CHAPTER X

DYNAMICS OF HOLONOMIC SYSTEMS

§ I. Holonomic systems. In this chapter we shall consider the dyna-
mics of certain constrained systems. We shall derive for them equations of
motion in which the reactions will not appear.

Let a system of » material points be given. Let the constraints of
the system be such that only certain positions of the system are possible at
each moment. We do not assume (as in chap. IX) that the same positions
are possible at each moment: the set of all possible positions of the system
can change together with time.

An example is a point which can remain on a moving plane or a
moving eurve, e. g. a bead strung on a wire which moves or alters its shape.

If the constraints are bilateral (p.419)at the moment ¢, then the co-

ordinates xy, ¥y, 2y, ..., ¥y, Yn, 2, 0f the points of the system must satisfy
certain equations (p. 421) at the time ¢:

Fy(g, ..,z t) = 0, ..., Fop(xy, ..., 2,, t) = 0; (1)
we write them briefly as:

Fi(xy, .oy 20, 8) = 0 G=1,2,...,m). (I

If the constraints are unilateral at the time ¢, then, in addition to (D),

the relations ((9), p. 420) .

D (g, oy 2y ) X0 (r=1,2,...,9) (II)

hold.

A system whose constraints can be represented by means of relations
of the form (I) and (I1) is called holonomic.

If the functions F; and @, do not depend on the time ¢, we say that
the constraints are mdependent of the time and the system is called sclero-
nomic.

In chap. IX we investigated the conditions of equilibrium of holono-
mo-scleronomic systems. The constraints of such systems can be defined
by relations of the form (I), p. 421, and (9), p. 420:
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Fj(xl; Y15 215 - oy zn) =0 (7 = 1,2, LR m)’ (II)
q)r(xly .'91, Z]_, (A Zn) § O (Ir = ], 2’ LR ] 8)' (III)

If at least one of the functions in (I) or (II) depends on the time ¢, we
say that the constraints depend on the time and the system is called
rheonomac.

It is easy to see that a scleronomic system is a particular example of
arheonomic system; in other words, equations (I’ )and (I1'yarea particular
case of equations (I) and (II).

In general, the functions F;, @,, are assumed to be continuous and
to have continuous partial derivatives in a certain region ot the variables

xl: yl’ 21, sy xm ym zm t

The equations (I), (I'), (II), (IT"), are said to represent the constraints
in a finite form.

Just as in scleronomic systems (p. 421), we assume that the functions
(I) are independent of each other and that m << 3n. The number & =
= 3n — m is called the number of degrees of freedom of the given system.

Example. Let a material point A(z, ¥, 2) be constrained to remain
on the surface of a certain sphere which moves with a uniform advancing
motion. '

Let us denote by r the radius of the sphere, by &, 5o, £o, the co-
ordinates of the centre of the sphere at the time ¢, = 0, by &, %, {, the
coordinates at the time ¢, and by a, b, ¢, the projections ot the velocity of
the advancing motion on the coordinate axes. At the time ¢ we have
E§=§y+at,n =mny+ b, and { = { + ct. The sphere therefore has the
equation (x — &2 4 (y — )2 + (2 — {)2— 72 = 0 at the time ¢; hence

(@ — Eg— a4 (y— 1y —blP + (z— Ly—etf —r2 = 0. (2)

Hence the coordinates of the point 4 must satisfy equation (2) at
each moment; as it is of the form F(x, y, 2, t) = 0, the constraints are
bilateral, dependent on the time, and therefore the system is holonomo-
rheonomie.

If we assume that the point 4 has to remain within the sphere or on
its surface, then the constraints are expressed by the inequality

(@ — & —atf + (y —no—bt) + (z— Lo —et) —1r* < 0, (3)
and hence they will be unilateral in th s case.

§ 2. Non-holonomic systems. Not always can the bilateral constraints
of a system be represented in the finite form (I) or (I').
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Let us suppose, for example, that to each point 4 of space there
corresponds a vector H whose projections depend on the coordinates
z, y, z, of the point 4. Consequently:

Hac: 0((%, Y, Z), Hv:ﬁ(x: Y, Z), Hz = 7(%" Y, z)’ (1)
where «, f3, y, are given functions.

