous velocity of the advancing
motion.



324 CHAPTER VII — Kinematics of a rigid body

The instantaneous motion of a body at the moment ¢ is called an
instantaneous rotation about an axis [ if the velocities of the points of the
body are expressed by formula (7), i. e. if the velocities of the points of
a body at the moment ¢ are such as if the body were rotating about the
axis [. The velocity w is called the instantaneous angular velocity vector,
and the axis [ the instantaneous axis of rotation.

If the instantaneous motion at each instant of time is a rotation
about a fixed line I, then it is a rotation about the axis .

For let us choose a fixed coordinate system O(z, y, ), taking the
axis [ as the z-axis. Let 4 be an arbitrary point of the body whose coord-
inates are z, ¥, #, and w the instantaneous velocity vector. Then w, = 0
and w, = 0. According to formula (7) the projections of the velocity v of
the point 4 are:

UV, = X' = Yo, vuzy':—xw,,.v,,:z'=0. (8)

As z» = 0, z = const. The points therefore move in planes perpen-

dicular to the axis I. From equations (8) we get zx | yy =0,

whence after integration 322 4- 3y? = const. The points of the body there-

fore move in planes perpendicular to the axis I at a constant distance
from I, and hence the body rotates about I.

§ 6. Instantaneous plane motion. Let a plane figure move in the
plane IT. Let us select two arbitrary coordinate systems in this plane: the
one (z, ) fixed, and the other (&, #) moving with an advancing motion and
having its origin at an arbitrarily chosen point M of the given figure
(Fig. 253).

The instantaneous motion of the figure with respect to the system
(&, ) will then be a rotation about the point M (i. e. about the axis [ per-
pendicular to IT at the point M). The relative velocities of the points at
the moment ¢ will therefore be such as if the figure were rotating about the
point M with a certain angular velocity w. Consequently we can say that
the instantaneous relative motion is a rotation about the point M. Since
the system (£, ) moves with an advancing mo-
tion, the velocity of transport is the same for
all points of the figure (p. 58) and equal to
the velocity of the point M. Denoting by v
the absolute velocity of an arbitrary point
4, by v, the relative velocity of the point 4, and
by v, the velocity of transport (i. e. the velocity
of the point M), we therefore obtain (p. 58).
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V=1V, + v, (1)

In view of this we can say that the velocities of the points of the
figure are such as if the figure were executing two motions simultaneously:
an advancing motion with the velocity v, of an arbitrary point M of the
figure, and a rotation about this point M.

Therefore: the instantancous motion of a figure in plane motion is
composed of an instantancous advancing motion and an instantaneous
rotation; the advancing motion has the velocity of an arbitrary point of the
figure, and the rotation is about this point.

In general, the instantaneous motion of a figure can be represented
in infinitely many ways as the composition of an instantaneous advancing
motion and an instantaneous rotation, for this depends on the choice of
the point M.

In all these representations, however, the instantaneous angular
velocities are equal. For let us choose in the figure an arbitrary axis k at
the time ¢ and let £’ denote the position of this axis at the time ¢t -{- 4¢. The
angle Ay which the axis ¥’ makes with the axis k is equal to the angle
through which the figure turned about M in the relative motion. It follows

from this that Ap does not depend on the choice of the point M, and the

same is true of w, because w = limAdg | At.
At—0

In particular, an instantaneous motion can be an instantaneous
advancing motion (if the instantaneous angular velocity w is zero) or
an instantaneous rotation (if the point M has the velocity v, = 0).

For each point A of the figure the velocity v, (of the instantaneous
rotation) is perpendicular to the segment M A, where |v,| = MA - w.
Knowing the sense of the instantaneous rotation, we can therefore deter-
mine the sense of v, and then obtain the velocity v of the point 4 from
formula (1).

Now let v, & 0 and w == 0. On a line ! perpendicular to v, and passing
through M let us consider two points O and O’ at a distance » from M,
where r = |v,| | 0 (Fig. 254).

The velocities of the instantaneous rotation v, and v,” of the points O
and O’ are perpendicular to I and therefore parallel to v,. In addition we

have |v,| = MO - ® = rw = |v,| and similarly |v,’| = |v,|. Sincev, andv,’
have opposite senses, it follows that for one of the points O and O, e. g.
for O, we have v, = — v,. Consequently the velocity of the point O is

v = v, + v, = 0. Therefore, if the origin of the system (&, ) is placed at
the point O, then the velocity of transport will be zero and hence the in-
stantaneous motion will be an instantaneous rotation about O.
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The point O is called the instantaneous centre of rotation.

The velocity v of an arbitrary point 4 is perpendicular to the seg-
ment 04 and has a sense which depends on the sense of the instantaneous
rotation. Moreover

v| =04 - w. (2)
Therefore: an instantaneous plane motion is either an instantaneous

advancing motion or an instantaneous rotation about the instantaneous centre
of rotation.

1

Ay
A 4
1 ! H e
! / ) 7

A, X
P/ A0

1 : I' I, Il
(8] 4_1,4
v v
‘o
Fig. 254. Fig. 255. Fig. 256. Fig. 257.

Determination of the instantaneous centre of rotation. The instan-
taneous centre of rotation obviously has a zero velocity. According to (2)
every other point has a velocity v = 0 (if & = 0). Consequently there
exists only one instantaneous centre of rotation (when o = 0).

If at an arbitrary point 4 we draw a perpendicular to the velocity v
of this point, then the instantaneous centre of rotation will lie on this line
(Fig. 255).

The instantaneous centre of rotation can in general be determined
if the velocity v of one point, e. g. 4, is known, as well as the direction
of the velocity v’ of another point A’. Let us draw & and %’ perpendicular
to v and v’ at the points 4 and A’. The point O of intersection of these lines
is the instantaneous centre of rotation. From formula (2) we obtain
o = |v| /| OA. The sense of the instantaneous rotation is obtained from
the sense of the velocity v.

When the lines k and &’ are parallel, the instantaneous motion is an
instantaneous advancing motion. —

When the lines & and %’ coincide, in order to determine the instan-
taneous motion, we must know in addition the velocity v’ of the point A4’
Knowing only the direction of the velocity v’, then, is not sufficient.

When v = v’, the instantaneous motion is an advancing motion.
3
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However, when v = v/, the instantaneous motion is an instantaneous
rotation. Denoting, then, by O the instantaneous centre of rotation
(obviously lying on the lines k and %’), we have by (2) |v| = 04 - w and
V| = 04’ - w. Conse_(fuently

04 v
ox =] (3)

If v and v' have the same senses (Fig. 256) and |v| < |[v'], then the point
O lies on the prolongation of the segment 4’4 beyond the point 4. We
then have 04’ — OA = A’A4, whence by (3)

OA = A'4 -__M_T (4)
v — vl

On the other hand, when v and v’ have opposite senses (Fig. 257),
the point O lies on the segment A4’. We then have 04 + 04’ = AA’,
whence by (3) :

[v]

M+ ©

Example I. A rod AB moves in a plane in such a way that both of
its ends move constantly along the curves €' and (. The velocities v, and
v, of the points 4 and B are tangent to the curves C and C’ (Fig. 258).

Drawing perpendiculars to the tangents at the points 4 and B, we
obtain the instantaneous centre of rotation O of the rod 4B as the point of
intersection of these perpendiculars. Denoting the instantaneous angular
velocity by «, we obtain:

wl=04-w, |vj=0B-w and |v,/|v, =04 ]OB.

04 = A4’

(@]

1

\
Y
hY

\\

N T N

Fig. 258. Fig. 259,

Example 2. In a crank-mechanism the rod AB moves in such a
way that its end B is pin-connected with the rod OB fixed at O, and
the other end 4 moves along a line ! passing through O. The rod O Brevolves
about the point O with an angular velocity o (Fig. 259). What is the
velocity of the point A4 ?
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The velocity v; of the point B is perpendicular to OB, and the velocity
v of the point 4 has the direction of the line I. Drawing the perpendiculars
to v’ and v, we obtain the instantaneous centre of rotation O, of the rod
AB. Now, OB-w = |[v'| = O,B- »;; consequently w; = OB- o [ 0,B,
whence
lv| = 0,4 - w, = 0,4.0B- | 0,B.

Example 3. A system of pin-connected rods 40 and OB moves in
a plane (Fig. 260). The velocities v, and v, of the points 4 and B are
given. Determine the velocity of the point O.

Let us denote by « and # the angles which the two velocities v, and v,
make with the rods 04 and OB, by 6 the angle which the velocity v of the
point O makes with the rod 04, and by ¢ the angle A0OB.

Since the projections of the velocity v on the rods 04 and OB are
equal to the corresponding projections of v, and v, on these rods, denoting
the absolute values of these velocities by v, », and v,, we obtain

v;C08x = v o8 6, v,c08pf = v cos(p — J), (6)
whence
cos(p — 8) / cos 0 = v,y co8 B [ v; cos x;

therefore cos ¢ + tand sin ¢ = v, cos f / v, cos«, whence
tand = (v, cos f — v, cos« cos ¢) [ v, cos & sin P.

