CHAPTER IX

PRINCIPLE OF VIRTUAL WORK

§ I. Holonomo-scleronomic systems. In the case of the equilibrium
of a constrained system of material points or of rigid bodies, in which
friction does not appear, the constraints are independent of the time and
usually depend on the fact that only certain positions of the system are
possible and others impossible. ‘

Examples are: a material point constrained to remain on a fixed curve or
surface, a system of two material points connected by a rigid massless wire, a rigid
body having a fixed point or axis, a system of rigid bodies tangent to one another
or joint-connected, ete.

The constraints of a system can be induced in various ways: e. g. by
means of rigid bodies, supports, etc. It turns out, however, that in the
case when there is no friction, the conditions of equilibrium of the acting
forces do not depend on the origin of the constraints, but only on what
positions are possible. Moreover, if it is a matter of investigating the
equilibrium of a system, then it is sufficient to know only those positions
compatible with the constraints which are near the position investigated.

We shall first consider the manner in which it is possible to represent
the position of a system compatible with the constraints. We shall first
study this matter by means of examples.

BILATERAL CONSTRAINTS

Example I. Let us assume that a material point is constrained to
remain on a certain surface 8. The constraints can be defined by giving the
equation of this surface, for example, in the form

F(x,y,2) = 0. (1)

Only those positions of the point will be possible in which the co-
ordinates z, ¥, 2, satisfy equation (1). To investigate the equilibrium of
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the point at some position 4(x, y, 2) it is sufficient if (1) is the equation
of an element of the surface on which this point lies.

Example 2. Let us assume that a material point is constrained to
remain on the curve C' whose equations are:

Fix,y,2) =0, Fyx,y,2)=0; (2)

then the coordinates of the point must satisfy the equations (2). To exa-
mine the conditions for the equilibrium of the point it is sufficient if the
equations (2) represent only an arc of the curve ¢ within which the ma-
terial point lies.

Example 3. If a system consisting of two points 4, and 4, is a rigid
system (i. e. the distance of the points 4,4, = const. = d), then the co-
ordinates %y, ¥4, 23, and x,, ¥,, 2,, of these points must satisfy the equation

(B —25)* -+ (41 — Ya2)? + (2, —29)? —d” = 0. (3)

If in addition, for example, the sum of the distances of the points
from the origin O of the coordinate system is constant and equal to A,
then the coordinates of the points must also satisfy the equation

Vol it +Vad + i+ d—h=o. (4)
Example 4. If a system composed of n points:

Al(xl’ Yo zl)’ A2(x2’ Yo zz), LR} An(xm Yns zn)

is a rigid system (i. e. such that the mutual distances of its points are con-
stant), then the coordinates of each pair of points 4,, 4, must satisfy the
equation

(0 — @ + e — g + (e — 2t — 15 =0, (5)
where r;; = A4,4;. There are as many equations (5) as there are pairs of
points, i. e. in(n — 1).

In examples 1—4 the constraints were expressed by equations of the
form

F(xl’ yl’ z1> xz’ yz’ Zgy ovey Xy, yn) zn) = 0: (6)

where F is a function defined in a certain region of the variables #,, ..., 2,

and is independent of the time ¢.

The constraints represented by equations (6) are called holonomic
bilateral constraints independent of the time.
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UNILATERAL CONSTRAINTS

Example 5. A point is to remain within the sphere 2?4 3% 4
4+ 22—#2 == 0 or on its surface (as e. g. & material point attached to an in-
extensible string of length » and suspended from the origin of the system).
Hence the coordinates of the point must satisfy the inequality

2 4yt 2 — 1 <0, (7)

which states that the distance of the material point from the origin of
the coordinate system is not greater than r.

Example 6. Two material points 4,, 4, are connected by an in-
extensible string of length & passing through the origin O of the coordinate
system. Consequently 04, + 04, < h. The coordinates of the points
therefore satisfy the inequality

Vi i+ 2+ Ve + i+ E—r<o. (8)
In examples 5 and 6 it was possible to express the constraints by
inequalities of the form

@(xl: 2/1, %y, Xy, yz) 22, vers Ly Yns Z,,) é 0. (9)

Constraints defined by inequalities of the form (9) are called kolono-
mic unilateral constraints independent of the time.

Remark. If the constraints are given by the inequality

7:p(xl’ ?/1, 21) xz, ?/z, za: ey xm yna zn) g O:
then putting ¥ = — @, we obtain the form (9) after changing the sign.

The position of a system in which the relation (9) assumes the form of
an equality (i. e. in which @ = 0) is called a boundary position.

In examples 5 and 6 the boundary position occurs when the string is
in tension.

The constraints of a system can consist simultaneously of bilateral
and unilateral constraints of the form (6) and (9). For example, if a ma-
terial point is constrained to remain on the upper half of the sphere
2% + 4 + 2% — 12 = 0, then the coordinates of the point must satisfy the
relations:

22ttt —1r2=0,2220 (or —z < 0). (10)
A system whose constraints can be represented by means of relations

of the form (6) or (9) is called a holonomo-scleronomic system. We say that
the relations (6) and (9) represent the constraints in a finite form.
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In this chapter we shall deal exclusively with holonomo-scleronomic
systems.

Degrees of freedom of a system. When we investigate the equi-
librium of a system, we assume in general that for positions close to those
investigated, the bilateral constraints consist in the fact that the co-
ordinates of the points of the system must satisfy the equations:

Fl(xly ?/1, 211 x2; Z/z, 22, ey .’JU”, ym zn) == O’
.................................... (11)
Fm(xll Y1, %15 Loy Yoy Ry <0 oy Ly, Yn, zn) = 0:
which we write compactly as
Fy@y, ... 2,) =0 G=1,2..,m). 1)

In general, we assume that the functions ¥, are continuous and have
continuous partial derivatives of the first and second order in a certain
region of the values ,, ..., z,, defining the given position of the system.

Moreover, we assume that these functions are independent in this
region, i. e. that no one of them is a function of those remaining.

We shall finally assume that m << 3n. For were m = 3n, then the
system of equations (I) would have in general only one solution and hence
only one position of the body would be possible. On the other hand,
were m > 3n, then the system of equations (I) would not have in general
any solution, since the number of unknowns would be smaller than
the number of equations.

The number & = 3n — m is called the number of degrees of freedom.

Knowing k variables from among the variables Ty, «-., 24y, WO CAN CAl-
culate from equations (I) the remaining variables: their number is
n—k = m.

If a system is free, then m = 0. i.e. & = 3n. In particular, a free ma-
terial point therefore has three degrees of freedom. We can then choose all
three of its coordinates arbitrarily.

On the other hand, if a point is constrained to remain on a surface
(as in example 1), then its coordinates have to satisfy only the equation
(1). Consequently m = 1,i.e. k=3-1-—1= 2. The point constrained to
the surface therefore has two degrees of freedom. Then one of its co-
ordinates depends on the remaining two.

Finally, if the point is constrained to a curve (as in example 2), then
its coordinates must satisfy the two equations (2). Consequently k =
= 8- 1—2 = 1and the point has only one degree of freedom: knowing
one of its coordinates, we can determine the remaining two.
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A rigid system of two points (example 3) has 3 - 2 — 1 = 5 degrees of
freedom. Nevertheless, if this system is to satisfy both equations (3) and
(4), then k =3-2—2 =4,

Generally, let a rigid system consist of » material points (as in
example 4). The coordinates of these points must satisfy jn(n — 1) equa-
tious (5). However, these equations are not independent of each other for
n > 3.

Let us note that the position of a rigid system is determined by giving
the position of three of its non-collinear points (e. g. 4,, 4,, 4;), (p. 313).
Hence, knowing the coordinates ;,y,,2,, €,, ¥s, 25, and x,, y,, 25, of the
points A4,, A,, A5, we shall be able to calculate the coordinates of the
points 4,4, 4, ..., 4,, from equations (5).

Among the coordinates of the points 4,, 4,, 4;, there are three equa-
tions of the form (5), expressing the fact that the distances 4,4, 4,4,
and 4,4,, are constant magnitudes. From these equations we can in
general determine three unknown coordinates, if we know the six re-
maining ones. We see, therefore, that if we know a certain six of the 3n
coordinates z,, ..., z,, we can calculate the remaining ones from the equa-
tions (5). Consequently the number of degrees of treedom is k = 6.

Therefore: a rigid system of points has sx degrees of freedom.

The number of independent equations is m = 3n —£k; hence
m = 3n — 6. From among 3n(n — 1) equations (5) there are therefore
only 3n — 6 independent ones.

§ 2. Virtual displacements. Point on a surface. Lot us assume that
a material point is to remain constantly on a certain surtace S and that
it is at the point A4 of this surface.

Let us displace the point from position 4 to position B. The displa-
cement A B is said to be possible if B also lies on the surface S. In the cont-
rary case the displacement AB is called an impossible displacement.

It a material point at 4 is given a velocity v, then this velocity is said
to be possible or compatible with the constraints when the point can possess
it while moving on the surface. In the contrary case this velocity is said to
be impossible or incompatible with the constraints.

It is easy to see that every vector tangent to a surface at the point 4
represents a possible velocity. Conversely, possible velocities are tangent
to the surface.

An important role is played by displacements proportional to pos-
sible velocities, i. e. those that can be represented by vectors equal to
possible velocity vectors.
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Displacements proportional to velocities possible at the point 4
“are called virtual displacements at this point.

A virtual displacement therefore has a direction tangent to the sur-
face, but an arbitrary sense and magnitude. In general, virtual displace-
ments are not possible displacements. However, they are possible dis-
placements when the surface S is a plane, for instance.

Let the surface § have the equation

F(x,y,2) = 0. (1)

If a material point is at the point 4 of the surface S, then its coordin-
ates x, y, z, satisfy equation (1). Let us suppose that the material point
moves on the surface § in anentirely arbitrary manner. Equation (1) is
therefore satisfied constantly. Differentiating (1) with respect to the time

t, we obtain
or

Sy gE =0 (2)

Denoting by v the velocity of the point, we have v, =z, v, = ¥,
v, = #z'; consequently

%vx+%vv+%0220' (3)

Hence we see that the possible velocities must satisfy equation (3).
The partial derivatives appearing in this equation are proportional to the
direction numbers of the normal to the surface at the point 4. Equation
(3) therefore expresses the fact that the velocity v is perpendicular to the
normal, i. e. that it lies in the tangent plane.

Conversely, if some velocity satisfies equation (3), then it is a possible
velocity. )

Let us denote by ds an arbitrary displacement of the point 4, and by
8z, 8y, 6z, the projections of this displacement on the coordinate axes -
(Fig. 305). According to the definition, the virtual displacement is pro-
portional to a possible velocity v. The displacement ds = v will conse-
quently be a virtual displacement.

In virtue of (8) the projections of the virtual
displacement therefore satisfy the equation

oF

ox
Conversely, if the projections of some vector ds

satisfy equation (4), then ds is a virtual displacement. Fig. 305.

oF oF
6x+5y—6y+§6z=0. (4)
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We can therefore say that a virtual displacement is a vector whose pro-
jections satisfy equation (4).

Example I. A point is constrained to lie on the sphere a2 4 42 -
+ 28 —1r* = 0. Let A(x, y, 2) be an arbitrary point on this sphere. The
virtual displacements at the point 4 satisfy the equation

2% 0x + 2y 8y + 22 6z = 0, whence x dx 1 y Oy + z dz = 0.

Assuming e. g. that 2 = 0, we obtain
0z = — (x 0w + y dy) | 2. (5)

Choosing arbitrary dx, dy, and taking the value 0z from (5), we get
a set of numbers dx, dy, 0z, representing the projections of the virtual
displacement at the point 4.