Let us assume that a material point can move only in such a way that
its velocity in every position is perpendicular to H. Let us denote by
z, ¥, 2 the projections of the velocity v of the material point. Therefore at
each moment the relation Hv = 0 must hold, whence

x(x,y, z) & + B, ¥, 2)y +y, y,2)z = 0. (2)
If there exists a function F(z, y, z) such that its partial derivatives
are equal to the corresponding functions «, §, y, then equation (2) can be
written in the form d# | dt = 0, whence ¥ = const = ¢, i.e. »
F(x)yxz)’“'czo' (3)
Conversely, it equation (3) holds, then differentiating it, we obtain
(2). Equations (2) and (3) are therefore equivalent in this case, and con-
sequently the constraints are holonomic, since they can be represented in
the finite form (3).
However, if the functions «, §, y, are not the partial derivatives of
a function, then equation (2) may be not equivalent to any equation of the
form (3). In this case, therefore, the constraints cannot be represented in
a tinite form and the system is said to be non-holonomic.
Equation (2) is usually written in the form
a(x, y,2)dr + Bz, y,2) dy + y(z, y,2) dz = 0. (4)
An equation of a more general form is
x(2,y,2,t)dx + p(x,y,2,t) dy + y(x, y, 2, ) dz + e(x, y, 2, 1) dt = 0. (5)
Equation (5) is equivalent to the equation
ax + Py 4 vz +e=0, (6)
where «, 8,7, ¢, are given functions of the variables z, y, z, and ¢. It con-
stitutes the necessary condition which the velocities of the points of the

system must satisty. We shall not examine non-holonomic systems more
closely.

§ 3. Virtual displacements. On p. 426 we defined the virtual dis-
placement of holonomo-scleronomic systems. We shall now consider
rheonomic systems.
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Point on a surface. Let the point 4(x, y, 2) be constrained to remain
on a moving surface S whose equation at the moment ¢ is

Fx,y,2,1) = 0. (1)
The coordinates of the point A therefore satisfy equation (1) at the
moment £.

A wvirtual displacement is said to be every displacement ds of the
point 4 with projections dx, dy, dz, satisfying the equation

gxgéx—}—%g—by—l—%—féz:& {2)

We see from this that a virtual displacement is such as if the surface §
were fixed and had the position it occupies at the moment ¢. Consequently
a virtual displacement is an arbitrary vector tangent at the moment ¢ to
the surface S at the point 4 (p. 423).

Let us give the point 4 an arbitrary motion compatible with the
constraints. The coordinates of the point will therefore satisfy equation
(1). Forming the derivative with respect to the time ¢, we obtain from (1)

8F oF oF
Denoting by v the velocity of the point 4, we obtain from (3)
oF oF oF oF _

Comparing (2) and (4), we see that we cannot take éxr = v,, 0y = v,,
and 6z = v,, i. e. 88 = v, unless oF | 8t = 0.

Therefore, in rheonomic systems the virtual displacements in general
are not proportional to possible velocities (as in scleronomic systems),
i. e. they are expressed by vectors other than possible velocities.

In particular, the displacement ds = 0 is by (2) a virtual displace-
ment (i. . dx = 0, dy = 0, éz = 0), and from (4) it follows that if
oF | ot # 0, then v = 0 is not a possible velocity.

Remark. The total differential of function (1) is
dF = d + d + Er d + Bt

If we take the differential under the assumption that ¢ = const, then
d¢ = 0; consequently

oF oF oF
dF = é;dx +5y—dy +Edz.
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Hence equation (2) is obtained by forming the differential of both
sides of (1) under the assumption that the time f — const, and then
writing 6w, 8y, dz, for dz, dy, dz, respectively.

In the example on p. 467 the virtual displacement satisfies the equation which
one obtains by differentiating equation (2), p. 467, under the assumption that
t = const. We get:

(@ — & —at) 8z + (y — 1y —bt) dy + (2 — Ly — ct) b2 = O.

Choosing dy, 0z, arbitrarily, we can determine dz from this equation,

Point on a curve. Let a material point 4 be constrained to remain on

the moving curve C' whose equations at the time ¢ are:
Fy(z,y,2,8) =0, Fyz,y,21t) =0. (7

A virtual displacement of the point A at the moment ¢ is said to be
a displacement ds (having the projections dx, dy, 6z) which satisfies the
equations:

oF, or,

ow ox

Consequently the virtual displacement is such as if the curve C' were
fixed and had that position which it occupies at the time ¢. The virtual
displacement is therefore an arbitrary vector tangent at the time ¢ to the
curve C at the point 4 (p. 424).