Knowing 8, we determine v from equation (6).

"~ Fig. 260, Fig. 261.

Example 4. A system of three rods AB, BC, and CD, pin-connected
and fixed at 4 and D, lies in a plane (Fig. 261). The rod 4B rotates about

A with an angular velocity w,. Determine the angular velocity w, of the
rod CD about D,

The points B and C move in circle with centres at 4 and D; their
velocities v, and v, are therefore perpendicular to A B and CD. The instan-
taneous centre of rotation of the rod BC is obtained Sy drawing perpen-
diculars to v, and v,, or by prolonging the segments 4B and DC to their
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point of intersection O. The point O is the instantaneous centre of rotation
of the rod BC.

Let us denote by w the instantaneous angular velocity of the rod BC.
Putting v; = |v,| and v, — [va], we therefore obtain:

v1=0B-0w and v,= 0C.q. (7)

The rod AB rotates about 4 with an angular velocity w,; conse-
quently
v, = AB.w, and similarly v, = CD . W, (8)

From (7) and (8) we obtain 4B . w0, =0B-w,ie.o=AB. w, [ OB,
whence by (7) v, = AB.0C . w; / OB, and since by (8) wy=w,/CD,
__AB.-0C
“*= 0B oD

+ Example 5. A system of rods, pin-con-
nected at the joints B, C,D, and E, is given
(Fig. 262). The rods AB, FD, and EQ@, can A\,
rotate about the points 4, ', and G, - which
are fixed. The rod QF rotates about G with.
an angular velocity w. Determine the angular
velocities ' and w” of the rods FD and AB

about F and 4. | TR
Let us denote the velocities of the points O?
E, D C B by vy, v,, v,, v, and their absolute Fig. 262.

values by v,, v,, v;, v,. The points # and D '
move along the circumferences of circles with centres at G and F. The
velocities of these points are perpendicular to EG and FD.

Let O, be the point of intersection of the Perpendiculars to v, and v,
(i . of the prolongations of the rods G and DF). The point O, will be the
instantaneous centre of rotation of the rod ED and at the same time of
the triangle ZDC, because the rods ED,DC, and CE, form a rigid system.

Denoting by w, the instantaneous velocity of rotation about 0,,
whose sense is determined from the sense of v;, we have:

V=08 w, v,=0,D. . (9)

The sense of v, is determined from the sense of the angular velo-
city w,.
Since v; = GE - w, in virtue of (9):

a
= m w, Vo = TE* wy - (10)
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The rod FD rotates about F with an angular velocity «’; hence
v, = FD . o', whence o’ = v, [ FD. Consequently by (10)

, _0D.GE

The sense of ' is obtained from the sense of v,.
The velocity v; of the point C' is perpendicular to 0,C; we therefore
have
vy = 0,C - w,. (12)
The sense of v, is determined from the sense of the rotation about O,.

In order to determine the centre O, of the instantaneousrotation of
the rod BC, let us note that the velocity v, of the point B is perpendicular
to the rod A B. We therefore draw perpendiculars to the velocities v, and
v;, 1. 6. we prolong AB and CO, to their intersection at O,.

Denoting by w, the angular velocity of the instantaneous rotation
about O,, we have:

vy = 0,0 -w,, v = 0,B-w, (13)
The sense of the instantaneous rotation is obtained from the sense
of v,.
From (13) we get:

wy =10y [ 0,C, v,=0,B.v,]0,0. (14)
The sense of v, is obtained from the sense of the rotation about O,.

Since the rod 4B rotates about 4 with an angular velocity o,
v, = AB - «", whence 0" = v, /| AB. Hence by (14), (12) and (10) we get

, 0,B-0,C-GE
~4B-0,C-0,E“

The sense of the angular velocity »” is obtained from the sense of v,.

w

§ 7. Instantaneous space motion. We shall
first consider a particular case.

Rotation about a point. Let us suppose that
a body rotating about a fixed point O occupied
position I at time ¢ and position II at time ¢ +-
+ At. The body can therefore be displaced
from position I to position II by means of a
rotation about a certain line I’ through an angle
Ap (Fig. 263). Let us assume that the line /'
tends to a certain line I when At tends to zero.
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Let us set
hmAgp | At = . (1)

4t—0 :

Let us denote by 4 an arbitrar& point of the body in position I, and
by A’ the corresponding point in position II. Let S’ be the centre of the
circle along which the point 4 moves during its rotation about the line ',
and S the limiting position of the point §” as A¢ — 0. Finally, let us denote
by v the velocity of the point 4. We have

v = lim f—g
a0 At
consequently
g (44 248 sinfdg .. AS'sinjdep dg
vl = lim |75 " e ¥/ PR
and since lim(sin}Ag / 1 4¢g) = 1, it follows by (1) that
Ap->0

[v| = 48 . . (2)

Let us note that the vector A4’ | 4t is perpendicular to I’ and makes
an angle of 90° — 1Ap with the segment S’A4; the vector v is then in
the limit perpendicular to ! and AS. The velocity of the point 4 at the
time ¢ is therefore such as if the body were rotating about the axis I with
an angular velocity w. Thus we have proved the following theorem:

The instantaneous motion of a body rotating about a certain point O is an
instantaneous rotation about an axis passing through O.

The velocity v of the point 4 is perpendicular to the plane IT passing
through I and 4, whence v 1 0OA, since 04 lies in I7.

Hence: during the rotation of a body about the point O, the velocities of
the points of the body are perpendicular to the lines connecting these points
with the point O.

The axis [ of the instantaneous rotation lies in a plane passing through
the point 4 and perpendicular to the velocity of the point 4. Therefore,
knowing the directions of the velocities of two points of the body, we
obtain the instantaneous axis of rotation as the line of intersection of the
planes passing through these points and perpendicular to the directions
of the velocities. The instantaneous angular velocity is obtained from
equation (2).

Example I. The sphere 22 - y® + 2% = 1 rotates about the centre O.
The velocity v of the point A(1, 0, 0) at a certain instant ¢ and the direc-
tion of the velocity w of the point B(0, 1, 0) at the same instant are given,



\:

332 CHAPTER VII — Kinematics of a rigid body

Determine the instantaneous axis of rotation, the angular velocity, and
the velocity w (at the moment ¢).

Since the velocity v is perpendicular to 04, i. e. to the x-axis,
v, = 0. Let us denote the cosines of the angles which the velocity w makes
with the coordinate axes by a, b, c. We obviously have b = 0, because w is
perpendicular to OB, i. e. to the y-axis.

The instantaneous axis of rotation is the intersection of the planes
passing through O as well as through A4 and B, and perpendicular to the
velocities v and w. The equations of these planes are the following:

Yo, + 20, =0, ar 4+ cz=0, (3)
from which
r Y *
cla v, /v, —1 (4)

Equations (4) are the equations of the instantaneous axis of rotation.

Let w denote the instantaneous angular velocity. The projections of
w on the coordinate axes are proportional to the direction numbers of the
axis of rotation, i.e.to the numbers ¢ /@, v, [ vy, and —1. Denoting by
4 the factor of proportionality we get:

w,=ila, w,=,/v, 0,=—2i (5)
In order to determine A we calculate the velocity v by making use

of the formula v = O4 X w. We obtain v, =0, v, = A, and v, = v, v,
whence 4 = v,, and hence by (5):

Wy =10CVy[ 0, Wy, =10, w,=-—0, (6)
Since w = OB X w, we get by (6):
Wy =—10y, W,=0, w,=—cv,/a.

Instantaneous motion in the general case. Let us place the origin of

the coordinate system (£, #, {), moving with an advancing motion, at an

arbitrary point M of a given body. Since the

$ point M isfixed relative to the system (&,7, £),

the motion of the body relative to the system

(&, m, {) is arotation about the point M. The

instantaneous relative motion will therefore

be an instantaneous rotation about the axis?
passing through M (Fig. 264).

Let 4 be an arbitrary point of the body.
Fig. 264. Let us denote by v the absolute velocity of
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the point A4, by v, the velocity of transport, and by v, the relative velo-
city. Consequently
vV=1V;+ Vv, (7)

The velocity of transport v, is equal to the velocity of the point M,
because the system (&, n, {) moves with an advancing motion. The velo-
cities of the points of the body are therefore such as if the body were
executing two motions simultaneously: an advancing motion with the
velocity v, of an arbitrary point M of the body, and a rotation about a
certain axis passing through M.

Hence: an instantaneous motion of a body is composed of an instant-
aneous advancing motion with the velocity of an arbitrary point M of this
body, and an instantaneous rotation about the instantaneous axis of rotation
passing through the point M.