Point on a curve. Suppose that a material point is constrained to
remain on a fixed curve L detined by the equations:

Fy(@,y,2) = 0, Fyx,y,2)=0. (6)

If the material point is at the point 4, then the
coordinates , ¥, z, of this point satisfy equations (6).
It is easy to see that the material point can have
A only those velocities whose directions are tangent to the

curve L at the point 4 (Fig. 306). By definition, there-
Fig. 306. fore, the virtual displacements have directions tangent
to the curve, but arbitrary senses and lengths.

If the point moves along the curve I, equations (6) are satistied con-
stantly. Differentiating them, we get:

oF, oF, . or, [ oF, | OF,
g;x**- _I_az =0, Wx‘i—“’a*y‘y"f"é—“z——o- (7)
Denoting by ds the virtual displacement, and by éz, dy, dz, its pro-
jections, we can assume according to the definition ds = v, whence dz =
= vy = &, etc. Hence in virtue of (7):

5 oFy, _

F16+616+ 16_0—26+626+ (8)

Conversely, if some displacement ds satisfies equations (8), then it is

a virtual displacement.

Example 2. A point is constrained to a curve defined by equations:
B PR =0, & 2%z = 0, (9)
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Let the point A(x, y, 2) lie on this line. The virtual displacement ds at
the point 4 therefore satisfies the equations:

zér+ydy+282=0, 2xox+ 4y dy— 62 = 0. (10)
If x == 0 and y = 0, then we get from (10):
Sx = — (1 + 42) 62 [ 2x, By = (1 + 22) &z | 2y.

Hence, selecting dz arbitrarily and then determining déz, dy, from the
last equations, we obtain a set of numbers dz, dy, dz, defining the virtual
displacement at A.

On the other hand, if z = 0, for example, then because z = 0 (which
follows from the second of the equations (9)), we obtain by (10) dy = 0
and dz = 0. In this case the virtual displacement will consequently have
the projections dz, 0, 0, where dx is an arbitrary number. Therefore: the
virtual displacement has the direction of the z-axis.

Holonomo-scleronomic systems. Let us now define virtual displace-
ments in the general case.

Let there be given a holonomo-scleronomic system of n material
points 4,, 4,, ..., 4,.

The system of vectors A,B;, 4,B,,...,4,B, (representing the
displacements of the individual points), is called briefly a displacement of
the system. A displacement of the system of points 4,, 4,, ..., 4,13 said to
be possible, if the final positions B,, By, ..., B, are compatible with the
constraints. In the contrary case the displacement of the system is said to
be impossible.

Let us give a system of points in the position 4,, 4,,..., 4, the
arbitrary velocities v,, v,, ..., v,. A system of these velocities is said to be
a system of possible velocities if the points can have these velocities and mo-
ve compatible with the constraints. In the contrary case the system of
velocities is said to be impossible.

A virtual displacement of a system of material points in a certain posi-
tion is said to be a displacement in which the separate points experience
displacements proportional to the system of possible velocities.

Therefore, if v,,v,, ..., v,, is a system of possible velocities, then the
virtual displacement of a system is obtained by giving the points of the
system the displacements:

3§1=v1, c—&s_azvz,...,&e‘;,zv,,. (11)

Let us note that if a system is free, then every displacement of the

system is a virtual displacement, because every system of velocities is a
possible system.
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We shall now consider the determination of the virtual displacements.
We shall first discuss the case of bilateral constraints and then that of the
unilateral constraints.

Bilateral constraints. Let us assume that the constraints are defined
by the equations:

Fj(xly""zn)::o (7: 1:2)-'-a m)’ (12)

which must be satisfied by the coordinates i, Y1s 215 Ty Ygy 2y -+ -
%, Yny 2n, Of the points of the system. Let us give the system an arbitrary
motion compatible with the constraints. Differentiating equations (12),
we get:

or, . oF, . -
%;xl—}—...—f—ﬁzzn»_O (7—1,2,...,’”&). (13)
Denoting by v, v,, ..., v, the velocities of the points of the system we
therefore obtain V1, = &}, ..., ¥y, = 2, whence
oF; oF, .
— . = = =1 ee. .
ottt gl =0 (=12 ,m) (4

Consequently every possible system of velocities must satisfy equa-
tions (14). Conversely, it is possible to show that if a system of velocities
satisties equations (14), then it is a possible system of velocities.

Let us assume that the displacement of a system, in which the
displacements of the successive points sy, ..., 08,, is a virtual displa-
cement. The velocities v, ..., v,, defined by equations (11) therefore form

a possible system of velocities, in view of which the equations (14) are

satisfied. Denoting the projections of the displacements by dx,, ..., dz,,
respectively, we obtain from (14)
oF, oF, .
e v+ 2, = = e 15
axl 6‘271 + + azn 62,, O (7 1) 2: m) ( )

or, written differently,

< [OF; oF, oF; .
8, 4 =Ly TS = =12 ..,m) (I
igl ( axi (SZ, + ayt 6‘7/;"*‘ 82,- 6,21 0 (7 y “~y ’ m) ( )
Therefore: every set of numbers dx,, ..., dz,, defining a virtual dis-
placement of a system of points, satisfies the system of equations (I).
Conversely, every set of numbers éz,, ..., oz, satisfying the system of

equations (I), defines a virtual displacement.

Making use of this fact, we can give the following definition of virtual
displacements (equivalent to the preceding):
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A virtual displacement of a system whose constraints are given by
equations (12) is one in which every displacement 0x,, ..., 0z, satisfies equa-
tions (I).

The system of equations (I) (or (15)) is a system of m equations with
3n unknowns dz,, ..., 6z,.

We usually assume that equations (I) are independent of one
another. Boecause of this we can choose arbitrarily & = 3n — m unknowns
from among the unknowns dz,, ..., 6z,, and wecan calculate those remai-
ning from equations (I).

If the set of numbers dx,, ..., §z,, satisfies equations (I), then the set
of numbers —dx,, ..., — 0z, obviously satisfies equations (I) also.

A virtual displacement of a system of points is said to be reversible if
upon changing in it the senses of the displacements of all its points
we again obtain a virtual displacement of the system.

We see, therefore, that in the case of bilateral constraints the virtual
displacements are reversible.

Remark 1. The differential of the function Fyx,, ..., 2,) is

oF < [OF oF or
de:del + ... +‘Eg’d2n :igl(%?.dx‘—}_ ‘@{dyi‘*“a‘jdzi)'

We see from this that the left side of equation (I) is obtained by
forming the differential of the function F; formally and then writing -
dxy, ..., 0z, instead of dxy, ..., dz,.

Remark 2. Let V(x, ..., x,) be a given function defined in a certain
region of the variables x,, ..., z,, and continuous together with its partial
derivatives in this region. Let us choose an arbitrary set of values of the
variables x,, ..., 2,, and denote by dx,, ..., dz, the arbitrary increments of
these variables.

We do not denote here the increments by the symbols A, ..., d4z,, because
when the variables z;, ..., 2,,, are functions of the time ¢ the symbols 4z, ..., 42,
usually denote the increments of these variables in the time Az The symbols
dx,, ..., 0z, serve to indicate, instead, that the increments are entirely arbitrary and
have nothing in common with the increments of the independent variables on
which z,, ..., 2,, depend (in this instance on the time ?).

By Taylor’s theorem we have:
Viz, + 0wy, ..., 2, - 02,) — V{zy, ..., 2,) =
:?—Kéx1+...+ﬂézn—{~R, (16)
02,

o0,
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where the remainder R can be written in the form

_R = 8(16x1| + e "I— [(Szn])’ (17)
where ¢ depends on dz,, .. ., 6z, and tends to zero together with dx,, ..., dz,.
Let us put
oV oV
oV = %;6%1 + . + —gz—”dzn,
i. e.
< [V oV oV
. o7 = 3 (er ook G+ o) o
By (16) we have
Vi, + by, ..y 24 + 62,) — V(zy, ..., 2,) = 6V + R. (19)

If the number |éw| + ... 4 |0z,| is sufficiently small, then le] is
also a small number, and consequently by (17) |R| is evanescent as com-
pared with |62, + ... 4 |d2,]. In this case, therefore, 6V represents
approximately the increment of the function V. We express this usually
by saying that 6V denotes the increment of the function V corresponding

to the “infinitesimal®“ increments dx,, ..., 6z, of the variables Zyy eney 2y
or that for “infinitesimal“ increments we have
Ve, 4 02y, .. 2, + 62,) — Vi, ..., 2,) = OV, (20)

The preceding statement is not altogether exact, but it is conve-
nient. We give it because physicists use it frequently.

By (18) equations (I), p. 426, defining the virtual displacements, can
be written in the form

8F, — 0 (G=1,2...,m). (1)

In a position of a system compatible with the constraints we have
F;=0 (j=1,2,...,m). Hence by (21) we have F;,+ 0F, =0 (j =
= 1, 2, ..., m) for the virtual displacements. In virtue of (20) we can then
say that after an “inifinitesimal virtual displacement the system is
likewise in a position compatible with the constraints. This gives rise to
the definition of a virtual displacement as an ““infinitesimal displacement
compatible with the constraints«. This definition (not exact, but rather
intuitive) is to be understood in the above given sense.

Example 3. A system consisting of two material points Ay, A, has
to nfaintain the constant distance 4,4, = r. The coordinates ,, y,, 2y, and
3, Yo, 25, Of these points consequently satisfy the equation

(@1 — 2 + (Y1 —ya)? + (2, — 2g)? — 12 = 0. (22)
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The virtual displacement of the system is threfore defined by the
equation

(1 — 2)(0%; — 0x4) + (Y1 — ¥2)(0yy — Oy,) + (23)
+ (21— 23) - (02 — O2,) =

Of the numbers dx,, dy,, 0z, 0x,, dy,, 02, we can hence choose five
arbitrarily and determine the sixth from (23).

Let us assume, for example, that z;, =y, =2, =0, 2, =71, ¥y, =
= 2, = 0. Then equation (23) assumes the form

— (02, — 0xy) + 0 - (dyy — Oy,) + 0« (02, — dzy) = 0. (24)

If we take dx, = dx,, equation (24) will be satisfied for arbitrary
values of dx,, dy,, dy,, 02;, 02,. The virtual displacements of the points
A,, 4,, therefore have equal projections on the direction 4,4 ,. This follows
easily from the theorem given on p. 321, according to which the projections
of the velocities of the points 4,, 4,, on the line joining these points are
equal.

Example 4. Unconstrained rigid body. Let us agsume that a rigid body
is a rigid system of material points (p. 190).

Let us give the body an arbitrary advancing motion of velocity du.
Since the points of the body will have this same velocity éu, the virtual
displacement of the body is obtained by assuming that the displacements
of the points of the body were equal:

08 = bu. (25)

It follows from this that a translation of a body is a virtual displace-
ment.

Let us give a body an arbitrary rotation with an angular velocity e
about an axis passing through an (arbitrary) point O (Fig. 307). The
velocity of an arbitrary point 4 of the body is equal to dw = 04 X dw
(p. 46). The virtual velocity of the body is therefore obtained by giving
the arbitrary point 4 a displacement ds = dw, i. e.

ds = 04 X bo. (26)

It follows from this that the virtual displacement of
a body is obtained by giving the points of the body dis-
placements proportional to the velocity which they would
have if the body were rotating about an arbitrary axis with
an arbitrary angular velocity. Fig. 307.
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Let us note that in this case the virtual displacement is not a possible
displacement.

The most general instantaneous motion of a rigid body is the com-
position of an advancing motion and a rotation (p. 332).

Therefore: the most general wirtual displacement of a body is the
composition of two virtual displacements of which one is a translation, and in
the other the displacements of the points are proportional to their velocities
during a rotation of the body about an axis.