In this case also the virtual displacement is generally not propor-
tional to a possible velocity. For by (7) the possible velocity v satisfies the
equations (which are obtained by forming the derivatives of equations (7)):

oF, oF, oF, oF
oy

oF, oF, . orF, or,
6x+a—y6y+a—zéz_0, 675"*_—3?63/_'—@&_0' (8)

’é';vx+ —_,Uu_'_ oz U, 'I“ _ét—lz 0,
oF, (9)
ox
I oF, /0t &= 0 or 0F,/ 0t = 0, then by (8) and (9) we cannot take
0x = v, Sy =wv,, dz=v, 1. 6. 0s =v.

oF, | OF, | oF,
Ux+3gvu+?;”z+‘ﬁ—0-

Let us still note that equations (8) are obtained by forming the
differentials ot equations (7), under the assumption that ¢ — const, and
writing dz, dy, dz, instead of dx, dy, dz.

Example I. A material point 4 is constrained to remain on a para-
bola rotating about the z-axis with a constant angular velocity w (positive,
if the rotation takes place from right to lett). At #, = 0 the parabola lies
in the xz-plane and has the equation

z =22 (10)
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The parabola generates a paraboloid of revolution z = a* 4 y* The
position of the parabola at the time ¢ is obtained as the intersection of
the paraboloid with the plane « sin w4 y cos wt = 0. The coordinates of
the point A consequently satisfy the equations:

2+ y2—2=0, wsinwt+ ycoswt=20. (11)
The virtual displacement dz, dy, 0z, satisfies the equations obtained
by differentiating (11) under the assumption that ¢ = const. Therefore:
22 dx + 2y oy — 0z = 0, OSxsinwt 4+ dy coswt = 0.
If wt + 37 and wt == $z, then:
oy = — dx tanwt, 0z = 2(x — y tan w?) oz,
where éx is arbitrary.

Systems of points. Let a holonomic system whose constraints are

defined by the equations
Fyxy, Y1, %05 -+ o> Ty Yy By 8) = 0 =12 ..,m) (12)
be given.

A virtual displacement of a system at the moment ¢ in the position
(x4, - - -, 2,) compatible with the constraints is defined to be every dis-

placement 6z, ..., 6z,, satisfying the equations:
n (oF ar, oF, . |
S(ae ne gl G =0 =12 (@

Equations (I) are assumed to be linearly independent at each mo-
ment #; in other words, we assume that we can choose trom among the
unknowns 0x;, dy;, 6z, k¥ = 3n — m unknowns arbitrarily and determine
the remaining m unknowns from equations (I). :

Equations (I) have a torm similar to those for a scleronomlc system
(cf. (I), p. 426). The virtual displacements ot a system at the moment ¢ are
therefore such as if the constraints did not depend on the time and were
constantly such as at the time ¢.

Equations (I) are obtained by forming the differentials of equa-
tions (12), under the assumption that f= const, and then ertlng
0%y, ..., 02,, instead of dz,, ..., dz,, respectively.

In the case of rheonomic systems we cannot say that the virtual
displacements are proportional to the possible velocities. For let us give
the system an arbitrary motion compatible with the constraints. Differen-
tiating (12), we obtain

oF;

axl xi+ . +a n+ at = G=12..,m). - (13)
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Denoting by v, ..., v,, the velocities of the points, we can write (13)
in the form
» (OF; oF; oF, '\, oF;, .
’L=Zl vaw—]—@l—vly—}—g;v,z)—{———a?mo (7——-1,2,...,7’)’&). (14)

Comparing (14) with (I) we see that we cannot in general take

o, = v, , ..., 02, = vy, which can be done in the case of scleronomic
systems.
If the relations ((IT), p. 466)
D(y, ..y 2y t) < 0 (r=1,2,...,8 (15)

hold in addition to equations (12), then, besides (I), the virtual displace-
ment must satisfy those of the relations

2 (0D, 0D, 0D, _ .
12}(59;: 6xi+5y—i-6y,.-|— 2, 6zi)\;0 (r=1,2,...,8), (II)
for which the equalities @, = 0 (cf. (IT), p. 432) hold in a given position
of the system at the moment ¢

Generalized coordinates. Let the position of a holonomic system be
defined by means of the parameters q,, ..., ¢, (p. 451).

If the system is rheonomic, then the functions which define the natural
coordinates zy, ..., z,, corresponding to the parameters q,, ..., qr, depend
on the time. Consequently ((I), p. 452):

X; = fi(q1) EERE} 91“ t)a Y; == ‘Pi(Qn s 9r t)’ 2y = Wi(qn s Gy t):

(=12, ..., n). (16)

If the parameters are independent, then to every set of the variables
1> - -q% 1n a certain region of these variables (the region can depend
on the time t) there corresponds a position of the system compatible
with the constraints. If the parameters are dependent, then in the case
of bilateral constraints certain equations (2), p. 453:

D(q, ooy @iy ) = 0 (r=12,...,9) (17)
must be satistied, and in the case of unilateral constraints the parameters
must satisfy the inequalities (3), p. 453:

Y09 o qut) <0 r=12,.., 0) (18)

In particular, when the functions (16)—(18) do not depend on the
time 7, the system is scleronomic.