The instantaneous motion of a body can in general be represented
in infinitely many ways as the composition of an instantaneous advancing
motion and an instantaneous rotation, for this depends on the choice
of the point M.

We shall show that the instantaneous angular velocity vectors are equal
for all possible representations (i. e. that the instantaneous axes of rotation are
parallel and the instantaneous angular velocities are equal).

Let us suppose that a point M of the body at the time ¢ coincided with
the point M’ at the time ¢ -}- A¢. Relative to the fixed system, the change
of position of the body in the time A¢f is the composition of the displace-
merit M M’ and the rotation through an angle Ap about a certain axis I’.
Relative to the system (£, 5, {) the change of position is only a rotation
about the axis I’ through the angle Ay, because the system (&, 5, £) made
the displacement MM’ in the time A¢. Consequently the limiting position
of the axis I’ is the instantaneous axis of rotation [, and the instantaneous
angular velocity is o = ngA(p | At.

From the theorem given on p. 315 it follows that had we chosen
another point M, in the body, then with similar notations the axis I;
would be parallel to I, while Ag;, = Ag. Consequently the instantaneous
axis of rotation I, passing through M, is parallel to I, and the instant-
aneous angular velocity w, is equal to w. Therefore the angular velocity
vectors for M and for M, will be equal.

Remark. Denoting the instantaneous angular velocity vector by w,
we obtain by (III), p. 46, v, = M A X w for an arbitrary point 4. Hence

by (7)
v=v,+ MA X w. D
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Velocity of transport. Let a system of coordinates (&, 7, ) with
origin M move in space relative to a fixed coordinate system (z, y, z) (Fig.
265). Thesystem (£, #, {) (together with the points rigidly attached to it)
can be considered as a rigid body. The instantaneous motion of the system
(&, n, €) will therefore be the composition of the instantaneous advancing
motion with a velocity v, of the origin M
of the system, and the rotation with an in-
stantaneous angular velocity w about an
instantaneous axis of rotation passing
through M. The velocity of transport v, of
an arbitrary point 4 in motion relative to
the system (£, %, {)is the velocity the point
v A would possess were it rigidly attached to

Fig. 265. the system (&, %, £). Consequently v, is the
sum of the velocity vy and the velocity w
of the instantaneous rotation. In view of the preceding we have by (I)

vi=v,+ MA X w. (8)
Therefore: the velocity of transport of an arbitrary point is such as if
this point were rigidly attached to the moving coordinate system, and this
system executed two simultaneous motions: an advancing motion with a velo-
city of the origin of the system, and a rotation about an axis passing through
the origin of the system.
This theorem was given without proof on p. 62.

Instantaneous twist. An instantaneous motion of a body is called
an instantaneous twist or an instantaneous screw motion if the velocity of the
ingtantaneous advancing motion is parallel to the instantaneous axis of
rotation.

In particular, an instantaneous advancing motion or an instant-
aneous rotation is also called an instantaneous twist.

The instantaneous axis of twist is called the cenfral axis of the
instantaneous rotation.

By means of the theorem given on p. 317, we shall prove the follow-
ing theorem:

An instantaneous motion of a rigid body can be represented as an
instantaneous twist and this can be done in only one way.

Proof. Let us assume that we have displaced the body from position
I at the instant ¢ to the position IT at the instant ¢ -+ A¢ by means of a
twist about the axis I’ (p. 317). Let [ be the limiting position of the line
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" as At > 0 (Fig. 266). Let us consider an arbitrary point O onlat the
instant f and denote the position of the point O at the instant ¢ + A4¢ by
O'. During the displacement of the body from position I to position II by
means of a twist, the point O will occupy the position O, after the dis-
placement, and then it will go to the position O’ after a rotation about
I’ through an angle A¢. Denoting by u the velocity of the point O,
we therefore have

oo’ 00,+0,00 . 00, ., 0,0

u=1lim =lim — = lim —/= + lim 21—
a0 At a0 At At At +At—->0 At

(9)

Let 8 be the centre of the circle along which the point O moved during
the rotation about the axis I’ through the angle Ag. Consequently
|0,0’| = 280, - sin}Ap, whence

. 10,07 . sin(34p)| . sin(34¢)| | dg
o | "J‘iﬁ‘ml' A |~ SO0 = A |
Since 1im80, = 0, and
40 .
. |sin(zde) | . 10,0
1 2 =1, 1 =0.
A:lpr—:r»lo 1d4¢ Al;{l() At

Therefore, by (9), u=1im00, | At. But 00, || I'; hence because I’ tends to I
4t—0

as At — 0, the velocity u has the direction of the axis I, which is the in-
stantaneous axis of rotation passing through 0. The instantaneous motion
is therefore a twist, because the velocity u of the instantaneous advancing
motion has the direction of the instantaneous axis of rotation .

The points lying on the instantaneous axis of
twist have velocities equal to u, and hence parallel
to the axis of twist. The points situated outside the
axis of twist have velocities which are not parallel
to the axis of twist, for the velocity of such a point
is the sum of the velocity u and the velocity of rota-
tion w perpendicular to u. Consequently the sum
u -+ w is never parallel to u (and hence also to ), except
when w = 0, i. e. when the point lies on the axis of
twist.

It follows from this that an instantaneous motion can be represented
as an instantaneous twist in only one way. For, if we had represented this
instantaneous motion as a twist about another axis I;, then by the theorem
on p. 333, the lines l and I, would be parallel and in that case the velocities

Fig. 266.
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of the points lying on I, would be parallel to I, and I, which is impossible,
since — as we have just proved — only points situated on the axis [ have
velocities parallel to 1.

Example 2. Let a body move in such a way that its instantaneous
motion is a twist of constant advancing velocity u and angular velocity
w about a fixed axis I.

Let us choose the z-axis as the instantaneous axis of rotation. Let us
denote by o and % the components of w and u with respect to the z-axis.
The velocity v of a point A(z, y, 2) of the body is expressed, in virtue of
(I), p. 333, by the formula

v=u+ 04 X w,
where O is the origin of the system. Since w, = 0, w, = 0, w, = w, and
U, =0, u, =0, u, = u:
T =wy, Y =—or, =1u (10)
The last of the equations (10) gives after integration,
z2=ut+c, (11)

where ¢ is an arbitrary constant. Differentiating the first of the equations
(10), we obtain z* = wy’. Substituting for » the value from the second
equation, we get the equation x* 4+ w?r = 0, whose general solution has
the form

x = a sin wt + b cos wt, (12)

where a and b are arbitrary constants. Since y = = | w,
Y = a cos wt — b sin wt. (13).

Let us assume that the point 4 had the coordinates z, = r, y, = 0,
and z, = 0, at ¢ = 0. Substituting £ =0 in (11)—(13), we get a = 0,
b = r, and ¢ = 0, whence:

r=rcoswl, y=—rsinwt, z= ul

The point will therefore move with a screw motion (p. 55) on a
cylindrical surface whose axis is the z-axis (because 22 + y? = 72), de-
scribing the so-called heliz. If we develop the lateral surface of the cy-
linder, the helix will appear as a straight line. The helix consequently cuts
all the generatrices at the same angle . The distance of two neighbouring
points of a helix on the same generatrix is called the lead of the heliz and
we denote it by h. We therefore have

tano = 2rx [ b, (14)



[§8] Rolling and sliding 337

where 7 is the radius of the base of the cylinder. Since the time for one
revolution is 27 | |w| or & [ |u],
b= 27jul [ ||, tanx = rjw] [ |u|. (15)
Determination of the motion of a body. Let us select in the body an
arbitrary point O whose coordinates are x,, ¥,, 2, With respect to a certain
fixed coordinate system (x, y, 2). Let us denote the instantaneous angular
velocity by w and the velocity of the point O by u. A point A of the body
whose coordinates are z, ¥, 2, has the velocity ((I), p. 333)
v=u-+ 04 X w. (16)
Since: v, = 2, v, = ¥y, v, = 2z°, and u, = xy, u, = Y;, ¥, = 2;, we get
from formula (16):
=y () s (2 20) oy
Y=Y 1 (B 2) 0o — (X %) wy, (17)
2=y (@ Ey) 0y (YY)
If the motion of the point O and the angular velocity w are given by
the functions:

xo = f(t), Yo = @(t), 2o = p(t); @, = (), 0, = B(I), w, = (),

then (17) is a system of differential equations in which the unknown
functions are the functions x = F(t), y = @(¢), and z = P(¢), defining the
motion of the point 4. From equations (17) we can determine the functions
F, ®, ¥, if we know the initial position of the point 4, the instantaneous
angular velocity w, and the motion of the point O,

Therefore: the motion of a rigid body is determined by giving the fol-
lowing:

a) the initial position of the body,

b) the motion of one of its points,

¢) the instantaneous angular velocity of rotation w at each instant.

§ 8. Rolling and sliding. Let a plane curve C, moving in its own
plane I7; be in contact at each moment with a certain fixed curve C” lying
in IT (Fig. 267).