By (25) and (26) the most general virtual displacement of a_body
is obtained by choosing an arbitrary point O as well as the vectors du, dw
and giving every point 4 of the body a displacement

08 = du 4+ 04 X do. (27)

So far we have assumed that the rigid body is free. Let us now con-
sider several cases of a constrained body.

Fixed point. If a rigid body has one fixed point, e. g. the point O,
then it can only rotate about this point. The instantaneous motion of the
body is consequently an instantaneous rotation about a certain axis
passing through O (p. 331). The most general virtual displacement of the
body is obtained by giving the points of the body displacements defined
by formula (26), in which éw can be chosen arbitrarily.

Fixed axis. If a rigid body has a fixed axis, then the motion of the
body can only be a rotation about this axis. Therefore in a virtual displac-
ement of a body the points have displacements defined by formula (26),
where O is an arbitrary point of the axis and dw is an arbitrary vector
having the direction of the axis.

Motion of a figure in a plane. The instantaneous motion of a plane
figure in its plane is either an advancing motion or a rotation about the
instantaneous centre of rotation (p. 326).

In the most general case, therefore, the virtual displacement of
a plane figure is either a translation or a displacement, in which the
displacements of the points of the figure are proportional to the velocities
of these points in a rotation about a certain point lying in the plane of the
figure.

Example 5. Two material points 4, and A,, joined by a rigid
(massless) rod of length d, are constrained to remain on the curves C, and
C, lying in a horizontal plane and given by the equations:

.fl(x> y) =0, fZ(x’ ,"/) = 0. (28)
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The following relations among the coordinates of the points 4, and
A, therefore hold:
L@, y1) =0, fo@e, ya) = 0, (¥, — ) + (y; — yo)? — d> = 0. (29)
Equations (29) define the constraints of the system. The virtual
displacement consequently satisfies the equations:
—%5.1/1: 0, g%éxz+%6yz=0,
(1 — ,)(0%) — 0%y) + (Y1 — Ya)(dy, — y,) = 0.
Hence we can select one of the numbers 8z, 8y, dx,, dy,, arbitrarily
and obtain those remaining from equations (30). Let us note that the
velocities of the points 4,, 4,, are tangent to the curves C,, C,. The in-
stantaneous centre of rotation O of the rod 4,4, is therefore the point of
intersection of the normals at the points 4, and 4, to the curves C; and
O, (cf. example 1, p. 327). Since the instantaneous motion of the rod can
only be a rotation about O, the points 4, and 4, can only have velocities
whose directions are tangent to €, and C, and whose magnitudes are
proportional to 04, and O4,. The virtual displacement of the system of
points 4,, 4,is therefore obtained by giving these points displacements
tangent to the curves (,, C, whose magnitudes are proportional to the
distances 04,, O4,, and whose senses are as in the rotation about O.

ofy
67?1 0y +
(30)

Unilateral constraints. Let us suppose that among the relations that
the coordinates of the points of a system must satisfy, there appears the
unequality

D(xy, ..., 2,) <O, (31)

Let us assume that @ << 0 in a certain position of the system. If at
a certain instant the system is given an arbitrary motion compatible with
all the relations except (31), then — as it is easy to see — in a small inter-
val ot time @ << 0 constantly (on account of continuity). Theretore the
motion will satisfy relation (31). It follows from this that in a position in
which the inequality @ << 0 holds, relation (31) does not constitute any
limitation on the possible velocities and (as a consequence of this) on the
virtual displacements. In determining the virtual displacements in this
case, therefore, we need not take inequality (31) into account at all.

Let us now assume that the system occupies a boundary position,
1. e. that the equality @ = 0 holds. At the instant ¢ let us give the system
an arbitrary motion compatible with the constraints. The function @ will
have the value @' = @ + AP at the time ¢ -+ At (where At > 0). Since
@' < 0and @ = 0, 40 < 0. Consequently limA® | At < 0, whence

4t—0
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do 00
At oxy

The possible velocities must therefore satisfy inequality (32). If
éx,, ..., 62, is a virtual displacement of the system, then putting z; =

@i+ . —l—a—znéo (32)

= 6xy, ..., 2, = 0z,, we obtain a system of possible velocities. Con-
sequently z;, ..., z,, satisfy inequality (32) whence
Zomt ot b2 < 9. (33)

Therefore, if relatlon (31) becomes an equality in a certain position of
the system, then the virtual displacement must satisfy relation (33) and
conversely: ‘a displacement satistying relation (33) is a virtual displac-
ement.

If the sign ,, <> appears in relation (33) for a certain virtual dis-
placement dz, ..., 0z,, then the displacement —dz, ..., —0z,, isnot a
virtual displacement; hence the given virtual displacement is irreversible
(p. 427). On the other hand, if the displacement éx,, ..., 82:; is reveresible,

bR

the sign ,, = "’ must appear in (33).
Collecting the results obtained, we can therefore say:

If the constraints of a system are defined by the relations:

Fi2y, ..., 2,) = 0 G=12..,m),
D,(2y, ..., 2,) 20 (r=1,2,...38),
then the virtual displacement 8z, ..., 8z, in a given position of the system
satisfies the equations:
ﬂ?6+fw+”%) G=12..m (I
i1

as well as those relations from among

Zl(—g%éxﬁrg%@ymL%az,)go (r=1,2,...,8) (II)

i=

for which the equality ®, = 0 holds in this position of the system.

Example 6. Let us assume that a material point is constrained to
remain within the sphere 2% -+ 42 +- 22 — > = 0 or on its surface. The
coordinates z, y, 2, of this point must consequently satisfy the inequality

22+t 22— < 0. (34)
If the point lies inside the sphere then the inequality
a? 4yt 22— <0 (35)
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holds; in this position the point can have an arbitrary velocity and there-
fore every velocity is a possible velocity. It follows from this that every
displacement is then a virtual displacement.

If the point is on the surface of the sphere, then

2?2 4 y? 42— 12 = 0, . (36)

and possible velocities are velocities tangent
to the sphere or velocities having senses
towards the interior of the sphere. In that
case the virtual displacements are therefore
displacements whose directions are tangent
to the sphere, as well as those whose directions
are not tangent, but have a sense towards the
interior of the sphere (Fig. 308).

By (II) the virtual displacement dx, dy, dz, satisfies the inequality
which we obtain by differentiating (34):

2000 + 2y 0y + 2202 <0, e wdr+ydy+208=0.

Example 7. A material point, tied to a string of length I attached to
the Zrigin of a coordinate system, is constrained to remain on the surface
z = 2® + y2. The coordinates ot the point theretore satisfy the relations:

2——yt =0, 2+ 9y 22—PR <0 (37)

If the string is not in tension, i. e. if 2% 4 42 4 22 — [2 < 0, then the
virtual displacements satisfy only the equality

0z — 2z dx — 2y 8y = 0. (38)

It the string is in tension, then the point occupies a boundary posi-

tion; hence x* - y* 4- 22 — 2 = 0; consequently in this case the inequality

xdr+ydy+2d<0 (39)

must hold in addition to the equality (38).
From (38) we get

0z = 2x ox + 2y dy, (40)
whence after substituting in (39)
(1 4+ 22) éx + y(1 + 22) oy < 0. (41)
Let us put
w = z(1 4 22) dx + y(1 4 22) dy. (42)
Hence, if ¥ = 0, then '
Sy = [w— (1 4 22) ]/ y(1 + 22). {43)

28
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Therefore, for every value dz and every non-positive value of w we
obtain from (40) and (43) the virtual displacement o, dy, dz, satisfying
relations (38) and (39).

§ 3. Principle of virtual work. Virtual work. Let a holonomo-sclero-
nomic system consist of » material points 44, ..., 4,, at which the forces
P,, ..., P,, are applied. Let us give the system an arbitrary virtual dis-
placement 6—81, ..., 8s,,. The work of the forces P,, ..., P, on this displace-
ment is

8L =P, 85 + ... + P, 0s, = DP, 3s.. ey
i=1

I %, 0yy, 024, ..., 02y, 0y,, 0z, are the projections of the vectors
0sy, ..., 08,, then

8L = 2(P;_bw; + P, oy, + P, 62,). (I’
=1

The work defined by formulae (I) and (I') is called the virtual work of
the forces Py, ..., P, on the virtual displacement ds,, ..., ds, (having the
projections dxy, ..., 6z,).

Remark. The virtual work is denoted by ¢’L (with the prime) because the sym-
bol 4L could suggest the supposition that L is a function and 6L an expression de-
fined by formula (18), p. 428.

If the forces Py, ..., P,, have a potential V, then by (III), p. 211, we
have P; = oV | ox,, Piﬂ = oV | Oy, P;, = oV | 0z,
From (I') we get
, LN 14 oV oV

1

whence by (18), p. 428,
O'L = dV. (1"

Example I. A point is constrained to the sphere a2 4+ 32 - 22 —
— 1% = 0. The virtual displacement is defined by the equation

x0xr 4+ yoy + 202 =0.

If the force P acts on the point, then its virtual work is

8L = P, dx -+ P,y + P, 6z (2)
Let us assume that z = 0. Consequently
0z = — (x 0w + y dy) | 2, (3)

whence after substituting in (2)
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0L = [(Pyz—P,x) éx + (P,z— P,y) dy] | 2. (4)
The values dz, dy, in formula (4) are arbitrary.
I
P,z2——P,x=0, P,z—P,y=0, (5)

then we obtain as the virtual work ¢’L = 0 for every virtual displacement.
Conversely, if 'L = 0 constantly, then taking in formula (4) first oz = 1,
dy = 0, and then dx = 0, dy = 1, we obtain equations (5) which express
the fact that the direction of the force P passes through the origin of the
coordinate system (or through the centre of the sphere), i. . that the
force is normal to the surface of the sphere.

The results obtained can be verified in the following way. Let us note
that the virtual displacement at an arbitrary point of the sphere is every
vector tangent to the sphere at this point (p. 422). The virtual work of the
force P will therefore be constantly zero then, and only then, when the
force P is perpendicular to every virtual displacement, and hence to a
plane tangent to the sphere, i. e. when the direction of the force is normal
to the surface of the sphere.

Principle of virtual work. Let a holonomo-scleronomic . system of
material points A,(xy, 41, 21), ..., A 4@, Yu, 2,), be acted upon by forces.
The forces that cause the system to maintain the constraints are called
reactions, and the forces that act at the points of the system and are
not reactions are called, in order to distinguish them from the former,
acting forces. When the system is at rest, i. e. in equilibrium, the acting
forces are said to balance one another. :

It is obvious that a system does not have to be at rest even when the
acting forces balance one another: e. g. a material point on which no forces
act can move with a uniform motion.

Let us assume that a system of points is in equilibrium. At each
separate point the forces acting on this point are therefore annulled by

the reactions. Denoting by Py, ..., P, the forces acting on the individual
points, and by Ry, ..., R,, the reactions, we hence obtain:

P+ R =0 P,+R,—0, .., P,+R,=0. (6)

Let us consider an arbitrary virtual displacement ds,, ..., ds,. The

work of the acting forces and reactions on this displacement, in view of
(6), is
(P, +Ry)ds; + ... + (P, + R,) ds, = 0, (7

(Py 88, + ... + P, 0s,) + (R, 08, + ... + R, &s,) = 0. (8)
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Experience shows that if there is no friction, the work of the reactions
on every virtual displacement is non-negative.

For example, if & point is constrained to Temain within a certain smooth
gphere, or on its surface, then, in the case when the point is on the sphere, the reac-
tion is directed towards the centre of the sphere. The virtual displacement is either
tangent to the sphere or it has a sense towards the interior (p. 433). In the first case
the work of the reaction is zero, but in the second case it is positive.