If a system is moving, then the parameters ¢, ..., ¢« depend on the
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time . The motion of the system will therefore be determined by giving
the functions: ,

¢ = q(t), -5 qr = qxll) (19)
defining the values ot the parameters of the system at each moment ¢. The
natural coordinates are obtained by substituting functions (19) in func-
tions (16). If the parameters are dependent and satisfy equations (17) and
possibly inequalities (18) too, then functions (19) must likewise satisfy
these relations.

Let the positions of a holonomic system be defined parametrically
by means of functions (16). The virtual displacement of the system at the
moment ¢in a certain position compatible with the constraints is obtained
by assuming that the constraints are independent of the time and such as
they were at the moment ¢. Hence in virtue of (111), p. 454, we get:

3 .
P S Y ay’ 8q;, 0z; = Z gz‘ 8¢ (1 = 1,2, ..., n). (IIT)
9q; 51 0g; 95

j=1

Formulae (1I1) are obtalned by formmg the differentials of (16), under
the assumption that ¢ = const, and then writing dz;, dy,, dz,, dg;, instead
of dz,, dy,, dz;, dg,.

If the parameters are independent, then d¢; in (I1I) are arbitrary. 1f
the parameters defining the position of the system compatible with
the constraints satisfy relations (17), then dg, in (III) are not arbitrary:
they must satisfy the equations ((IV), p. 455)

Z Z‘D 8q; (r=1,2,...,3). (IV)
j=104;

Finally, if the parameters must satisfy certain inequalities (18) in
addition to equations (17), then d¢; must satisfy, besides (IV), those of the
relations
zagj <0 (r=1,2..,0), (V)

* =1 aq,-

for which the equations ¥, == 0 ((V), p. 455) hold in a given position of
the system at the moment i.

Example 2. A material point is constrained to
a line [ lying in the xy-plane and passing through
the origin O of the system. The line I rotates about
O with a constant angular velocity w.

Let us take the point O as the origin of the
coordinate system and give the line [ an arbitrary
sense (Fig. 317). Let us denote by ¢ the coordi-
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nate of the point A with respect to the axis I; finally, let us assume that
the axis ! coincided with the axis of  at the moment ¢. For the coordin-
ates x, y, of the point 4 we then obtain the formulae:

x = qcoswt, ¥y = qsinwt. (20)

The variable ¢ defines the position of the point at the moment ¢; it is
theretore a parameter. Differentiating equations (20), under the assump-
tion that ¢ = const, we get:

dx = dq cos wt, dy = Og sin wi. (21)

§ 4. D’Alembert’s principle. Equilibrium of forces. So far we have
defined the concept of the equilibrium of acting forces for scleronomic
systems. According to the definition given (p. 435), the acting forces are in
equilibrium iMthe system of points can remain at rest despite the action
of these forces.

‘ This definition of equilibrium, however, is not suitable for rheonomic
systems.

For example, if a system of material points is constrained to remain con-
stantly in a horizontal plane moving vertically upwards with a uniform motion, then

obviously the system can at no time remain at rest. According to the preceding
definition, therefore, we could not say that any system of forces is in equilibrium.

The principle of virtual work (p. 436) gives the necessary and suf-
ficient condition of the equilibrium of forces for scleronomic systems (if
there is no friction). Now, for rheonomic systems (when there is no friction)
we take the principle of virtual work as the definition of the equilibrium
of the acting forces: we therefore say that the forces acting on a holonomo-
rheonomic system (in which there is no friction) are in equilibrium at a certain
time t, of for every virtual displacement at the time t the virtual work of the
forces is zero or a negative number.

According to this detinition the principle of virtua,l.work applies to
holonomic systems whether they are scleronomic or rheonomie.

D’Alembert’s principle. Let the forces P;, ..., P,, act on a holonomic
system consisting of n material points A(xy, Y1, 21), «--» Aul®ny Yur Zn)-
Let us denote by my, ..., m,, the masses, and by p,, ..., p,, the accelera-
tions of these points.