If the instantaneous motion of the curve C is an instantaneous
rotation about the point of contact O, then its -
instantaneous motion is called a rolling motion of
the curve C on (.

It follows from this that during a rolling mo-
tion the point of contact has a zero velocity. The
point of contact is the instantaneous centre of
rotation.

22
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If the instantaneous motion of the curve C is an advancing motion,
then its instantaneous motion is called a sliding motion of the curve
Con (.

The velocity of the advancing motion during sliding is equal to the
velocity of the point of contact.

In the general case, the instantaneous motion of the curve (' can be
considered as the composition of two motions: a rotation about the point
of contact O, and an advancing motion with a velocity of the point of
contact.

Thorefore: an instantaneous motion is the composition of a rolling
motion and of a sliding motion.

It can be proved that during the rolling of curve C on curve €', the
points of contact describe arcs of equal length on both curves (arcs 00’
and A B in the Fig. 267). For example, when a circle rolls along a line I, the
distance between the points of contact after one complete revolution is
equal to the circumterence of the circle.

The rolling and sliding of one surface on another is defined ana-
logously.

Namely, lot a surface X move in such a way that it is con-
stantly tangent to a certain fixed surface 2.

If the point of contact has a zero velocity, then we say that the
instantaneous motion of the surface X is a rolling motion on the surface X’.

During rolling the instantaneous motion is a rotation about an axis
passing through the point of contact. In particular, if the surtaces X and
2" are cylinders or cones, tangent along their generatrices, then during
rolling the instantaneous axis of rotation is the generatrix along which the
surfaces are in contact. ‘

If the instantaneous motion of the surface 2 is an advancing motion,
we say that the instantaneous motion of the surface 2 is a sliding motion
on the surface 2".

Curve of instantaneous centres. Let a figure K move in the plane I1.
At each instant let us consider the instantaneous centre of rotation in the
plane /1. These centres will describe in IT a certain curve C’, called the
fixed curve of instantaneous centres.

At each instant let us now take under consideration on the figure K
a point which coincides with the instantaneous centre of rotation at the
given moment. These points will describe on the figure K a certain curve C
which moves together with the figure. This curve is called the moving curve
of instantaneous centres.

In general, the curves of instantaneous centres: the moving curve
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C and the fixed curve " are tangent to each other at each instant, and
their point of contact is the instantaneous centre of rotation. The moving
curve therefore moves together with the figure K in such a way that
its instantaneous motion is at each instant a rotation about its point
of contact with the fixed curve C’.

Hence: in a plane motion the moving curve of instantaneous centres rolls
on the fized curve of instantaneous centres.

Cone of instantaneous axes. Let a body K rotate about the point O.
Let us consider in space an instantaneous axis of rotation at each instant.
These axes will generate a certain conical surface 2’ with vertex at O; it is
called the fixed cone of instantaneous axes.

Let us next consider in the body K at each instant that line which
coincides with the instantaneous axis of rotation at a given instant. The
surface X' which these lines form is called the moving cone of instant-
aneous awes.

The surface X moves together with the body and is in general tangent
to 2", ‘

Therefore: during a rotation of a body about a point the moving surface
of instantaneous awes rolls on the fixed surface of instantaneous axes.

Surface of central axes. Let a body K move arbitrarily in space. Let
us consider in space the axis of twist, i. e. the central axis at each instant.
These axes form a certain surface X, called the fixed surface of central
axes.

Let us also consider in the body at each moment a line which co-
incides with the central axis at a given moment. The surface X generated
by these axes in the body is called the moving surface of central azxes.

In general, the moving surface of central axes is tangent to the fixed
surface at each moment along the central axis. The instantaneous motion
of the moving surface is a twist about the axis of tangency.

Example I. A circle K of radius », whose centre O moves with a uni-
form velocity u, rolls along the line I (F g. 268). Since the point of con-
tact § is the centre of instantaneous rotation, denoting by w the instan-
taneous angular velocity, we have u = rw (where u = |u]), whence

w=u/r (1)

The point A4 lying on the diameter SO has a velocity equal in mag-
nitude to 2rew = 2u; the point 4 therefore has the velocity 2u.

The wheels of & railway carriage have flanges on the inner sides of the rails in
order to prevent the carriage from derailing. Therefore the lowest point of a railway
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carriage wheel (in the figure the point B) is below the point of tangency S. Its in-
stantaneous velocity consequently has a sense opposite to the velocity of the train
(i. e. that of the centre O of the wheel) and is SB: @ = u . SB[ r.

For example, if a train moves with a velocity of 50 km/h, then at each
instant there exist points on the wheels of the train having instantaneous velocities
of 100 km/h (the point 4 in the figure), and even such that move in a direction
opposite to that of the train (e. g. the point B).

AT
.
.

)
o

S P
B

Fig. 268.

On the circle K let us consider a circle K’ with centre O and radius
OC = r'. The circle remains constantly tangent to the line I’ || I. Since the
point C is not an instantaneous centre of rotation, this circle does not roll
on I'. The motion of the wheel K’ is a composition of the rolling motion
and the sliding motion on the line I'. The rolling motion takes place with
an angular velocity w, and the sliding motion has the velocity of the point
C,ie SC.w.

Since the entire wheel K of radius r rolls on I, the segment SS’
described by the points of contact during one revolution of the wheel is
equal to the circumference of the wheel, i. e. 2nr. The corresponding
segment C'C” for the wheel K is also 2nr. It is not equal to the circum-
ference 27r’ of the wheel K’, since the motion of the circle K along the
line I’ is not a rolling motion, but a composition of the rolling motion and
the sliding motion along this line.

Example 2. A circle (C) of radius 7 rolls on a fixed circle (C") of ra-
dius 2r. The circle (C) is within the circle (C") (Fig. 269). Determine the
paths of the points of circle (C).

Let A be an arbitrary point on the circumference of the circle (C).
Since the point of contact S of both circles is an instantaneous centre
of rotation, the velocity v of the point 4 is perpendicular to SA4. The direc-
tion of the velocity of the point A therefore passes through the point O
which lies on the circle (0) and on the diameter passing through 8. Since
80 = 2r, O is the centre of the circle (C’). The velocity of the point 4 is
therefore constantly directed towards the fixed point O. Consequently the
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point 4 moves along the line OA. Hence the points on the circumference of
the circle (C) move along the diameters of the circle (C).

Now let P be an arbitrary point within the circle (C). Let us pass an
arbitrary chord A B through P. The points 4 and B move along the lines /
and I’ passing through O. Since the segment 4 B does not change its length,
by a well-known theorem from analytic geometry the point P describes an
ellipse.

Example 3. A cone of revolution rolls on a plane IT (Fig. 270). The
instantaneous motion of the cone is therefore an instantaneous rotation
about a generatrix along which it 1s tangent to the plane I1.

The vertex W of the cone always lies on the instantaneous axis of
rotation. Hence it constantly has a zero velocity, i. e. it remains at rest.

Fig. 270. Fig. 271.

Let us denote by « the angle between the generatrices and the
altitude A of the cone, by O the centre of the base of the cone, and by O’
the projection of O on the plane II. Since 0’0 = h sin x = const, the
point O moves in a plane parallel to IT.

The distance of the point O from the line I, perpendicular to IT at the
point W, is MO = WO’ = h cos« = const. It follows from this that the
point O moves in a circle with centre at M in a plane perpendicular to I,
and hence it rotates about the line [.

Let w be the angular velocity of the rolling cone, and o’ the angular
velocity of the centre O during the rotation about the axis I. Finally, let v
be the velocity of the point O. We therefore have |v| = 0’0 - » and
lv| = MO - ', whence o’ = w - 0'0 | MO = -0’0 | WO', and hence

o = o tan . (2)

Example 4. A sphere rolls in a trough formed by two planes (Fig. 271).
Since the points of contact 4 and B have a zero velocity, the in-
stantaneous axis of rotation is the line 4B.
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Let us denote by r the radius of the sphere, by « the angle between
the planes of the trough, by w the angular velocity of the rolling motion,
and finally by v the velocity of the centre O of the sphere.

The distance of the centre of the sphere from the axis of rotation is
OM = r sin}x. Putting v = |v| we therefore obtain

v = ro sinx, (3)

Example 5. A segment A B of length d moves in such a way that its
ends remain constantly on the lines  and m, perpendicular to each other
and intersecting at the point M (Fig. 272).

The centre of instantaneous rotation O
Y is obtained by drawing perpendiculars [ and
m at the points 4 and B. Since MO = AB = d,
the centres of instantaneous rotation form a
circle C" with centre at M and radius d. The
circle (" is therefore the fixed curve of in-
stantaneous centres. Since the angle 40B is
equal to {m at every position of the segment
AB, the moving curve of instantaneous
centres will be the circle C' of diameter AB
(cf. example 2).