' Therefore, under the assumption that there is no friction, we have

By (8) _ _ _
P,ds; 4+ ... +P,0s,=— (R, 88, ... + R, ds,); (10)
hence from (9) we obtain
P, 8s; + ...+ P, ds, < 0. (11)

The expression on the left side of the inequality (11) represents,
according to (I), p. 434, the virtual work of the acting forces.

Therefore: if there is mo friction and a system ts in equilibrium,
the work of the acting forces for every virtual displacement is either zero or @
negative number.

If the virtual displacement —58‘1, ..., 08,, is reversible (p. 427), then
— 08y, ..., — 08, is also a virtual displacement. In the case of equilibrium,
(11) as well as

P38 —...—P,35,< 0 T (12)
hold.
*From (11) and (12) it follows that
P, 0s; + ... + P, 8s, = 0. (13)

Therefore: in the case of the equilibrium of a system the virtual work
of the acting forces is equal to zero for every reversible virtual displac-
ement.

In particular, if the constraints are bilateral, every virtual displac-
ement is reversible and consequently the virtual work of the acting forces
is then zero for every virtual displacement.

The condition of equilibrium obtained is a necessary condition.
Experience teaches that it is also sufficient.

This condition is known as the principle of virtual work.

We can state it as follows:

Principle of virtual work. If a system of n material points A,,..., A4 ,,is
holonomo-scleronomic and there is no friction, then the necessary and suf-
ficient condstion for the equilibrium of the acting forces Py, ..., P,, is that
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for every virtual displacement Sx., ..., 6z, the virtual work of the acting
forces be zero or a negative number, i. e. that the relation

_ 8L = (P, dx;+ P; oy, -+ P, 02) < 0 (1)
=1
hold.

If the constraints are bilateral, condition (11) assumes the form

&L — Z(P,-x dx; + P,” Sy, + P‘, 82;) = 0. (I11)
t=1

In many cases the principle of virtual work can be proved. We aecept
it as a law verified by experience in all those cases in which the concept
of friction is defined. In the general case it can be said that friction does
not appear in a system if the principle of virtual work applies to the
system.

The importance of the principle of virtual work consists in the fact
that it gives the condition for the equilibrium of the acting forces without
the aid of the reactions.

Example 2. Lot A be a free material point. Let us denote by P the
sum of the forces acting on A. The virtual work is 6'L = P s, where ds
is a virtual displacement. In the case of equilibrium ¢'L = 0, i. e.

Pds=0 (14)

for every virtual displacement. Since the point A is free, ds is arbitrary.
It follows from this, in view of (14), that P = 0. For were P == 0, then
assuming that ds has the direction and sense of the force P, weshould have
P 6s = |P| - [3s] = 0, contrary to (14).

We have thus veritied the principle of virtual work in the case of
a free point.

Example 3. A material point 4, subjected to the action of the force P,
is constrained to remain on the surface 8. In the position of equilibrium
the virtual work is 'L = P 8s = 0, where ds is a virtual displacement and
hence an arbitrary vector lying in the plane IT tangent to the surface S at
the point A (p. 422). It follows from this that P | II. Conversely, if
P | II, then obviously 6'L = P ds = 0, and hence the point 4 is in the
position of equilibrium.

Let us assume now that the point 4 is constrained to lie on one side of
the surface S. The constraints are consequently unilateral. In the case
of equilibrium we therefore have 8'L = P ds < 0 for every virtual dis-
placement. If ds lies in the tangent plane I, then it is a reversible displa-
cement (p. 427), and hence P ds = 0. It follows from this that P | II.
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The most general virtual displacement is any veet or (whose origin
is at 4) directed towards that side of the surface § on which the point A
lies. Since P s < 0, P has a sense in the direction of the surface S (i. e. it
presses the point 4 tc the surface ). Conversely, if P | IT and P has
a sense in the direction of the surface S, then, as is easily seen, 6'L, =
= P és < 0 for every virtual displacement. The point is consequently in
the position of equilibrium.

Example 4. The material point A4, subjected to the action of the
force P, is constrained to remain on the curve €. In the position of equi-
librium the virtual work for every virtual displacement ds is 8'L =
= P ds = 0. Since s is an arbitrary vector tangent to C' at the point 4,
P is perpendicular to C.

Conversely, if P is perpendicular to €, then obviously P és = 0, and
hence the point is in the position of equilibrium.

Example 5. A lever AB is acted upon by weights Q,, Q,, suspended
from the points 4, B, and as the weight Q acting at the contre S of its
mass. The acting forces lie in a vertical plane perpendicular to the axis of
rotation at the point O, while OS | AB. Determine in the position of
equilibrium the angle ¢ which O8 makes with the vertical (cf. example 1,
p. 274).

Let us denote by ds;, s,, ds, the virtual displacements of the points of
application 4, B, 8. The lever can only rotate about its axis. The possible
velocities, and — as a consequence -— the virtual displacements of the
points A4, B, S are perpendicular to 04, OB, 08, (Fig. 309). Denoting
by dw an arbitrary angular velocity, we consequently have:

[8s,] = 04 8w, |[8s)) = OB b, |bs| = 08 . (15)

In the position of equilibrium the virtual work is zero, e. i. Q, ds, +

+ Q, 08, + Q ds = 0. Calculating the scalar products and denoting the

absolute values of the forces by @, Q, @, we obtain by (15)

(@1-O0Acosgp + Q- 08 sing—@Q,- OB cosg) dw = 0, whence after
dividing by éw

tang = (Q,- OB—Q,-04)/ Q- 08. (16)

Formula (16) was obtained before in another way (cf. formula
(6), p. 275).

Example 6. On an inclined plane making an angle « with the
horizontal there lies a heavy point 4 which remains in equilibrium under
action of a force P having a horizontal direction (Fig. 310). Determine the
force P under the assumption that there is no friction.



[§3] Principle of virtual work 439

Let us denote by Q the weight of the body and by ds an arbitrary
virtual displacement. The virtual work is ¢’L = Q s + P és. In order
that equilibrium occur, we must have for every virtual displacement
8L L0, 1 e
(17)

Fig. 309. Fig. 310.

Let us first.consider the virtual displacement ‘88’ having the direction
of the inclined plane. Under this agsumption ds’ is a reversible displace-
ment; consequently (17) assumes the form of the equality

Qds’ 4+ Pés’ = 0. (18)

Let IT bea vertical plane passing through 4 and perpendicular to thein-

clined plane, andlet 8s' | IT. Therefore Q ds' = 0, whence by (2) P - 88’ =
= 0,i.e. P | 0s’. Hence P lies in the plane II.

Let us now assume that s’ lies on the inclined plane and in the

plane IT (Fig. 310); giving the displacement s’ a downward sense
and putting @ = (Q|, P = |P|, we obtain from (18)

Q|s'| sin x + P|3s'| cos x = 0. (19)

The sign ,,-+ depends on the sense of the force P. From the equality

(19) it follows that it is necessary to take thesign ,,—. Hence the force
P must press the point to the plane. Using thesign ,,~—¢ we obtain from (19)
P — Qtanx. (20)

We have thus determined the direction, sense, and magnitude, of
the force P under the assumption of equilibrium. From (20) it follows
eagily that the sum Q - P is perpendicular to the inclined plane.

In order to show that equilibrium really occurs, it is necessary to
prove that condition (17) holds for every virtual displacement. In order to
demonstrate this, let us resolve the arbitrary displacement ds into two
displacements: ds” perpendicular to the inclined plane and ds’ lying
on the inclined plane. The work of the forces P and Q on the displace-
ment ds’ is zero, because P + Q | ds’. The displacement 8s” and the sum
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P 4+ Q have the same direction, but opposite senses; hence the work of
the forces P and Q on ds” is negative. It follows from this that the work of
the forces P and Q on the displacement s is negative. Relation (17) there-
fore holds for every virtual displacement. Consequently the forces Q and P
balance each other..

Example 7. Rigid body. By appealing to the principle of virtual work
we shall now derive the conditions for the equilibrium of forces acting on
a rigid body.

Unconstrained body. Let theforces Py, ..., P,, having origins 4, ..., 4,,
act on a free rigid body. Let us give the body an arbitrary virtual displace-
ment and denote by—égl, ..., 0s,, the displacements of the points 44, ..., 4 ,.
Hence by (I), p. 434, the virtual displacement is

8L =P, 8s; + ... + P, 8s,,. (21)

In example 4, p. 429, we considered the virtual displacement of a
rigid body.

Let the virtual displacement of the body be a translation (p. 429); the
displacements of the points are therefore equal Su. By (21) we have
0L =P, Su+ ...+ P, éu-—( + .. +P)6uPutt1ngP_—P1—l— .+
-+ P,, we obtain

6'L = P du. (22)

Let O be an arbitrary point of the body and [ an axis passing through
0. Let us give the body a virtual displacement, in which displacements
of the points are proportional to the velocities during a rotation of
the body about the axis ! with an angular velocity Sw. By (26), p. 429, we
obtain

68,':0A,' X 660 (1/= 1, 2,..., ),
whence by (21) &L = Py(04; X éw) + ... + P4(04, X éw). Since
a(b x ¢) = c(a x b) (formula (IT), p. 13),
8L = dw(P, X O4,) + ... + dw(P, x 04,).
But P, X 04, = MomoP,, etc. Consequently
8'L = bo(MomoP; + ...+ MomoP,) = dw - M, (23)
where M is the total moment of the forces with respect to O.

Let us denote by dw the component of dw with respect to the axis [,
and by @ the angle which M makes with the axis I. Then ow - M =
— dw - |M| cos p. Since the moment of the acting forces with respect to the
axislis M; = |M| cosg, by (23)

O'L = M; dw. (24)
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The most general virtual displacement of a rigid body is 'a com-
position of the displacements defined by formulae (25) and (26), p. 429.
Therefore for the most general virtual displacement

0L =P bu-+ M o, (25)

where P denotes the sum of all the acting forces, M; the moment with
respect to an arbitrary axis I, du an arbitrary vector, and dw an arbitrary
number.
We now proceed to determine the conditions for equilibrium.
Let us assume that the system of acting forces is in equilibrium. Hence
the virtual work 6'L on every virtual displacement is zero. Giving
the body an arbitrary displacement du, we have by (22) P du = 0, from
which it follows that
P =0, (26)

for were P =+ 0, then choosing ‘bu in the direction of P, we should have
P du = 0.

Let us now select an arbitrary point O and an axis ! passing through
0. By (24) M; 6w = 0 for every dw; hence M, = 0. Since ! is an arbitrary
axis passing through O, the total moment with respect to O is

M=o (27)

In this way we have proved that the equalities (26) and (27) are
necessary conditions for the equilibrium of the acting forces. Weshallnow
show that they are likewise sufficient conditions.

For if the equalities (26) and (27) hold, then the virtual work given
in the most general case by formula (25) is obviously zero.

- We have therefore obtained the conditions of equilibrium for a free
rigid body, which were derived in another way on p. 244.
We shall now consider several cases of equilibrium of a constrained

body.

Body having a fixed point. Let a body have the point O fixed. The
instantaneous motion of the body can only be a rotation about an axis
passing through O. Consequently the virtual work is expressed by for-
mula (24). :

If the acting forces balance one another, then ¢'L = 0, whence by
(24) M, dw = 0. Since dw is arbitrary, M; = 0, where ! is an arbitrary
axis passing through O. It follows from this that the total moment with
respect to O of the forces acting on the body is M = 0.

Conversely, if M = 0, then M, = 0 with respect to every axis ! pass-
ing through O. Hence by (24) 6'L = 0 constantly.
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Therefore: a system of forces acting on a body having one fixed point
O is in equilibrium then, and only then, when the total moment of the
forces with respect to O is zero.

This condition was obtained before in another way (p. 271).