The vectors —mp; ..., —mp, were called forces of inertia (p. 73).
If the system is free, then according to d’Alembert’s principle (p. 188) the
acting forces balance the forces of inertia. Now, experience shows that
d’Alembert’s principle is also true for constrained holonomic systems, in
which there is no friction. Therefore we can state it as follows:
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The forces acting on the points of a holonomic system (in which there is
no friction) balance the forces of inertia at each moment.
Hence the forces P, — mp; (where ¢ = 1, 2, ..., n) are in equilibrium.

Denoting by (g; the virtual displacements, we obtain ((I), p. 434 and (II),
p. 437)
2.(P; — mp;) I5; < 0. (D

i=1
In the case of bilateral constraints (or reversible displacements) we
have

3

(Py— mp,) 6_3: = 0. : (I’)

t=1

it

Denoting by #;", y;°, #;", the projections of the acceleration p,, and by
dx;, 8y,, 0z; the projections of the displacements ds;, we can write formu-
lae (I) and (I') in the form ((II), p. 437)

Z[(Piw*“mixq.l.) ox; + (Pi” — my;i’) Oy + (Py, —mgz;") 02.] <0, (I

and in the case of bilateral constraints we have ({(I1I), p. 437)

n

Z[(PLJG — mgx;") 0x; + (Pi,, —myy;) 0y; + (Pi, —mz;’) 0z;] = 0. (IT)

i=1

Therefore d’Alembert’s principle reduces the problems of dynamics
to problems of statics. This principle can be proved in many instances. In
the cases when friction is defined, we accept it as a law verified by ex-
perience. In the general case we say that thereisno friction if d’Alembert’s
principle applies to a given system.

Remark. Let us assume that a system is free. Consequently dx;, dy;,
dz;, are arbitrary numbers. Since equation (I1') has to hold for every set of
numbers 6x,, 8y, dz;, the coefficients of these numbers must be zero.
Consequently:

P,,—mmy =0, P, —my; =0, P, —mgz =0,
whence
mx; = Pixy my; = Piua mz; = Piz (7' =12,.., n)

The above equations are obviously Newton’s equations of motion
((IT), p. 186).

Example I. A heavy material point 4 of mass m falls (without fric-
tion) along an inclined plane making an angle « with the horizontal.
Determine the motion of the point.
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Denoting by p the acceleration, by Q the weight of the point 4, and
by ds the virtual displacement (Fig. 318), we obtain from d’Alembert’s
principle

(Q —mp) 85 < 0. (1)

Let us take as the z-axis the line of the greatest fall on the inclined,
plane giving it a downward sense. Let ds have the direction of the z-axis.
Denoting the projections of ds and p on the z-axis by ds and p, as well as
noting that ds is a reversible displacement, we obtain

(Q—mp)ds =0, i.e. Qds— mp ds =0,
from which mg ds sin x — mp ds = 0, and theretore
m(g sin x — p) ds = 0. (2)
Since equation (2) holds for every ds, we have ¢ sin o —p = 0, whence
p = g sin«. (3)

The equation (3) determines the acceleration of the point. It is easy
to show that at this acceleration formula (1) holds for every os (lying
in the plane or not).

/5
Fig. 318. Fig. 319.

Example 2. Two material points 4,, 4,, of masses m,, m,, are strung
on a massless rigid wire whose ends are constrained to remain on two
parallel lines I, /,. The forces Py, P,, lying in the plane of the linesl,,[,, act
on the points (Fig. 319). Determine the motion of the points, assuming
that there is no friction.

It is easy to see that the wire will have a constant direction. Let us
choose the axes x and y in the plane of the lines [,, 1,, giving the x axis the
direction of the wire, and let us denote the coordinates of the points by
%y, ¥y, and x4, y,. The constraints will therefore be defined by the equation

Yp— Y= 0. (4)
In virtue of d’Alembert’s principle, ((11') p. 475), we obtain
(Plx — mqxy’) Oy + (Ply —myyy’) Oyy + (Po, — myxy) o, +
+ (Pz,, — maYy) Oyy == 0. (5)
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From equation (4) we have dy; — dy, = 0, i.e. 0y, = Jy,. Substituting
this value in (5), we get

(Py, — my2y) 0xy + (Py, — maxy) 6z, + (Pl,, — myyy + '
-+ Py, — mgyy) 0y, = 0. (6)
Since 6xz;, 0z, O6y,, are arbitrary numbers, their coefficients in
equations (6) must be zero. Consequently:

mx; = le, myxy = ,sz, (7)
myyi + mayy = Py, + P, . (8)

From (4) we have y;: — yy = 0, i.e. y;' = y3'. Equation (8)can there-
fore be written in the form

(my + mg) yi7 = Py + P, . (9)
Equations (7), (9), and (4), determine the motion of the points.