Fig. 272.

§ 9. Composition of motions of a body. Two simultaneous rotations.
Let the instantaneous motion of a body K relative to the body K, (i. e.
relative to the coordinate system attached rigidly to the body K,) be
a rotation about the axis 7, with an angular velocity w,, and the instant-
aneous motion of the body K, relative to a body K’ a rotation about the
axis [, with an angular velocity w,. We then say that the body K makes,
relative to the body K’, two simultaneous instantaneous rotations about
the axes [, and I, with angular velocitios w 1 and w,.

The instantaneous motion of the body K relative to the body K’ is
called the resultant motion of these two simultaneous rotations; we also
say that it is equivalent to the system of both rotations.

Let us take a system of coordinates (§,m, £) in the body K,, and
a system of coordinates (z, y, z) in the body K’ (Fig. 273). Let 4 be an
arbitrary point of the body K. The velocity v of point 4 relative to the
system (z, y, z) is the sum of its relative velocity v, with respect to the
system (&, n, {) and the velocity of transport v,:

vV=yv, v, (1)
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Since the instantaneous motion of the body K relative to the system

(&, 1, £) is a rotation about the axis I, with an angular velocity w, (p. 323)

v, = Mom ,w;. (2)

The velocity of transport v, of the point 4 is obtained by assuming

that the point 4 is attached rigidly to the system (&, #, {). The system
(&, m, £) rotates about the axis I, with an angular velocity w,; hence

v, = Mom  w,. (3)
From (1), (2) and (3) we obtain
v = Mom ,w, + Mom ,w,. (4)

As it is seen from this formula, the instantaneous velocity of the body
Krelative to K’ is determined by the angular velocities w, and e ,. It is not

Fig. 273.

riecessary to state, in addition, which of them is the velocity of rotation
of the body K relative to K,, and which the velocity of rotation of the
body K, relative to K'.

Let us suppose that the axes I, and I, intersect at the point O. Let us
consider the vector w = w,; + w, with its origin at 0. We have (p. 17)

Mom  w = Mom 4w; + Mom  w,, (5)
whence by (4)
v = Mom ,w. (6)

The instantaneous motion of the body K relative to K’ is conse-
quently an instantaneous rotation about an axis passing through the
point O, with an angular velocity equal to the sum of the angular velo-
cities w; and w, of the component rotations.

Therefore: a system of two simultancous instantaneous rotations about
the axes which intersect at the point O is equivalent to a rotation about an
axis passing through O, with an angular velocity equal to the angular velo-
cities of the component rotations. :

Let us suppose now that the axes I/, and [, are parallel, where w; +
-+ w, == 0. Then the vectors w, and w, have a resultant vector w = w; -
+ w, for which the equalities (5) and (6) hold.
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Therefore: a system of two simultaneous rotations about parallel axes,
with angular velocities whose sum is different from zero, is equivalent to a
rotation about an axis parallel to the preceding axes; the position of this axis
and the angular velocity of rotation about it is determined by the resultant of
the angular velocities of the component rotations.

Finally, let us suppose that the axes l; and I, are parallel, but w, -+
+ w,=0,i.e. that the senses of the rotations are opposite, and the absolute
values of the angular velocities are equal. In this case the vectors w,
and w, form a couple. Since the moment of the couple is a constant vector,
by (4) all the points of the body K have one and the same velocity equal
to the moment of the couple w,, w,. The instantaneous motion of the body
K relative to the body K’ is consequently an advancing motion.

Therefore: a system of two stmultaneous instantaneous rotations about
parallel axes with angular velocities equal in magnitude, but opposite in
sense, is equivalent to an instantaneous advancing motion.

Let us now pass to the general case. Let O be an arbitrary point of
the body K. In virtue of the theorem on reduction (p. 24), the system of
vectors w,, w,is equipollent to a system composed of the vector w ==
= w; + W, with its originat O and a couple w’, —w' of moment equal to
the moment of the system w,, w, with respect to 0. For each point 4 of
the body K we therefore have Mom  w, + Mom  w, = Mom w -+ u,
where u is the moment of the couple w’, —w’. By (4) we then have

v = Mom , w - u. (7)

Consequently the instantaneous motion of the body K relative to
K' is the composition of an advancing motion with a velocity u of the
point O and a rotation with an angular velocity w about an axis passing
through O.

Therefore: a system of two simultaneous instantaneous rotations is
equivalent to the composition of a rotation about an awxis passing through
an arbitrary point O of the body and an advancing motion with a velocity of
the point O; the vector of angular velocity of the resultant motion is equal to the
sum of the vectors of angular velocities of the component rotations.

Composition of several simultaneous rotations. The results obtained
can be generalized to the case of several simultaneous rotations. The re-
sultant motion is defined in a manner similar to that for two rotations.

We shall therefore say, for instance, that the body K makes simul-
taneous rotations about the axes!;, [,, and l,, with the velocities w;, w,, and
w;, relative to a certain body K, if the body K rotates about the axis I,
with an angular velocity w, relative to a certain body K,, while K,
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rotates about the axis [, with an angular velocity w, relative to a certain
body K, and K, rotates about the axis I; with an angular velocity w,
relative to the body K*.

Similarly, the instantaneous motion of the body K relative to K’ is
defined as the resultant motion of the instantaneous rotations about the
axes [y, [y, l;, with the angular velocities w;, w,, w,.

Let a body K make several simultaneous rotations with the angular
velocities w;, w,, ... As in the case of two rotations, one proves that the
velocitity v of an arbitrary point 4 of the body K relative to the fixed
body K’ is

v = Mom ,w, + Mom w, + ... (8)

The velocity v of the point 4 is the total moment of the system

of angular velocity vectors w,, w,, ...:

v = Mom ,(w;, w,, ...). (9)
Therefore, if the systems of angular velocities
W, Wy, ... and w;, W, ...

for two systems of simultaneous rotations are equipollent (p. 22), then the
resultant motions of these rotations are the same.

This enables us to interpret the theorems of chapter I on systems
of vectors as theorems on systems of simultaneous rotations.

The theorem on the reduction of a system of vectors (p. 26) can
therefore be formulated as follows:

A system of several simultaneous rotations with angular velocities w
Wy, ... 18 the composition of an advancing motion with a velocity of an ar-
bitrary point O of the body and a rotation with an angular velocity w =
= Wy + W, -+ ... about an axis passing through O.

According to this interpretation the theorems 1—4 on p. 26 will
assume the form:

L. A system of simultaneous rotations with angular velocities w,, w,, ...
about axes passing through a point O is equivalent to one rotation with an
angular velocity w = w; + w, + ... about an axis passing through O.

2. A system of simultaneous rotations with angular velocities w,, w,, ...
about parallel axes (about axes lying in one plane IT) is equivalent to a rotation
about a parallel axis (about an axis lying in the plane IT ), when w, + w, -+

+ ... &0, and to an advancing motion, when w, + wy -+ ... = 0.
According to the definition of a parameter of a system of vectors
(p. 20), the parameter of a system of angular velocitics wy, w,, ... is

expressed as the scalar product K = (w,+ w,+...) - Mom 4(w,, w,, ce)s
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where A is an arbitrary point of the body. Denoting by « the sum of the
angular velocities, we have by (9)

K=w.v, (10)

where v is the resultant velocity of the point 4. :

From theorem 4, p. 20, it follows that the scalar product w - v has
a constant value. In particular, for K = 0 the system of simultaneous
rotations is equivalent to a rotation or to an advancing motion (cf. table
on p. 25).

As we know, every motion of a body is the composition of an ad-
vancing motion with a velocity u of an arbitrary point O of the body and
of arotation with an angular velocity w (p. 333). Therefore the instant-
aneous motion can be represented as the composition of a rotation « and
of a couple w’, —w’ of moment equal to u.

Suppose that the motion of the body has been represented in another
way as the composition of the rotation w, and of the couple of rotations
w;, —w}. Since the systems w, w’, —w’, and w,, ], —w |, are equipollent,
because they represent the same resolution of the velocities in the body,
their sums are equal, i. e. w = w,. Thus, we also obtain in this way the
theorem (proved on p. 333), according to which the instantancous axes of
rotation are parallel and the instantaneous angular velocities are equal for
of all representations of the instantaneous motion.

Let us notice in this connection that the parameter of the system
w, w', —w'is K = - Mom,(w’, —’) = w - u. Therefore, if w - u = 0,
then the instantaneous motion is an instantaneous rotation.

In particular, if w | wu, and hence if the instantaneous axis of rotation
18 perpendicular to the velocity of the advancing motion, then the instant-
aneous motion is equivalent to an instantaneous rotation.

On p. 27 we proved that every system of vectors is equivalent to a
wrench. From the definition of a wrench it follows that the instantaneous
motion of a rigid body is a twist. We have therefore obtained a new proof
of the theorem given on p. 334.