Plane motion of a body (p. 272). Let II be the directional plane of
a body in plane motion. The instantaneous motion of the body is either
an advancing motion with a velocity parallel to II, or a rotation about
an axis | perpendicular to /7. Consequently the virtual work is expressed
by formula (22), where du || I1, or by formula (24), where I | II. In the
case of equilibrium we therefore obtain P du = 0 for ou || IT, and M; dw =
= 0 for 1 | II. It follows from this that

Pl ITand M,=0 for i | IL (28)

It is easy to prove that the condition obtained is equivalent to the
condition that the projections of the forces on the directional plane I1
form a system equipollent to zero. If condition (28) holds, then from (22)
and (24) it follows that the virtual work is zero. Condition (28) is therefore
necessary and sufficient for the equilibrium of the acting forces.

Body having a fixed axis. Lot us assume that a body has a fixed axis [.
In this case the body can only rotate about the axis I. The virtual work is
therefore expressed by formula (24). Hence by (24) the necessary and
sufficient condition for the equilibrium of the acting forces is that
'L = M, 6w = 0, whence M, = 0 (for dw is arbitrary).

We obtained this condition before on p. 272.

Body having a fixed axis of twist. Let us assume that a body can
only rotate about a certain axis [ as well as to move along it, which is
the case e. g. with a sphere strung on a straight rigid rod. Hence the
instantaneous motion of the body is the composition of an advancing mo-
tion whose velocity has the direction of the axis ! and a rotation about
this axis, and consequently the motion is a twist about the axis [. In the
most general case the virtual work is therefore defined by formula (25),
in which éu has the direction of the axis I and dw is arbitrary.

If equilibrium occurs, then by (25)
8L = P ou + M; dw = 0. (29)

Assuming éu = 0 and dw + 0, we got M; = 0; and if we assume
dw = 0, we obtain from (29) P éu = 0. Since du has the direction of the
axis I, P | 1.

Conversely, if M; = 0 and P | [, then by (29) obviously ¢'L = 0.
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Therefore: a necessary and sufficient condition for the equilibrium of
a body which can rotate about o fixed axis and slide along it, is that the sum
of the forces be perpendicular to the axis and the moment of the forces with
respect to the axis be zero.

Screw. A rigid body which can only move so that a certain helix in
the body slides along itself is called a screw.

The axis of the screw can only slide along itself, and consequently the
velocities of the points on the axis have the direction of the axis. It follows
from this (p. 334) that the instantaneous motion is an instantaneous twist
about the axis of the screw.

Denoting by u the velocity of the instantaneous advancing motion,
by w the instantaneous angular velocity, and by % the lead of the screw,
we have by (15), p. 337,

ju] / o] = &/ 2. (30)
Since u and  have the direction of the axis I of the screw, denoting
by u and w the components with respect to the axis I of the vectors u and

w. we obtain from (30)
U = ehow [ 27, (31)

where & = 4 1, if the screw is left-handed, and ¢ = — 1, if it is right-
handed.

The virtual work is expressed by formula (25), in which dw is ar-
bitrary, and éu has the direction of the axis I of the screw, while by (31)

ou = ¢eh do [ 2m, (32)

where du is the component of du with respect to the axis /. .
Denoting by P; the projection of P on the axis I, we have P du =
= P, éu. Hence by (25) and (32)

8L = (ePh | 2n + M) dow. ' (33)
From the principle of virtual work it follows by (33) that a necessary

and sufficient condition for the equilibrium of the forces acting on a screw is
that the forces satisfy the equation

M, | P, =—c¢h|2n (34)

Example 8. Determination of stresses in the bars of a frame. Kinema-
tical method. A certain method of determining the stresses in the bars of
a frame rests on the principle of virtual work. First we shall illustrate this
method by means of an example.

Forces Py, ..., P, act at the joints of a plane frame and are in equi-
librium. In order to determine the stress in the bar BD, for example, we
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remove this bar. The remaining system of bars will again be in equilibrium,
if at the points B and D we apply the forces § and —S§, equal to the stresses
at these two points in the bar removed (Fig. 311).

Let us give the system of bars AB,
BC, CD, DA, an arbitrary virtual displace-
ment and denote by 0s,, ..., ds;, the dis-
placements of the points 4, ..., D. The
virtual work will therefore be zero, i. e.

P, 8s, -+ P, 8s, + P, 85, +
—]—P45g4—}—$(§2~—$—(§4:0,
whence

S(85, — 08,) = — (P, 85, + Py 88, - Py 85y + P, 8sy). (35)

Fig. 311.

Let us put § = 4- |§|, where the sign depends on whether the stress S
is a tension or a compression, and let us denote by dr the projection of
the difference s, — ds, on the direction of BD. With these notations the
left side of the equality (35) is S dr. Therefore, if we choose the virtual
displacement in such a way that dr = 0, then we obtain from (35)

S:—(P153_1+P25—%+P36—33+P43;4)/57'- (36)

The sought for virtual displacement is obtained by assuming that

the points A and D are fixed; consequently:
ds; =0, 0s,=0. (37)
The instantaneous motion of the bar BD (under the assumption that

A and D are fixed) is an instantaneous rotation about the centre O, which
is the point of intersection of the lines A.B and DC (cf. example 4, p. 328).

The displacements &s, and ds, are proportional to the velocities of the
points B and C' during a rotation of the rod BC about 0. Consequently
ds, and ds, are perpendicular to 4B and DO, respectively, and

|885] | |8s4| = OC | OB. (38)

Let P, zzx_l_d 5; denote the projections of__ the fo&es P,, P,, on the
directions of ds,, 8s4, and x the angle between ds, and BD. Consequently:

P, 85, = Pi|dsy|, P, ds, = Ps|dsy|, Or = |0s,| cosx. (39)
From (36) we obtain by (37)—(39)
8§ = — (P3- OB + P3 - 00) | OB cos «. (40)
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Let us now proceed the general case of aframe with joints 4,,...,4,,
at which the forces Py, ..., P,, act and are in equilibrium. In order to
determine the stresses in the bar of the frame connecting the joints 4, and
A,, we remove the bar 4,4, and apply to the joints 4, and A, the forces
S and —§, equal to the stresses at 4, and 4, in the bar removed. Since the
system of remaining bars is in equilibrium, the forces P,,..., P,, S, —S,
balance one another. The virtual work is therefore zero. Denoting by
8sy, ..., 68, the virtual displacements of the joints A4, ,..., 4, (under the
agsumption that the bar 4,4, was removed), we obtain

P, 6s; + ...+ P, 8s, + Sbs,—S 8s, = 0. (41)
Hence, putting § = 4 |S| (where the sign depends on whether S is

a tension or a compression) and denoting by dr the projection of ds, — ds,
on the direction of 4,4;, we obtain from (41)

S 6r = —(P,és; + ... + P, 8s,). (42)

If the virtual displacements can be so chosen that dr #+ 0 (i.e.so

that ds, & ds; and the difference ds, — s, is not perpendicular to 4,4,),
then from (42) we shall be able to determine S.

Now, it is possible to show that if a frame is statically determinate

(p. 297), then the virtual displacement having the required properties
always exists.

Let us denote by xy, ¥, ..., %,, ¥, the coordinates of the joints
Ay, ..., A,, and by d;; the lengths of the bars 4,4,. Consequently
(@ — 2 + (y: —y)? —df = 0. (43)

Let dx;, d0y; be the projections of the virtual displacement of the
point A4,.
Then by (43)

(@; — )0, — 6;) + (ys — ¥:)(8y: — dy;) = 0. (44)
If the bar 4,4, is removed, then the virtual displacements of the
joints are defined by equations (44) (among which the equation corres-
ponding to the bar 4,4, does not appear); from these we can calculate
the displacements.
The given method of determining the stresses in the bars of a frame
is known as the kinematical method. )

The kinematical method can be applied to plane frames as well as to
space frames.

There also exist graphical methods of determining the poss1ble
velocities (and, as a consequence, the virtual displacements ds;, ..., s,) of
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the joints of the frame by means of the so-called diagram of velocities
(virtual displacements).

§ 4. Determination of the position of equilibrium in a force field.
One of the principal problems which we shall encounter in the investiga-
tion of the equilibrium of a system of material points is the determination
of the position of equilibrium of the system in a given force field.

We shall here give the solution of this problem for bilateral con-
straints. For unilateral constraints the solution of the problem is con-
siderably more complex and we shall therefore confine ourselves to an
example (p. 450, example 2).

Let the constraints of the system of points 4, ..., 4, be defined by
the equations

Fiey...,2,) =0 Gg=12...,m). (1)
Let us assume that the system is in a force field, i. e. that the forces
Py, ..., P,, acting on the points A4,, ..., 4,, are functions of the variables

%y, ..., 2,. Therefore:
P, = Dy, ..., 2,), P,

ty

=Wy, ...,2,), P;

tz

= Xi(xl, Ty Zn)' (2)
The virtual displacements satisfy the equations (I), p. 426:
aFJ F,; T
Z(ax 8z +a 8y + (G=1,2..,m). (3)

In the position of ethbmum we have in virtue of the principle of
virtual work

n

z(P ox; + P, , 0y + Py 0z) = (4)

i=1

Since (3) consists of m equations, we can determine m of the » un-

knowns éx,, ..., dz,, giving the remaining % == 3n — m unknowns the
arbitrarily chosen values 6h,, ..., 6k;,. Determining the unknowns
0xy, ..., 6z, from equations (3) in terms of 64, ..., dh;, and substituting in
(4), we obtain after simplifying the equation

@y 6hy + @y by 4 ... -+ ay Sk = 0, (58)
where a,, ..., ay, are certain numbers depending on the position of the
system, i. e. on the coordinates x, ..., z,.

In a position of equilibrium equality (5) must hold for every set
of numbers 0k, ..., 0h;. Assuming 6k, = 1,0k, = 0, ..., 6k, = 0, we
get @, = 0. Proceeding similarly, we obtain:

a;, =0, a;=0, ..., a,=0. (6)
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Conversely, if the equalities (6) are satisfied in a certain position of
the system, then obviously equation (5) holds and consequently the given
position of the system is a position of equilibrium. Equalities (6) therefore
define the position of equilibrium of the system.

From equations (6) and (1), whose total number is &t + m = 3n,
we can determine in general 3n unknown coordinates x,, ..., #z,, corres-
ponding to the position of equilibrium of the system.

Lagrange’s multipliers. We shall give still another method of deter-
mining the positions of equilibrium of a system, called the method of
Lagrange’s multipliers.

Let us denote the left sides of equations (3) by W,, ..., W,,, and the
left side ot equation (4) by W.

Regarding dz,, ..., 6z,, as unknowns, we can say that in the position
of equilibrium every solution of the equations W, =0, ..., W,, = 0 sa-
tisfies the equation W = 0. Hence, by a well-known theorem from the
theory of linear equations it follows that W can be represented as a linear
combination of W, ..., W, i. e. that there exist numbers a,, ..., a,,, such
that for arbitrary dx,, ..., dz,, we have the identity

W=aW,+..+a,W,.

Putting 4, = —ay, ..., A, = — a,, we can write the above identity
in the form
WA W+ 4+ 2,W,,=0 or W4 S4W,=0. (1)
i=1

Writing the left sides of equations (3) and (4) instead of W, ..., W,
and W, we obtain

[\/J:

(P' ox; + P, Oy, + P; 0z;) -+

+ZA Z(aF’a +5F’a + 2 ’6z,)—0

j=1

Arranging the left side of equation (8) according to oz, ..., 8z,, we
get

é[(f’wi&- )6x+(P +Zz )ay,+
+( +218F) ]:o. ®)

Equality (7), and hence also (9), holds for arbitrary dx,, ..., dz,;
consequently the coefficients of dx,, ..., dz,, must be equal to zero:
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<, OF; <, OF; <, OF;
P+ 27 l=0 P, + g t=0 Py + 2hgl=0 ()
(t=1,2,...,n).