Example 3. A vertical plane IT passing
through the zaxis directed vertically upwards,
rotates about z with a constant angular velo-
city w. A heavy point A4 of the mass m is
constrained to the plane I1. (Fig. 320). Deter-
mine the motion of this point, assuming that
there is no friction.

Let us assume that the plane I7 had the
position of the zz-plane at ¢ = 0. The equa-
tion of the plane IT at the time ¢ will hence be

y cos wt — x sin wt = 0. (10)

. The coordinates , y, of the point A must therefore satisty equation
(10). Since the force of gravity has the projections, 0, 0, —mg, on the co-
ordinate axes, from d’Alembert’s principle it follows that

— mx dx — my Oy + (—mg —mz:) 0z = 0. (11)
By (10) the virtual displacement dx, dy, dz, satisfies the equation
dy cos wt — dx sinwt = 0. (12)

Consequently dz is arbitrary and dez, dy, satisfy equation (12).
Assuming dx = 0, dy = 0, in (11), we obtain (—mg — mz") éz = 0.
Since 0z is arbitrary, — mg — mz" = 0, i.e.
e =—g, (13)

from which z = — 1gt* 4+ ¢t + ¢’, where ¢ and ¢’ are certain constants.
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From (11) and (13) we obtain z'* dx + y'* dy = 0; hence
' dx cos wt + y* dy cos wt = 0, (14)
whence by (12) (x coswt + y sinwt) dx = 0, and, since dz is arbitrary,
2 coswt + y sinwt = 0. (15)

Let us put »r = OA’, where A’ denotes the projections ot 4 on the
xy-plane. Consequently ’

T =7rcoswl, ¥y =rsinowi, (16)
from which
z = r cos wt — 2rw sin wt — rw? cos wt,
Yy =7 sinowt 4+ 2r'w cos wf — re? sin wt

and by substituting in (15) 7" — rw?® = 0; therefore (cf. example 4, p. 139)
7 = ¢,e” 4 ¢,6 ", whence in virtue of (16):
x = (cie” + coe ) coswt, ¥y = (ce” - coe™ ) sin wi.

The constants ¢, ¢/, ¢,, ¢,, are determined from the initial conditions.

§ 5. Work and kinetic energy in scleronomic systems. Let a holono-
mo-scleronomic system composed of » material points of massesm,, ..., m,,
and having coordinates ,, ¥y, 2y, ..., &, ¥n, 25 be subjected to the action
of the forces Py, ..., P,,.

For the moment, let us assume that the constraints are bilateral.

From d’Alembert’s principle we have for every virtual displacement
oz, dy;, 02

DUP;, — may) o, + (Pi, —my;’) Oy, + (Py—mgzy) 62,] = 0. (1)
P |

Since the system is scleronomie, the velocities of the points can be
considered as virtual displacements (p. 425). Therefore, putting x; = dx,,
y; = 0y, 2; = 0z;, we obtain from (1)

Inge

[Py, —may)x; + (P, —my) y; + (Pi,—mzi) 2] = 0, (2)

2P 4 Poyi + Poz) — Jmylayx; 4 yiyi +2i7) = 0. (3)
=1 !

i=1
The kinetic energy is expressed by the formula
B = 2hm + v + 22,
i=1

whence B = >m,(x;x; - y;'y; + 2'%). Therefore in virtue of (3)
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B = Z(Pi,,xi + P, y; + P z).

=1

Integrating both sides of this equation from ¢, to ¢, we obtain
t t n
JE dt = [dt (P, x; + P y; + Piz). (4)
to to i=1

The left side of formula (4) is equal to ¥ — E,, where E denotes the
kinetic energy at the time ¢, and £ the kinetic energy at the time t,,
while the right side expresses the work L,, of the forces acting from
the time ¢, to ¢ ((IL), p. 208). Consequently

E—E,=L,, (5)

Equation (5) expresses the principle of equivalence of the work of the
acting forces and of the kinetic energy.
Let us now discard the assumption that the constraints are bilateral.
Let us assume that in addition to the relations expressed by equalities, the
coordinates of the points of the system have to satisfy the inequalities
((15), p. 472):
DXy, ..., 2,) 0 (r=12,.., 9). (6)

I’Alembert’s principle in this case has the form
n
2P, —mgxy) o + (P —muy;) Oy + (Py,—mzy) 021 < 0. (7)
i=1

Let us assume that the velocity changes in a continuous manner
during the motion.