Relative motion of a body. Let the instantaneous motions of the two
bodies K, and K, relative to a fixed system of coordinates (x, y, z) be
given. We shall determine the instantaneous motion of the body K,
relative to K, i. e. relative to a moving system of coordinates (&, 7, ¢)
attached rigidly to the body K.

Let us denote by w, the instantaneous angular velocity vector of the
body K, and let us represent the advaneing motion as the composition
of a couple of rotations with angular velocities w/, —w/. Similarly, we
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shall represent the instantaneous motion of the body K, as the com-
position of the rotation w, and of the couple of rotations wy, —ew,.

The absolute velocity v, and the velocity of transport v, of an
arbitrary point 4 of the body K, are:

v, = Mom 4 (w,, wj, —w,), v, = Mom ,(w,, w,, —w]).
Since v, = v, — v, ((I), p. 57),
v, = Mom 4(w,, 0, —wy, —w,;, —], w}). (11)

The instantaneous motion of the body K, relative to the body K| is
the composition of six simultaneous rotations. By the theorem on reduc-
tion (p. 24) the system of vectors referred to is equipollent to the vector
w and the couple w’, —w'. The vector w is the instantaneous angular velo-
city of the relative motion, and the moment of the couple w’, —w’ is equal
to the velocity of the instantaneous advancing motion.

Therefore: the instantaneous relative motion of the body K, with respect
to the body K, is obtained by adding the system of angular velocities with
opposite senses, which determine the instantaneous motion of the body K,,
to the system of angular velocities, which determine the instantaneous motion
of the body K,.

This theorem is usually stated more briefly by saying that the motion
of the body K, relative to K, is obtained by compounding the instant-
aneous motion of the body K, with the instantaneous.motion of the body
K| with an opposite sense.

Example I. A cube makes two simultaneous twists about two skew
edges. Let u;, w, and u,, w, denote the instantaneous angular velocities
of the advancing and rotating motions of these twists. We shall deter-
mine the resultant twist.

Let us choose a system of coordinates in such a way that one of the
edges (about which the twists take place) lies on the z-axis, and the other
lies in the yz-plane and is parallel to
the y-axis (Fig. 274).

The advancing motions can be re-
placed by the couples of rotations
w;, —w; and w,, —w, of moments u,
and u, Therefore the instantaneous
resultant motion is equivalent to the
composition of six simultaneous rota-
tions:

W, —], W), W, —wg, W, (12)

- — e e

W, X
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The sum of the system (12)is equal to w == w,; + w,; consequently:
Wy = W1, Wy = Wy, w,=0, (13)

where o, and w, denote the corresponding projections of the vectors w;
and w, on the x and y axes

In order to determine the moment of the rotations (12) with respect
to the origin O of the system, let us note that the moments of the couples
w;, —w; and w,, —w, are equal to u, and u,, respectively. The moment
w, is zero because w, lies on the z-axis. The moment w, is perpendicular to
the yz-plane and its projection on the x-axis is aw,, where a is the length of
an edge of the cube. Therefore, denoting the moment of the rotations (12)
with respect to O by u, we obtain:

Uy = Uy + AWy, Uy = Uy, U, = O: (14)

where u, denotes the projection of u, on the z-axis and u, the projection
of u, on the y-axis. Equations (14) obviously represent the projections of
the velocity of the origin of the system.

The instantaneous motion is therefore the composition of an advan-
cing motion with a velocity u and a rotation with a velocity w about an
axis passing through O.

According to formula (I), p. 333, the velocity of an arbitrary point
Az, y,2)isv = u + O4 X w, whence by (13) and (14)

Vg = Uy + G0y — 20y, Vy = Uy + 201, V; = POy ~— Y. (15)

In order to determine the central axis of twist we must find a point 4
such that its velocity has the direction of the vector w, i. e. so that v = 1w
for a suitable numerical value of the factor 4. Hence the equations v, =
= Awy, vy = Aw,, and v, = 0,1.e. v,/ 0, = v, [ w, and v, = 0 must be
satisfied. In view of (15) we therefore obtain the following equations of the
central axis:

(Uy + awy— 20,) [ 0y = (Ug + 20y) [ @y, Zwy— yo, = 0. (16)

The velocity of the advancing screw motion is equal to the velocity of
an arbitrary point of the central axis, e. g. of the point 4(0, 0, z); the value
of z is calculated from the first of the equations (16), and then the velocity
of the point 4 from formulae (15). We get:

vy = kg, v, = kw, v, =0,
where

k= [(u, + awy) ®; + uyw,] / (w% -+ w%) =Uu-w/|w?

»
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Example 2. Steady precession. If a body moves in such a way that
the instantaneous motion at each instant is the composition of two simul-
taneous rotations about two intersecting axes, of which the first  is fixed
in space and the other m has a fixed position in the body, while the
angular velocities w0, and w, of these rotations are constantin magnitude,
then the motion of the body is called steady precession.

Since by hypothesis the axes [ and m intersect, the instantaneous
motion of the body is a rotation with an angular velocity w = w, + W,
about an axis p passing through the point of intersection of I and m (Fig.
275). Let us note that the instantaneous motion of the axis m is an
instantaneous rotation about the axis ! with an
angular velocity w, (for the rotation of the
axis m about itself is left unconsidered). Conse-
quently the axis m rotates about the axis! with
a constant angular velocity w,. The point of
intersection O of both axes is therefore fixed
and the angle between the axes [ and m is con-
stant. It follows from this that the vector w,
and hence also the instantaneous axis of rota- v
tion p, make constant angles with the axes [ Fig. 275.
and m.

The axis p describes a cone of revolution X in space. The trace of the
axis p in the body is also a cone of revolution 2’

Therefore: the cones of instantaneous axes of rotatwn fixed and moving,
are cones of revolution with axes 1 and m.

The earth’s axis does not maintain a fixed direction in space, but describes
a cone of revolution about an axis perpendicular to the ecliptic and passing through
the centre of the earth, The time for a complete circuit of the earth’s axis lasts
about 26 000 years, and the angle between the earth’s axis and the axis perpendicu-
lar to the ecliptic is 234°.

Let us take the centre of the earth as the origin of a system of coordinates
moving with an advancing motion, and let us give the z-axis a direction perpendic-
ular to the ecliptic. The = and y axes will then lie in the ecliptic. With respect to this
system of coordinates the earth executes a steady precessional motion. The axis
fixed in space is the z-axis and the axis fixed in the body is the earth’s axis.

Example 3. Two circles K, and K,, lying in the plane I7, rotate about
their centres with angular velocities w, and w,. Determine the instant-
aneous relative motion of the circle K, with respect to K, (Fig. 276).

Let w, and w, denote the angular velocity vectors, obviously per-
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pendicular to I7 (Fig. 277). The instantaneous motion of the circle K, re-
lative to K, is the composition of two simultaneous rotations w,and —w,.

If w; — w; = 0, then the instantaneous relative motion of the circle
K, is an advancing motion with a velocity u equal to the moment of the
couple (w,, —w,). Denoting by d the distance between the centres, we
have [u| == dw, = dw,. The velocity u is perpendicular to the line 0,0,
joining the centres of the circles K, and K,.

=T

If w,— w; &0, then the vectors w, and —w, have a resultant
w = w,— w,; Wwhose origin is at 4 lying on the line 0,0, at the
point with respect to which the moment of the system w,, —w, is
zero. The instantaneous relative motion of the circle K, is therefore an
instantaneous rotation about the point 4 with an angular velocity w.

If w, and w, have opposite senses (as in Fig. 277), then denoting by
oy, 0,, and , the absolute values of the angular velocities, we obtain:

®=0w; + 0, 04=00, 0,/ (0, + w,).

§ 10. Analytic representation of the motion of a rigid body. Instant-
aneous angular velocity. Let us suppose that we are considering the motion
of a rigid body relative to the system of coordinates (, ¥, 2). Let us choose
a system of coordinates (£, %, {) with origin at M and attached rigidly to
the body. The position of the body relative to the system (x, y, z) will be
determined if the position of the system (&, 7, {) is given, i. e. the co-
ordinates @, ¥, 2o, of the point M and the angles «,, &y, x5, B, fa, Bar
and y;, ys, ¥3, which the axes &, #, { make with the axes x, y, z.

Let 4 be an arbitrary point of the body. Let us denote its coordinates
with respect to the moving system by &, 5, { and with respect to the fixed
system by z, v, 2.