We have thus proved that in a position of equilibrium it is pos-
sible to choose numbers Ay, ..., An, such that equations (I) hold.

Conversely, if in a certain position of a system it is possible to choose
numbers Ay, ..., Anm, satisfying equations (I), then equality (9) holds, and
hence also (8), i e. (7). Since, in virtue of (3), for virtual displacements
W,=0,..., W, = 0,from (7) weget W = 0, i. e. (4). The given position
is consequently a position of equilibrium.

Therefore: a necessary and sufficient condition for the equilibrium of
forces in a certain position of a system is that there exist a set of numbers
Ay ey Am, satisfying equations (I).

From equations (1) and (I), whose total number is 3n +- m, we can
determine in general 3n -+ m unknowns, i. e. 4y, ..., Am, and as the coor-
dinates ;, ..., 2,, defining the position of equilibrium.

The numbers A, ..., A, are called Lagrange’s multipliers.

Remark. Denoting by Ry, ..., R,, the forces of reaction in the position
of equilibrium, we obviously have P, - R; =0, i. e.

Pix_{"Rim:O’Piv"{—Ri”:O»Piz_l”Riz:O (t=1,2,... n).
Comparing with (I), we get:

&, oF; <, OF; <, OF; .
R, :Elz,- ‘a’of R, :211,@;’, R, :Elzj a’z“ G=1,2..,mn). (II)

Example I. Two heavy material points A,, 4, ot masses m,,m,, are
connected by & rigid rod of length d (massless) and are constrained to
remain on two lines I, and I,. The line [, is vertical and the line I, cuts Iy
and makes with it an angle ¢ = 45° (Fig. 312).
Determine the position of equilibrium, assuming
that there is no friction.

Let us choose the point of intersection of the
lines I;, I, as the origin of the coordinate system
(z, y), taking the plane in which these lines lie as
the ay-plane and the line I, as the y-axis (with an
upward sense).

The equations of the lines /, and [, are = 0
and y = z. Consequently the coordinates i, ¥,
and x,, y,, satisfy the equations:
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%, =0, ya—x, =0. (10)
Since 4,4, =d,
23 4 (Y1 —Ya)? —d? = 0. (11)
Equations (10) and (11) define the constraints of the system.
The virtual displacements satisfy the equations which we obtain from
(10) and (11):
by = 0, O0yy— 0xy = 0, 2, 0xy + (Y1 — ¥3)(8ys — dya) = 0. (12)
The acting forces are the weights of the points. The projections of the
weights on the axes of the coordinate system are respectively 0, —m,g,
and 0, —m,g. The virtual work of the acting forces is equal to 6'L =
= —m,g 0y,—m,g 0y,. Intheposition of equilibrium ¢’ = 0, and hence
my 0y, + my by, = 0. (13)
Let us assume that y, — y, & 0. Selecting dy, arbitrarily we get
from (12):
oy =0, 0xy = OY,, OYs = (Y1 — Ya— %a) 0Ys/ (41— ¥Ya)- (14)
Substituting in (13) we obtain after getting rid of the denominator
[ma(yy — Y2 — @a) -+ Moy — ¥2)] 0y, = 0. (15)
Since dy, is arbitrary, equality (15) will hold only in the case when

my(Y, — Ya— Ta) + My(y; — ya) = 0. (16)

Solving the system of equations (10), (11), (16), we obtain the co-
ordinates:

=0,y =—(2my +my)d [a, xy=— (Mg +-Mg)d [a =y,

in the position of equilibrium, where a = ]/(m1 mg)? + m5.

Let us assume now that ¢, — ¢4 = 0. By (11) we have 2} —d? = 0,
whence z, =& 0. In view of this the last one of the equations (12) gives
dx, = 0, and hence the second one of the equations (12) gives dy, = 0.
Consequently by (12) the virtual displacement is the displacement:

dx; =0, 0xy,=10, 0y,=0, Oy, arbitrary.

The condition of equilibrium (13) will therefore assume the form
m, 8y, = 0. However, this equality is not satisfied, because dy, is
arbitrary.

Therefore: the position for which y, — y, = 0 is not a position of
equilibrium.
29
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Example 2. A heavy point of mass m, subjected to the action of
the force P, is constrained to remain on the surface of the sphere

22 4yt 22— = 0. (17)

We assume that the z-axis has a vertical direction and an upward

sense. Determine the position of equilibrium, assuming that friction
does not appear.

The virtual displacement dx, 8y, 6z, satisfies the equation which we

get by differentiating (17):
xdx 4+ ydy + 20 =0. (18)
The virtual work of the force P is P, dx + P, dy -+ P, éz, and that

of the force of gravity —mg dz. In the position of equilibrium we conse-
quently have

0L =P,éx+ P, oy + (P,— mg) 6z = 0. (19)
Applying the method of Lagrange’s multipliers (formula (I), p. 448)

and replacing 24 by A we obtain the following equations:
P,+A=0, P,+Ay=0, P,—mg+ i2=0. (20)

From equations (17) and (20) we can determine 1 as well as the co-
ordinates x, y, z, of the position of equilibrium.

Calculating z, y, z, from equations (20) and substituting in (17), we
get:

A=+ VP P (P, —mgp/r. (21)
Knowing 4 we obtain from (20):
g=—P, [} y=—P,[) z=—(P,—mg) |l (22

Since we have obtained two values (21) for 2, there will exist two
positions of equilibrium.

Let us now assume that the point is constrained to remain within
the sphere (17) or on its surface. The constraints are therefore uni-
lateral and the coordinates of the point must satisty the relation

xz_'_yz_i_zz_rzé 0. (23)

In the position of equilibrium on the surface of the sphere the virtual
displacements are defined by the inequality

xdx + ydy + 202 < 0. (24)
The virtual work consequently satisfies the inequality -
P,ox + P,y 4 (P,—mg) 6z < 0. (25)
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For reversible virtual displacements, i. e. those satisfying equation
(18), the virtual work is zero and hence equality (19) holds. It follows from
this that the position of equilibrium on the surface of the sphere can only
be one of the positions given by formulae (21) and (22). In order to prove
which one of them is a position of equilibrium, it is necessary to examine
for which one of them the relation (24) implies (25).

Assuming that the virtual displacement satisfies condition (24) we
obtain by (22) after substituting in (24)

— [P, bz + P, 8y + (P,—mg) 821/ 1 < 0. (26)

We see from this that formula (25) will be satisfied only then when
—1/ 4> 0,1 e. when 4 < 0.
Therefore formulae (21) and (22) define the position of equilibrium;

3

in formula (21) it is necessary to choose the sign ,,—.

§ 5. Lagrange’s generalized coordinates. Parameters of a system. The
position of a system of points or of a rigid body is defined by means of
certain numbers. These numbers can be, in particular, the coordinates of
the points with respect to a certain rectangular coordinate system;
however, in many cases they can have another meaning.

For example, the coordinates of a point in a plane can be given by
means of the rectangular coordinates z, y, as well as by the polar co-
ordinates r, ¢, etc. In particular, the position of a system consisting of two
points 4,, 4,, whose distance d is constant and which are constrained to
lie in the xy-plane, can be defined by giving either the coordinates z,, ¥,
and z,,y,, of these points or e.g. by the coordinates x,, ,, of the centre of
the segment 4,4, and the angle ¢ which this segment makes with the
x-axis. Knowing x,, ¥4, and ¢, we determine the coordinates of the points
Ay, 4,, from the formulae:

® =&, —dd cos @, y, =y, —4dsing,
Ty =%y + dd cosp, Y=y, + Ldsing.

We can define the position of a rigid body in space similarly by
choosing an arbitrary system of coordinates (&, 5, {) attached rigidly to
the body, and giving the coordinates g, ¥y, 29, of the origin of the system
(§,m, {) with respect to a fixed system (2, y, z) as well as the angles
&y, «++» Y3, Which the axes &, 7, (, make with the axes z,y,z2, of the fixed
system. The coordinates of the points of the body are then determined
by formulae (I), p. 53.

The position of a rigid body having a fixed axis is defined by one
‘number ¢ denoting the angle through which it would be necessary to ro-
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tate the body about the axis in order that it pass from its initial position
to the given position. Choosing the axis of rotation as the axis of z and de-
noting by &, 5, £, the coordinates of an arbitrary point in the initial po-
sition, and by z, y, z, the coordinates of this point after a rotation
through the angle ¢, we have:

= {§cosp—nsing, y=Esing - peose, z= (.

Let a holonomo-scleronomic system consisting of » material points
be given.

Let us assume that to every position of a system of points which is
compatible with the constraints and near the position investigated there
corresponds a set of £ numbers ¢, ..., ¢, in such a way that to different
positions of the system there correspond different sets of numbers
91, - -+ 4% From this assumption it follows that the coordinates 21, Y1, 21
«++s Xy, Yn, Zn, of the points of the system are functions of the variables
Qs oo @1

z, = filqy ..., %), ¥ = @ilgy, .-, %), 21 = pi(das -+, qa),

Ly == fﬂ(qu oo @)y Yn = Paldy - 9z), 2n = Yaldy - qx)-
We write the above equations more briefly in the form:

z; = fiqy, ..., 9)y Y= @iqy, -0 Qr), 2= Vi@ -5 Ti), (I
(t=1,2,..,n).

In general, we assume that the functions f,, ®i, ¥y, are together with
their partial derivatives continuous in a certain region of the variables

91, ---» 4%, and moreover that to different sets of numbers Q1s - -+ Gz, there
correspond in this region different sets of numbers Tyy eney 2y
The numbers g¢,, ..., g4, are called the parameters of the system or

Lagrange’s generalized coordinates. .

The coordinates x,, ..., z,, with respect to a certain inertial frame are
called natural coordinates in order to distinguish them from Lagrange’s
generalized coordinates.

They are obviously a particular case of Lagrange’s coordinates.

Parameters are said to be independent if to every set of the variables
q1 -+ 9% the functions (I) correspond to positions of the system com-
patible with the constraints.

In the case of bilateral constraints we can in general choose indepen-
dent parameters. For let the constraints of the system be defined by the
functions:

Fyzy, ...,2,) =0 =12, .., m). (1)
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From equations (1) we can in general determine m unknowns kno-
wing the remaining k== 3n — m. Therefore choosing arbitrarily k
variables from among x;,...,2,, and denoting them by ¢, ..., q;, we shall
be able to represent the variables z,, ..., z,, as functions of the variables
qy, - 91 intheform (I). Since to the arbitrarily chosen values ¢,, ..., ¢;,
there correspond the variables x,, ..., z,, satisfying the system of equations
(1), the parameters are independent.

The number k = 3n — m was called the number of degrees of free-
dom of the system (p. 421).

Therefore: the number of independent parameters is equal to the number
of degrees of freedom of a system.

If the parameters are dependent, then in the case of bilateral con-
straints certain relations

¢i(QI’ e qy) =0 (7 =12 ..9) (2)
must hold among those parameters g, ..., ¢, which define the position
of the system compatible with the constraints.

Choosing certain &k — p parameters arbitrarily, with their aid we
can determine the remaining parameters from relations (2). The para-
meters chosen will be independent parameters.

In the case of unilateral constraints the parameters defining the

position of the system compatible with the constraints must satisfy,in
addition to relations ot the form (2), certain inequalities of the form
YAq, ) S0 (r=12,...,9). (3)
If the parameters are independent, then the functions (I) define the
constraints of the system, because they give all of its positions compatible
with the constraints. If the parameters are dependent, then in addition to
functions (I) it is necessary to give relations (2) and (3), which the para-
meters corresponding to the positions of the system compatible with
the constraints must satisfy.