If the position of the system at a certain time ¢’ (where ¢, < ¢’ < t) is
not a boundary position, i. e. if the << signs hold in the inequalities (6), then
the inequalities (6) do not give any conditions on the virtual displace-
ments (p. 471). In this case the virtual displacements are reversible,
ronsequently equation (1) holds and then (2) holds. On the other hand;
if the system occupies a boundary position at the time ¢ (where
to <<t << ),i. e. if the equality

D (g, ..y 2) =0

holds for a certain r, then according to the assumption that the functions
%y, ..., 2, have continuous derivatives with respect to the time ¢, the
function @, will also have a continuous derivative. Moreover, since
@, < 0 constantly, the function @, attains a maximum at the time . Tt

follows from this that @, = 0 for ¢t = ¢'; hence

oD, . 0P, .

0,
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In view of (8) the virtual displacement oz, = =, ..., 8z, = z,, is
a reversible displacement. Hence for this displacement equation (1) holds,
and consequently equation (2) holds.

We have therefore proved that equation (2) is satisfied for each
instant ¢’ (where ¢, <<t < ). From equation (2) — reasoning as before —
we obtain formula (4).

Therefore: the principle of equivalence of the work of the acting forces
and of the kinetic energy applies to holonomo-scleronomic systems (while for
unilateral constraints this holds when the velocities of the points vary in
a continyous manner).

If the acting forces have a potential V, then L,, = V —V,, where
V and V, denote the corresponding potentials at the instants ¢ and t,.
From (5) we therefore have ¥ — Ey =V —Vyor ¥ —V = E,—V,.
Denoting the constant £y — Vy by b we obtain

E—V =h (9

We have called —7V the potential energy and denoted it by U (p. 216).
Consequently
E+U=nh. (10)

We have called the sum E + U the total energy of the system (p. 216).

Therefore: the principle of conservation of total energy applies to holo-
nomo-scleronomic systems (under the assumption that in the case of
unilateral constraints the velocities vary in a continuous manner).

Remark. In general, the principle of equivalence of work and kinetic
energy does not hold for rheonomic systems.

For example, if a point is constrained to remain on a moving curve
and no forces act on the point, then in spite of this the kinetic energy of
the point can change depending on the motion of the curve.

In rheonomic systems the increase in kinetic energy also depends on
the work of the forces of reaction, which in general is not zero.

§ 6. Lagrange’s equations of the first kind. Let a holonomic system
of » material points A,(%y, ¥1, 21); - - -, A (@ p, Yus 25), be given. Let us denote
by P4, ..., P,, the forces acting on the points of the system, and by m,, ...,
m,, the masses of these points. Let us assume that the constraints are
bilateral, defined by the equations ((I), p. 466):

Fi(xy, Y1, 205 s Xy Yy 20y 1) = 0 =12, ...,m). (1)

The virtual displacements of the system satisfy the equations:

< (oF; oF; oF; .
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In virtue of d’Alembert’s principle ((I1'), p. 475) we have:

(P, — may) 2, + (P, —myp) 0y, + (P, —mzy) 62] = 0. (3)

i

t
Equation (3) holds for every set of numbers dz;, dy;, dz;, satisfying

the system of equations (2). From the considerations on p. 447 it follows
that there exist numbers Ay, ..., 4, such that equations (I), p. 448 are
satisfied at each moment ¢ (where it is necessary to substitute P, —

—mg; for P, , ete.):

oF;
P, —mai +Zl’8x = 0,
oF,
P, — mzu+2 787,:0’ (4)
Pihmizg'—FZl,-a—&:O (1=1,2,...,n).
# i1 0%
The numbers 4,, ..., 4,,, depend on fand hence are functions of time;
consequently A4; = A4;(¢), ..., A, = A,(t). From (4) we get:
. Ly
mzx@ = Pl j j:
® —+ j% ! axi
<, OF;
: = P1 {- Z"‘—?: 1
my; , }Zl T (D)
mgz; = P, + leaFj (G=1,2,...,n0).
SR ey R H

Equations (I) are called Lagrange’s equations of the first kind.

Let the forces P; be given as functions of the variables z,, ..., z,,
xj, ..., 2, t, defining the position of the system at the time ¢. From
equations (1) and (1) we can therefore determine the unknown functions
of time z,,...,z,, defining the motion of the system, as well as the
functions 4, = A4,(¢), ..., A, = 4,(f). There are as many unknown func-
tions as there are equations, i. e. 3n + m.