Knowing the coordinates &, { and the position of the moving
frame, we can determine the coordinates z, y, z by means of the formulae
(II), p. 54. If cos«,, cosp,, and cosy; are denoted by a,, b; and ¢;
(where ¢ == 1, 2, 3), then these formulae will assume the form:
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X =2y + ;& + am + ayg, Y =Yo+ b:& 4 byy + by¢,
2= 2o+ 61§ + e - ¢l

Let v be the velocity of the point 4 relative to the system (z, ¥, 2).
‘Since by hypothesis the system (£, %, ¢) is attached rigidly to the body,
the coordinates &, 7, ¢ of the point 4 are constant (independent ot the
time). Differentiating (1) (and remembering that a,, a,, ..., ¢y are func-
tions of the time ¢), we obtain:

(1)

Ve =2 = %, + ai& + azn + a3,
Uy =Y = Yy + bi& + bin + b3l (2)
v, =2 =2z, + ¢jé + e + sl

From analytic geometry it is known that:
ot 4 ai +-ak =1, B+ +b5=1 c+cE+c2=1, (3)
Aty + biby 4 €6y = 0,  aya5 + bby + ¢, = 0,

4)
Aoty + boby + €05 = 0. *)
Diiferentiating equations (3) and (4), we obtain:
@183 4 gty + aga5 == 0, byb; + bybs + bb; = 0, (5)
€167 + €265 4 €3¢ = O,
a; + byb; -+ ¢i05 = — ajay — bib, — c;c,,
@5 + biby - €165 = —— ajay — biby — cicy, (6)
@aty 4 boby + cye5 = — azay — byby — cicq.

Let w denote a vector whose projections on the axes of the system
(& m, £) are expressed by the formulae:

Wy = ay@3 + byby + coc3, W, = aga; + byb; + cyc,
wp = a5 4 bibs + cyc;.

(7)

Let us form the projections vy, v,, v¢ of the velocity v on the axes
& n, & we get vy = aw, + bw, + ¢, whence by substituting the values
of v,, v,, v,, from formulae (2):

Ve = (a2 + by, + ¢1%) + (@yai + bib; + ¢167) § +
+ (@05 + byb; + ¢165) n + (@05 + bib; + ¢,c5) L.

The coefficient of £ is equal to zero by (5). The coefficients of nand {
are by (6) and (7) equal to w; and —w,, respectively. Consequently

Ve = (@ -+ by + cizg) + wn — w,. (8)
For the projections of the velocity u of the point M on the axes
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z, Y,z we get u, = x5, u, = yp, %, = 2,, and for the projections of this
velocity on the axes &, 9, ¢
g = ayu, + by, + cqu, = ayxy + by - ez, ete.

In virtue of (8), therefore, we obtain for v, (and similarly for »,, v¢)
the formulae:

Ve =g+ wg) — w,l, vy = U, 0l — w0, (9)
Ve = Uy + vangn

From formulae (9) it follows that the velocity v is the sum of two
velocities: v = u -I- w, of which the first -is the velocity of the point M,
and the other has the projections on the axes &, 7, ¢:

@U§: Cl)c?’]*—w,,]c, w,,] = CU€C~*CU€§, We = 0)715—*60577. (].O)

Comparing these formulae with formulae (V), p. 46, we sce that w
is the velocity the point 4 would have if the body were rotating withan
angular velocity w about an axis passing through M. It follows from this
that the vector w defined by formulae (7) is the instantaneous angular
velocity vector.

Remark. Formulae (7) become simpler if we assume that the co-
ordinate systems (z,y,z) and (&, 7, {) coincide at a given moment ¢.
Under this assumption we have «; = 8, = y, = 0, and the remaining
angles are equal to 4m. Hence a, = b, = ¢; = 1, and the remaining
cosines are zero. Then by (7) and (6):

W= -6, w,=-—a; o;=-—>b;. (11)

Since ¢, = €08y, ¢5 = — (siny,) ys = — vs; consequently w; = ;.

Proceeding similarly, we obtain
W= W, =Y O,=w,=0a&; 0,=0a,=_}F.

Therefore: if the axes of a moving system of coordinates coincide at the
instant t with the axes of a fixed coordinate system, then the projections of the
instantaneous angular velocity vector on the axes of the moving system are the
derivatives of the angles < nz, < {x, and < &y.

Central axis. In order to obtain the central axis it is necessary to
determine the points whose velocities have the direction of the vector w.
Therefore, 1f the point A(&, 5, {) lies on the central axis, then its velocity
is equal to v = Aw, where 1 is a certain constant. By substituting in
equations (9), we consequently obtain the equations of the central axis:

dog = ug + om—w,l, Ao, = u, + 0 — o, (12)
ng = U¢ + w,,f — W7,
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whence

Ug T o —oyl Uyt ol —old  wpt o,f —og
We wﬂ ¢

(13)

In order to obtain the velocity v of the instantaneous advancing
motion during a twist, let us multiply both sides of equations (12) by
wg, wy, wg, respectively. Adding them, we obtain ’

Newf + of + 0f) = uwg + uyo, + ww; = u - w. (14)

Since v = Aw, putting v = |w| = Va)é + op + o}, we get by (14)

u-w

ﬁhence ,
v = |u- w| /o (15)

Ifu | w,then u- w == 0, whence by (15) v = 0.

Therefore: tf the velocity of an instantaneous advancing motion is per-
pendicular to the instantaneous axis of rotation, then the instantaneous
" motion 1s an instantaneous rotation about the central axis.

Plane motion. Let us supposc that we are considering the motion of
a figure in the plane I1. Let us select a fixed coordinate system (z, y) as
well as a moving system (£, ) with origin at M and rigidly attached to
the figure. Denote by w,, y, the coordinates of the point M and by ¢ the
angle between the axes £ and z. Finally, let 4 be an arbitrary point of
the figure having the coordinates x, y with respect to the fixed frame, and
&, n with respect to the moving frame. The relations among these co-
ordinates are given by formulae (IT), p. 54:

=22+ fcosp —nsing, y=y,+ Esing + 7 cosg. (16)
Let v be the velocity of the point 4. Since the point 4 is attached

rigidly to the moving system, & and % are constants. Differentiating (16),
we obtain

v, =¥ = ay — (Esing + 5 cos @) ¢,

vy =y =y, + (£ cosep — nsing) g (17)
Comparing (17) with formulae (16) and putting
W =g, (18)
we get:
V=5 — (Y —Yo) @, v, =y + (¥ —x,) . (19)

Therefore: the velocity v is the sum of two velocities: v = u + w, of
23
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which the first is the velocity of the point M, and the other has the pro-
jections:

W, = — (Y —Yo) ©, W, = (¥ —Fp) © (20)
on the axes of the fixed system.

We see from this that w is the velocity the point 4 would have if
the figure were rotating about the point M (x,, y,) with an angular veloc-
ity o (where the positive s:nse of the rotation agrees with the positive
sense of the angle). Consequently w = ¢* is the instantaneous angular
velocity.

In order to obtain the instantaneous centre of rotation it is necessary
to determine the point whose velocity v == 0. Denoting the coordinates of
the instantaneous centre of rotation by 2’ and y’, we obtain from (4):

0=ua;— (4 —Yo)®w, 0=1y;+ (2" — zp) o,
whence ‘

?

=y —yy [0, Y = yo ¥/ (21)

Euler’s angles. In some considerations it is convenient to define the
position of the body by means of the so-called Euler’s angles.

Let a body rotate about the point O. Let us choose two systems of
coordinates with a common origin O: a fixed
(x, y, ) and a moving (& n, {) attached
rigidly to the body (Fig. 278). The position
of the moving system is determined as follows.

Let w denote the line of intersection of
the planes xy and &n. This line is called the
line of nodes.

The line w is perpendicular to the axes 2
and ¢. Let us give the line w such a sense that
the system of axes ((,z, w) is left-handed,
i. o. agrees with the assumed senses of the systems (x, y, 2) and (&, n, {).

Fig. 278.

Let us denote by ¢ the angle through which it is necessary to rotate
the z-axis about the w-axis in the positive direction (i. e. from right to
left), in order that the positive direction of the z-axis coincides with the
positive direction of the (-axis. Similarly, we denote by ¢ the angle
through which it is necessary to rotate the w-axis about the {-axis in the
positive direction, in order that the positive direction of the w-axis co-
incides with the positive direction of the ¢-axis. Finally, we denote by y
the angle through which it is necessary to rotate the z-axis about the
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z-axis in the positive direction, in order that the positive directions of the
x and w-axes coincide.

The angles ¥, ¢, y, are called Euler’s angles.

These angles define the positions of the axes &, 5, {, with the except-
ion of the case when & = 0 or & == x, for then the position of the w-axis,
and hence also the angles ¢, v, are undefined.

However, if ¢ = 0 and & = =z, then the angle y defines the position
of the w-axis in the zy-plane. Knowing the position of the w-axis already,
we obtain the position of the l-axis by rotating the z-axis through the
angle & (in the positive direction) about the w-axis. Finally, we obtain the
é-axis by rotating the w-axis about the (-axis in the positive direction
through the angle ¢.