Example I. A point is constrained to lie on the surface of the sphere
x? + y* + 2* = r2 Choosing arbitrary » and y, we have for the upper
hemisphere z = V r? — 22 — 42, Hence if we put
T=1¢q;, Y=¢, then 2z= Vrz — q% — qg. (4)
The numbers ¢, and ¢, are independent parameters.

Example 2. A material point 4 is constrained to remain on the sur-
face of the sphere * 4- %2 -} 22 — #* = 0. Denoting by ¢, ¢,, g5, the co-
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sines of the angles made by the vector OA (where O denotes the origin of
the coordinate system) with the coordinate axes, we have:

T=1q1 Y =1 2Z=1qs ()
The parameters ¢y, ¢, ¢;, are dependent, for they must obviously
satisfy the equation
G+ g5+ — 1= 0; (8)
from this equation (when z > 0) we obtain ¢, = l/l — ¢ — ¢3, whence by
substituting in (5):
=gy, y=ry z=rl1—¢ —g (7)
The parameters ¢, and ¢, in representation (7) are independent.

Virtual displacements. Let the constraints be defined parametrically
by the functions:

o= [ - Q) Yi = @y, .-, 9x)s  2i=p{dy, .- qx),  (II)
(t=1,2,..,n).
Let us assume that the parameters are independent.
If we give the system an arbitrary motion compatible with the con-
straints, then ¢, ..., ¢, will be functions of the time. Differentiating (II),
we obtain:

Z . a € .
i = fq+ g yi= 0 D,
8 0 k
8 .
Zi==-qi + . + qk, (=12..,n0). (8)
Conversely, 1f we assume that 91, ---, 91, are arbitrary functions of

time, the formulae (II) obviously define the motion of the system com-
patible with the constraints; hence equations (8) give the velocities of the
points of the system in this motion. It follows from this that it the system
is in a certain position defined by the parameters ¢y, ..., ¢, then all the
systems of possible velocities in this position are obtained from (8) by
substituting arbitrary values for ¢j, ..., ¢;. Assuming:

oy, =x;, ..., 02, = 2,
8¢, = qi, v OQy = Qi

', etc., we obtain from (8):

and writing 0z

oq, 8
a-%'i ox Xy 53/: ayi
oy = 2 coo + =— O, Oy = == & . oqr.,
Xy aql 1 + _I" aqk Tk Y aql d1 + _I_ aq x
0z, 0z, .
6zi:8716q1+...+ aqkéqk (t=12,...n). (I1IT)
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Substituting arbitrary values for dq,, ..., ¢y, in formulae (III), we
obtain the virtual displacements of a system. Conversely, every virtual
displacement of a system is obtained by the substitution of suitable values
of 6qy, ..., 09 '

Let us note that the system of formulae (III) can be obtained by
forming the derivatives of the system of formulae (II) formally, and then
writing &x;. dy;, 02;, instead of dz;, dy,, dz;, and dqy, ..., dq,, instead of
dgy, ..., dq.

In example 1, p. 453, we have from formulae (4):

dx = Oqy, Oy = Oqy, de = - (q1 09y + ¢ 6¢a) / Vl —q*— g

Choosing the values of g, and dg, arbitrarily, we obtain the virtual displace-
ments éx, dy, 8z, in the position corresponding to the parameters g, and g,.

If q, ..., ¢x, are dependent parameters and relations of the form
(2), p. 453, hold among them, then dqj, ..., 6¢;, are not arbitrary numbers
in formulae (III), but — as can be shown (cf. the proof of formula (15),
p. 426) — they must satisfy the system of equations

a " a '] .
0P s 1 1 Pis g —=1,2, ..., 0). IV

In example 2, p. 453, we have from formulae (5):

0x = rdqy, Oy = r by 82 =1 0q,
where by (6), p. 454, the relation
1 69, + g2 693 -+ g5 6¢3 = 0 holds among dg, dg,, Igs.

It can be shown (cf. the proof of formula (II), p. 432) that it the
constraints are unilateral and in addition to relations (2), p. 453,
relations (3) hold, (p. 453), then dq,, . .., 8¢x, must satisfy besides (IV) those
relations from among

o,
Gl
for which the equality @, = 0 holds in a given position of the system.

6q}+"'+%6q"§0 (r=1,2,...,8), (V)

Virtual work. Generalized forces. Let the constraints of a system be
defined parametrically by the equations:

Xy = fi(QI’ L) Qk), Yi — Wi(QI’ (RRS] Qk)s 2; = TPf(Qn LR Qk), (9)
(t=12,...,n)
The virtual displacements are expressed by formulae (ILI), p. 454.
If the parameters are independent, then dqy, ..., gy, are arbitrary
numbers. In the contrary case certain relations (IV) and (V) hold among
them.
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Substituting in (I'), p. 434, the expressions (III), p. 454, for dx;,
dy;, 62, we obtain

o, ox;
'L = Z[P,-x(—x—éqﬁr +a—;6qk)+

b ~(10)
oY, y, 0z; 8zf 10
+Pw(ag Oqy + ... + 57 6qk)+P,z(aq 0, + ... 4 5 6
Arranging the terms according to dq, ..., dqx, we get

n ay1
6qli=21( .waq +P,yaq + P, aq)+ .+

< 0x; oy, E)z-)
é P, 4+ P, Ly p. T
+ Qk;( iy aqn iy aqk _I_ i, 3%

Denoting by @, ..., @i, the sums appearing as coefficients of 891, .-
oqy:
n
ayz azz
Ql—z( zmaq —'_P:vaq_l"P ‘ﬁ)y
................................. (VI)

which we write more briefly as
o < ax, ay@ azi - ’
QJ“ZZ( zxaq_'"quaq_*_Ptz“a“q") (?*‘1’2;’70) (VI)
We obtain trom this in virtue of (10) 6'L = @, 6q,+ ... + Q, 8qs, i.e.

k
&L= D0, 8q; (VII)
j=1

The expressions @, ..., @, defined by formulae (VI) and (VI') are
called the components of the generalized force or briefly generalized forces.

Comparing formula (VII) with formula (I’), p. 434, we see that the virtual
work is expressed by means of the components @; of the generalized forces and by
means of the displacements d¢; in a similar manner as by means of the components
P;x, P,-y, sz, and the displacements dx;, dy;, dz;.

Conditions of equilibrium. Let the constraints of a holonomo-
scleronomic system be defined be means of the parameters q;, ..., ;. By
(VII) condition (II), p. 437, of the equilibrium of a system assumes the
form

k
8L = 3Q, 6q; < 0. (VIII)
ji=1
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If the constraints are bilateral, then ((ITI), p. 437)
k
8L = 2Q; 6q; = 0. (IX)
i=1

The generalized forces @, ..., @, appearing in formulae (VIII) and
(IX) are defined by formulae (VI) and (VI’).

If the parameters ¢, ..., q;, are independent, then 8q1, ..., 8¢y, are
arbitrary. Hence by (IX), taking d¢; = 1and 8¢y = 8¢ = ... = d¢;, = 0,
we get ¢; = 0 and similarly @,= 0, ..., @, = 0.

Therefore: if the parameters defining the position of a holonomo-
scleronomic system are independent (and there is mo friction), then the
necessary and sufficient condition for the equilibrium of the acting forces is
that the generalized forces be equal to zero:

@&;,=0 (1=1,2,..,k). (X)

If the parameters g¢,...,q; are dependent and satisfy rela-
tions (2) or (3), p. 453, then dqy, ..., d7;, are not arbitrary numbers:
they must satisfy relations (IV) or (V), p. 455. The position of equilibrium
is then determined in the same way as for the natural coordinates, i. e.
in the manner given on p. 445.

Remark. Natural coordinates are a particular case of generalized
coordinates. Therefore, if the natural coordinates of the points of a system
are Xy, Yy, 21 -+ o5 Ly, Yus 2n, then putting:

Tr=4Gq1, Y1=q2 21 =4q3 .. Zpn=q3n

we can apply the formulae (I)—(X) of the present §. The results obtained
in this § are hence a generalization of the corresponding results for the na-
tural coordinates.

Example 3. Four rods of equal length a, lying in a vertical plane, are
pin-connected at 4, B, C, and D. The joint 4 is fixed and C can move
only along a vertical line ! passing through A. Horizontal forces P and
—P act at the joints B and D, while a vertical force Q (having a down-
ward sense) acts at C. Determine the position of equilibrium neglecting
the weights of the rods and assuming that there is no friction and that the
rods can move only in the vertical plane in which the forces P and Q lie
(Fig. 313).

Let us take 4 as the origin of the coordinate system (z, y) of the
vertical plane in which the rods lie and the line I as the y-axis (with a
downward sense). Then the position of the system will be defined by giving
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the angle & between the rod 4B and the y-axis. Conséquently « is a para-
meter of the system.

From Fig. 313 it is seen that the coordinates x;, ¥y, &,, ¥, and
%3, Y3, of the joints B, C, and D, are the following:

;= —asinx, x,=0, x; = @ sin «,
Y, = O COS &, Y2 = 20 cosx, Y; = @ COS «x.

(11)
The virtual work is

0'L = — P dx, + Q 8y, + P dx,, (12)

where P = |P| and @ = |Q|. By (11) we have:

ox, = — a cos & Ox,
0y, = — 2a sin & dux,
0%, = a cos « 8.

Substituting these values in (12), we get

'L = 2a(P cos x — @ sin &) dx. (13)

Fig. 313.

\ In the position of equilibrium ¢'L = 0,
hence 2a(P cosx —@sin«) éx = 0; consequently P cosx —@sinx = 0;
whence

tanx = P/ Q.
Example 4. A system of rods 4,4, 4,4, ..., 4, 4,, pin-con-
nected at 4, 4,, ..., A,_,, is given. Forces Py, P,, ..., P,, with origins at

T Ay, A,, ..., A, act on the system. The point 4, is fixed. Determine the
position of equilibrium, assuming that the rods and the forces lie in one
plane.

Let us take the point 4, as the origin of the coordinate system (x, y)
of this plane and denote by a,, a,, ..., @,, the lengths of the rods, finally by
%y, Y1r L2y Yg> - > Ly Yy the coordinates of the points 4,, 4,,..., 4,
(Fig. 314). We have:

Ty = @y COS &y, Ty == Uy COSX; |+ AR COS8 Xy, ...,

14
Z, = G,C08%, + ... + a, cosx,, (14)

Yy == 0y SN oy, Y, = @y sinx; 4 a,sine,, ...,

Yo = @ 8ine; + ... + a,sine,.
From (14) and (15) it follows that the angles oy, &y, ..., %p, define the
position of the systern of rods. Consequently the variables «,, ..., ,, are

the parameters of the system, and since they are not related in any way,
they are independent parameters.

(15)
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Differentiating (14) and (15), we obtain:
dxy=—a, sinx, ox, ..., dx,=—a, sin &, dx;—...—a, sin «, dx,, (16)
dyy=  aycosx, 0xy, ..., OY,= @ CcOS&, Oxy4...4a, cosa, 6x,. (17)
In the position of equilibrium the virtual work is

O'L = (P,, 0wy + Py 0y;) + ... + (Pn, 62, + P, Oy,) = 0. (18)

Fig. 314. Fig. 315.

Substituting the values (16) and (17) in (18), we get after arran-
ging terms
o[— Py, + ... + Py )sina, +(Py, + ... + P, ) cosa] 8y +
+ a[— (Py, + ... + P, )sinoa, + (Py 4 ... + Pn”) cos &, x5 + (19)
+ o+ af— P, sinx, + an co8 o, ] dx,, = 0.

The coefficients of d«;, ..., dx,, are the generalized forces @y, ..., @,.
Since equality (19) holds for every set of numbers dx,, ..., dx,, the gene-
ralized forces are zero. Consequently:

—(Py, + ...+ P, )sina; + (P, + ... + P, ) cosx, =0,
— (Py, + ... + Py ) sina, - (Py, + ... + an) cos o, = 0, (20)

— P, sino,+ P, cosx,=0.

From equations (20) it is easy to calculate the tangents of the angles
&1, .-+ %y Since the tangents are equal for angles differing by 180°, we
obtain many solutions.

If the coefficients of the sines and cosines in one of the equa-
tions (20) are zero, then the corresponding angle can be chosen arbitrarily.

Let us now assume that the point 4, is to remain on a line ! having
the equation x = A, which is the case e. g. when the end A4, of the rod
A,_;A, is a ring that slides on a rigid wire having the position of the line
I (Fig. 315). Under this assumption the parameters «y, ..., «,, will
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not be independent, since the relation z, = k& will have to hold, i. e.
in view of (14)

@y cosxy + ... 4+ a, cosx, —h = 0. (21)
Ditferentiating (21), we obtain
—aysing, 6x; + ... —a,sine, 6x, = 0; (22)
by substituting arbitrary values for dx,, ..., dx,_;, in (22) we obtain
O, = —(a;sina; 0oy + ... + @p_ysinew, 3 0x,_4) [ G, sine,. (23)

In view of (22) equation (19) assumes the form
a[— (Py, + ... + Py ,) sinag + (Py, + ... + P, ) cosxq] 8y +

+ @p-a[— P,y p8incyy+ (Pp_yy + Pr) cose, 4] 0 py—q +
+ a,,an cos o, Oox,, = O.
Substituting the value from (23) in (24), we get
—a) Py, + ...+ Pyt Pny cobor,)sinay 6y +
+a, (P, + ...+ Py ) cosxy Oy + ...+
—{—a,,_l[—(Pn_l,f[—an cot &,)sino, 1+ (P, _;,+ Pny) CO8 ¥, 1] 0x,_3==0.
Since dx;, ..., 8x,-, are arbitrary numbers, their coefficients are zero.

We therefore obtain a system of » — 1 equations:
— Py, +...+ P, + P, cotay)sinag + (P, + ...+ P, )cosx; =0,

...............................................................

— (P + Pn” cota,) sina,_y + (Pp_q, -+ P,,u) cosx, 1 =0.

These equations together with equations (21) constitute a system of n
equations from which we can determine n unknowns «y, ..., &,.

Example 5. A heavy ring K of mass m, slides on a curve €' lying in the
vertical plane xy. A string (massless and inextensible) passes through
the ring; one of the ends of the string is tied at the origin O of the coordi-
nate system; a heavy point A of massm,is carried at the other end (Kig.
316). Determine the position of equilibrium, as-
suming that there is no friction.

Let the equation of the curve C in polar coor-
dinates be
r = f(g)- (25)
The coordinates z,, y,, of the point K will
therefore be:
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Xy =17 Cos¢, Yy, = rsing. (26)

Let us put ¢ = AK. Denoting the length of the string by { we have

r+o—1<0. ‘ (27)

Let y be the angle between AK and the vertical, and z,, y,, the co-

ordinates of the point A. Consequently z, = z, + psiny, y, =y, —
— o cosy, whence by (26):

ZTy=1rcCosp + psiny, y,=1rsing-—gcosy. (28)

Equations (26) and (28) define the constraints of the system in terms

of the parameters 7, g, ¢, p, among which the relations (25) and (27)
hold.

The virtual work is 'L = — m,g 8y, — m,g dy,. In the position of
equilibrium ¢'L < 0; hence
my 8y, -+ mq Sy, 2 0. (29)

When the string is not in tension the point 4 is free; hence dy, can be
arbitrary. Taking dy, = 0 and dy, << 0 in this case, we should obtain
my Oy, + m, 0y, << 0 contrary to (29), which proves that the system
cannot be in equilibrium when the string is not in tension.

Let us assume, therefore, that the string is in tension (i. e. that the
equality sign holds in (27)) as well as that r > 0 and p > 0; from (26) and
(28) we obtain:

dy, = Orsing + r cos ¢ Op,

0y, = Orsing 4 r cosp dp — dp cosy - g Oy sin p. (30)

By (25) and (27) the following relations hold among dr, dp, and do:
dr = f (p) 0p, or + 80 <0, _ (31)
while dy is arbitrary.

Substituting for dy,, dy,, in (29) the expressions from (30), we obtain

(my + my) sin @ Or + (my 4 m,) r cos @ dp — m, 6o cosy + (32)

-+ mgp Sy siny 2> 0.

In virtue of (31) we can assume that dr = 0, dp = 0, and dp = 0,
whence by (32) .
myp Oy siny > 0. (33)

Since dy is arbitrary, inequality (33) will hold ‘only when
mgo siny = 0 or when siny = 0, and therefore for y = 0 and p = n. It is

intuitively evident that in the position of equilibrium we can only have
v = 0, for the equality y = w means that 4 is above K, which is obviously
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impossible in the position of equilibrium. This also follows from relation
(32), for by (31) assuming dr = 0, dp = 0, dp < 0, and dy = 0, we should
have from (32) — m, dp cosy => 0, and since dp < 0, cosy => 0, whence
Y =+ 7.

Consequently we have proved that y = 0 in the position of equi-
librium, i. e. that 4 is below K. Substituting v = 0 in (32), we obtain
by (25) and (31)

(my 4 my)(f'(¢) sin @ + f(g) cos @) dp —mq de = 0. (34)
- By (31) we can put 0
ér + dp = 0, whence dp = — or = — f'(p) g,

where dg is arbitrary. Substituting in (34), we get then
[(my + ma)(f'(¢) sin @ + f(p) cos @) + my ['(9)] dp = 0.
Since dp is arbitrary, this relation holds only when

(my 4 ma)(f'(¢) sing + f(p) cos.p) + m, f'(9) = 0. (35)

Equation (35) enables one to determine the angle ¢ in the position
of equilibrium.

Conversely, if equation (35) holds, then inequality (34) must be
satisfied. For let us denote by W the left side of this inequality. By (35)
W = —m,f'(p) dp — m, dp, whence by (31) W == — m,(ér 4 Jp). Since,
because of (31), ér -+ o < 0, whence W > 0. Therefore, if the angle ¢
satisfies equation (35), then equilibrium occurs.

We shall yet investigate for what curve C equilibrium occurs for
every value of ¢, i. e. the case when equation (35) becomes an identity.

Let us note in this connection that the left side of equation (35) is the
derivative of the function f(p)[(m, + m4) sing -+ m,]; consequently

fl@)(my 4 my) sing 4 my] = ¢ = const.
Since 7 = f(¢) by (1)

Y —

c
(my + my) sing + m,

Ifc = 0,m,; > 0and m4 > 0, then the above equation is the equation
of the lower branch of the hyperbola whose real axis is the y-axis.

(36)

Equilibrium in a potential field. Let us assume that the forces
P, ..., P, have the potential V. Consequently ((IIT), p. 211):

oV ov 14
w=m Pu=gy Pu=g (37)

P P,
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Substituting these values in formula (VI'), p. 456, we get

oVow,  oVay, aV B
4= 1(896 2 a2, +§,-_97q—f)' (59)
The potential V' is a function of the variables =, ..., z,. Expressing
them in terms of the parameters g,, ..., ¢;, We can therefore assume that V

is a function of the parametersg,, .. ., ¢,. From a well-known formula in dif-
ferential calculus on the partial derivative of a compound function, it
follows that the right side of equation (38) is the partial derivative
oV | oq,. Consequently

Q= V| dy G=1,2..k. (XI)

Comparing (37) and (XT) woe see that the components of the general-
ized forces are expressed similarly as the components of forces relative
to the natural coordinates.

Therefore: if a force field is a_potential field, then the components of the
generalized forces are the partial derivatives of the potential with respect to the
generalized coordinates.

From formulae (VII), p. 456, and (XI) we obtain

8L = Z aq, (39)

By (18), p. 428, we can therefore write
0'L = oV, (XII)
where V is considered as a function of the variables Q1 ey Qe

Formula (XII) has the same form as formula (I”), p. 434. The
difference consists in the fact that in formula (I”) we consider V as
a function of the natural coordinates x,, ..., z,, while in formula (XII)
we consider V as a function of the parameters q,, ..., ¢;.

Remark. The meaning of the expression oV is illustrated as follows. At the
moment ¢ let us give the system in a given pos1t10n an arbitrary motion compatible

with the constraints. The parameters gy, ..., gz, as well as the potential ¥V, will
therefore be functions of the time. We have

av Z 8V
i=1 3‘17

Since we can assume that ¢'j = 6g; for j =1,2,..., by (40) we have §V =

= dV / dt. In this way &V represents the rate of change (i. e. the derivative) of the

Ppotential for an arbitrarily given motion of the system compatible with the con-
straints.

(40)
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From the principle of virtual work it follows by (XII) that the
necessary and sufficient condition for the equilibrium of a system is that

8V < o. (XIII)

In particular, therefore, a position of equilibrium of a system is a po-
sition in which the potential attains @ maximum, and in the case of bilateral
constraints a position in which the potential attains a minimum.

For if we give a system an arbitrary motion compatible with the
constraints at the moment when V attains a maximum, then after a time
At the increase in the potential will be AV < 0, from which dV /d¢ < 0
(where the inequality dV /dt << 0 may hold in the boundary position for
unilateral constraints), and consequently 6V < 0 (in view of the remark
on the meaning of 6V). 1f the constraints are bilateral and ¥ has a mini-
mum value, then dV / d¢ = 0, whence V = 0.

If the only forces acting on a system of material points are the
gravitational forces, then the potential is ((13), p. 211)

V= —myz,, (41)

where m denotes the total mass of the system, and 2, the coordinate of the
centre of mass, under the assumption that the axis of z has a sense verti-
cally upwards. '

The position of equilibrium will therefore be every position at which
V is a maximum or zy,a minimum. If the constraints are bilateral, then the
position of equilibrium will be in addition to this every position in which ¥
is & minimum or 2z, a maximum.

If a heavy point 4 hangs on an inextensible string tied at the point O,
then the extrema of the potential V occur when the string is in tension and
has a vertical direction. A maximum occurs when A4 is below O, and a mi-
nimum occurs when 4 is above 0. It is obvious that the position of equi-
librium occurs only when ¥V has a maximum value (i. e. when 4 isunder O).

Example 6. Two heavy material points 4, and 4, of masses m, and
m, are connected by an inextensible string passing over a pulley. The
point m, is constrained to remain on a vertical line /. What angle does the
string make with the line ! in the position of equilibrium, if there is no
friction (Fig. 130)?

Let us take the line [ as the axis of z,, giving it an upward sense, and
the point of the axis which is at the top of the pulley as the origin of the
coordinate system. Let us denote by s the length of the string, by « the
distance of the pulley from the axis [, by z; and z, the coordinates of the
points 4, and 4,, and by z, the coordinate of the centre of mass. We have:
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2, =—(8—a/sing), z,=-—acote.
Since mz, = m,2; + M2, where m = m,; + m,,
29 = [— my(s — a [ sin ) — mya cot @] [ m.

In order to determine an extremum of z,, let us set the derivative
dz, / dp equal to zero:
— m,a cos @ | 8in%p + mya [ sin®p = 0,
whence '
COSQ = My [ My. (42)
It is easy to show that z, is a minimum for the value of ¢ satisfying
equation (42). Therefore equation (42) defines the position of equilibrium
(when m, << m,).
Another way of solving this problem is given in example 2, p. 191.
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