Euler’s angles vary between the following limits:
0<d<m 09 <2n 0y <2n

The instantaneous motion of the system (¢, , {) is a rotation about
a certain axis. Let w be its instantaneous angular velocity vector. Let us
resolve w into three component vectors o,, 0, and o, in the direction of the
axes z, w, and (. Consequently

w =0, + o, + o, (21)
Let us denote by o,, 0,,, and o,, the coordinates of the corresponding
vectors with respect to the axes z, w, and . Let us note that if the system
(&, m, £) rotates about the z-axis, then the angles & and ¢ do not vary and
the angle y is the angle of rotation. Therefore, during a rotation about the
z-axis the magnitude of the instantaneous angular velocity of the system
(&, 7, £) is y°. Since o, is the angular velocity vector for a rotation about
the z-axis,
0, = v and similarly o, = 9, 0o, = ¢. (22)
Consequently the derivatives yr, ¥, ¢* define the instantaneous
angular velocity vectot w if we know the position of the system (£, 7, {),
i. e. the angles y, ¥, and ¢.
We shall now derive formulae for the projections of the vector on the
axes of the system (&, 7, {). -
Let us choose the unit vectors k and r on the axes z and w. Con-
sequently o, = o,k and e, = o,r; hence according to (22):

o,=wyk, o,=7dr. (23)

The projection of the vector k on the (-axis is cos#. The vector k
makes an angle 4n — ¢ with the &y-plane; therefore the projection of k
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on the én-plane has the length sin @ and is perpendicular to w {since the
z-axis is perpendicular to w). The projection of k makes angles 3z — ¢ and
7 —— ¥ with the axes £ and #; hence:

k¢ = sind sing, k, =-—sindcosp, k= cos . (24)
- The projections of the vector r on the axes &and 7 are cos ¢ and sin ¢,
while the projection on the {-axis is zero. Consequently:

rg= 00s¢, ry = sing, 7, = 0. (25)

By (23) and (24) the projections of the vector o, on the axes & #,and ¢,
are; ¢ sind sin @, — y- sind cos ¢, and y* cos #, while the projections of the
vector o, on the axes £, 7, and (, are by (23) and (25) equal to 9 cos ¢,
¥ sin @, and 0, respectively; finally, the projections of the vector o on the
axes &, 7, and {, are obviously 0, 0 and ¢°. From this we obtain in virtue
of (21): ‘ ~

wg =19 cosp + ¢ sindsing, w,= & sing-—y sind cos g,

wr =y cosd + ¢ (M

Determining ¢, y*, and ¢, from (I), we obtain:

¥ = wgcosp + w, sing, ¥y = (wgsing — w, cos g) [ sin 9,
¢ = w;— (wgsin ¢ — w, cos @) cot J.

(IT)

Knowing the projections wy, w,, and w,, of the angular velocity w on
the axes &, 77, and , of the moving system at each instant, we can therefore
determine 9, ¢, and u, as a function of time by solving the system of dif-
ferential equations (1I).

Proceeding similarly, we obtain the following formulae for the

projections of the angular velocity w on the axesx, ¥, z, of the fixed system:
w, = @ sindsiny -+ 9 cosy, w, = ¢ sind cosy — P siny, )
w, = Y -+ ¢ cos B,
P = w,cosy — w,siny, ¢ = (w,siny + o, cosy)/sind, (IT')
¥ = w, — (0, 8inyp + w, cosp) cot I,
Euler’s angles in a steady precession. Let us assume that during
the motion of a body we constantly have:

¥ =0, vy = const, ¢ = const. (26)

The instantaneous motion of the body is at each instant, therefore,
the composition of two simultaneous rotations about the axes z and ¢
with angular velocities ¢ and ¢* of constant magnitudes. The z-axis has
a fixed position in space, and the {-axis is rigidly attached to the body.
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Under these conditions the motion of the body is a steady precession
(cf. p. 349). '

§ Il. Resolution of accelerations. Plane motion. If a plane figure
rotates about a fixed point M with a variable angular velocity w, then
each point of the figure moves along the periphery of a circle. The acceler-
ation p of an arbitrary point 4 of the figure is therefore the sum of the
normal acceleration p, directed towards M, and the tangential acceler-
ation p, perpendicular to MA. The normal and tangential acceler-
ations are defined by the formulae (I) and (II), p. 45:

P = r?®, Py = re, (1)

where r = M A, and ¢ = w is the angular acceleration.

Fig. 279. Fig. 280. Fig. 281.

Let « denote the angle which the acceleration p of the point A makes

with the line M4 (Fig. 279). Then
tano = p, [ pp = & ] . (2)

We see from this that « is the same for all points.

Therefore: in a rotation of a plane figure about a fixed point the
accelerations of the points of the figure are proportional to their distances
from the centre of rotation and make equal angles with the line joining these
points with the centre of rotation.

Let us assume now that the figure moves in the plane entirely
arbitrarily (Fig. 280). Let us take an arbitrary point M of the figure as the
origin of a system of coordinates (&, ), which moves with an advancing
motion. The acceleration p of an arbitrary point 4 of the figure will be the
sum of the accelerations: relative p, and transport p,. The acceleration of
transport is equal to the acceleration p, of the point M. The relative
motion of the figure is arotation about M with a variable angular velocity w.
We can therefore resolve the relative acceleration p, into the sum of the
(relative) accelerations: normal p, and tangential p,,. Consequently

P:P0+Pr:PO+P1n+PT¢' (3)
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Therefore: in a plane motion the accelerations of the points of a figure
are the sums of the acceleration of an arbitrary point M of the figure and of the
accelerations which these points would have during a rotation of the figure
about the point M (as a fixed point) with an angular velocity (of the instan-
taneous rotation of the figure) w and with an angular acceleration ¢ = w'.

If w == 0 or ¢ = 0, the relative acceleration p, makes with the line
MA an angle & defined by formula (2) and this angle is constant for all
points of the figure.

In this case let us pass through the point M a line I making an angle «
with the direction of the acceleration p, of the point M (Fig. 281). The
relative accelerations of the points lying on the line I will have the direc-
tion of the acceleration p,. Since the relative accelerations are proportional
to the distances from M, we shall find on I a point O whose relative accele-
ration will be equal to —p,. The acceleration of the point O will therefore
be zero.

The point O is called the centre of instantaneous accelerations.

On the other hand, if @ = 0 and ¢ = 0, then the accelerations of all
the points of the figure are equal (namely, equal to the acceleration of the
point M).

Therefore: if the accelerations of the points of a figure in plane motion
are not equal, then there exists a point whose acceleration is equal to zero.

The accelerations of the points are hence such as if the figure were
rotating about the instantancous centre of accelerations (as a fixed point)
with an angular velocity w and with an angular acceleration ¢ = -.

The accelerations of the points of the figure
are proportional to the distances from the centre
of instantaneous accelerations and make equal
angles with the lines joining these points with the
centre of instantaneous accelerations.

/I Motion in space. If a body rotates about a

el fixed point O with an instantaneous angular velo-

0 Fig. 282. city w (Fig. 282), then the velocity of an arbitrary
point 4 of the body is

vV=r X w, (4)

where r = OA. Calculating the derivative and denoting the acceleration
of the point 4 by p, we obtain

P=r X w-++rx w,
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Since O is by hypothesis a fixed point, r* == v; consequently
=V X w-|rxuw. (5)

If a body rotates about a fixed axis with a constant angular veldcity
w, then w* == 0, whenee by (5) p == v X w.Onthe other hand, each point
then has a contripetal acceleration g|w |2, where o denotes the distance of
the point from the axis of rotation. The product v X w is therefore tho
acceleration with which the points of the body would move if the body
were rotating about a fixed axis with a constant angular velocity w. The
product r X w+ = Mom jw* represents the velocity which the point A4
would have if the body were rotating about a fixed axis with an angular
velocity w-. In general, the derivative w* has a direction different from w.
If w has a fixed direction (i. e. if the axis of rotation is fixed), then w- has
the direction of w; consequently r X - has the direction of the velocity v.
In this case r X w-is the tangential acceleration and v X  the normal
acceleration.

Let us now assume that the body moves arbitrarily in space. Then
the resolution of the accelerations is obtained by taking an arbitrary point
O of the body as the origin of the system of coordinates (&, 5, {) moving
with an advancing motion. The accelerations of the points will bo the
sums of the acceleration of transport (i.e. of the accele-ation of the
point 0) and of the relative acceleration. The relative motion will be a ro-
tation about the point O. Therefore the relative acceleration of an arbit-
rary point 4 is expressed according to (5) by the formula

p,=v, X w +rxXuw, (6)

where r — 04, and v, denotes the relative velocity of the point 4.

The interpretation of the products v, X wand r X - is similar to
that used in the case of the rotation of a body about a fixed point. De-
noting the velocity of the point 4 by v, the acceleration and the velocity
of the point O by p, and v,, respectively, we obtain v, = v —v,, and
hence by (6) the acceleration of the point A4 is

p="pP+ (v—Vvy) X 0 +r X w. (7)