Let us denote by Ry, ..., R,, the forces whose projections are defined

by the equalities:
<, OF,; <, OF; <, oF

Rgz —jgljuj E, Riy v——ygllj 'az, Riz —721}»’ '52;- (7; = 1, 2, ooy n). (II)
By (I) and (II) we have:

M = Piw + Riw’ my; = Pi,, + Rz'y’ mz; = Pi, + Riz

(=12 .., n). (5)

31
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Denoting by p; the acceleration of the point 4;, we can write (5) in
the form
mp; = P, + R; 1=1,2,...,n). (6)
From (6) it follows that the forces R; are reactions. For, if we add
them to the acting forces, then by (6) we shall be able to regard the system
as free. Therefore the reactions are defined by relations (IT).

Example 1. Let a point of mass m, subjected to the action of the
force P, be constrained to remain on the surface whose equation is

F(x,y,2) = 0. (7)
Lagrange’s equations (I) assume the form:
oF or oF
mx :P“_*—AE;’ my :P”+l§§’ mz =P,,+Z$. (8)

From equations (7) and (8) we can determine the unknown functions
of time z, y, 2, and 2.
Equations (8) were obtained in another way (cf. (I), p. 127).
Now let the point be constrained to lie on a moving surface having
the equation
F(x,y,2,t) = 0. (9)
Equations (I) of Lagrange will then have the form (8), too.

Example 2. Let a material point of mass m be constrained to remain
on a sphere whose centre is the origin of a coordinate system, and whose
radius r varies together with the time ¢. Let

r=at + 7, (10)

where the numbers @ and r, are given. Consequently the coordinates of the
point satisfy the equation

a? 4 g2 4 22— (at + 7p)* = 0. (11)

Let us assume that no forces act on the point. Equations (8) will then
agsume the form:

me = 2%, my- = 2y, me = 27z (12)

From equations (12) it follows that the direction of the acceleration
passes through the origin of the coordinate system. Hence the motion
will be a central motion (p. 85), and it will therefore take place in a
plane passing through the origin of the coordinate system (p. 86).

Let us assume that the plane of motion is the xz-plane. Consequently

y = 0. (13)
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Let us introduce in the xz-plane the polar coordinates , ¢:
x=7rcosp, z-=rsing. (14)

Since the areal velocity is constant, by (I), p. 47,

r’g* = const = ¢, (15)
from which by (10) ¢* = ¢ [ (at + r,)%. Integrating, we get
p=—c/[(at + 1y) @ -+ ¢;. (16)
Assuming that ¢ = 0 for ¢ = 0, we obtain from (16) ¢, = ¢/ rga or
@ = ct [ ro(at + ry). (17)

Equations (14), (10), and (17), define the motion of the point. The
constant ¢ is obtained from (15) if one knows, for example, the angular
velocity ¢ for ¢ = 0.

§ 7. Lagrange’s equations of the second kind. We shall now consider
equations of motion in which only the generalized coordinates will appear.

Let there be given a holonomic system of % material points whose
natural coordinates x, ..., z,, are defined in terms of the parametersq,, ...,
¢, by means of the functions:

o= fldy - 0l Y= @l - qo ), 2i=v¢ -9t (1)
(¢t=1,2,...,n).
Let us denote the masses of the points of the system by ms, ..., m,,.
Let us assume that the acting forces Py, ..., P,, depend on the position
of the system, on the velocities of the points, and on the time ¢.

By d’Alembert’s principle we have
Z[(Piw — mx;") 0x; + (Pz'y —my;') 0y + (P.’z —mgzi) 0z,] < 0. (2)
1
Let us note that

n

(P M) 0x; + (Py, —mgy;) 0y, + (P, —maz;') dz] =

1=1

(P ox, + P, 63/, + P, , 025) imi(x;' ox; + .%’" Oy, + = 0z;). (3)

t=1

) [\/js

The first sum on the right side of equation (3) represents the virtual
work &'L of the acting forces. In virtue of (VII), p. 456, we can write it in
the form

o'L ZiE(Pim 0x; + Piv Oy + Pz’z dz;) :jng:i dq;, (4)
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where @, (forj = 1, 2, ..., k) are the components of the generalized force.

By (VI'), p. 456, we therefore have
Q——i %, p Wiy p % G=1,2...k. (5
7'_11 zxaq 1uaq izaq' 7"‘ 3 Ly oy )' ()

Taking the derivatives of equations (1) with respect to the time ¢, we
obtain

ox; 0x; . 9
x—anI+ +aq QL+ at ("/:1’ "",n) (6)

and similar formulae for y;, ;.

By hypothesis, the projections P; , P, , P,  are functions of the time
t as well as of the variables z,, ..., 2,, %3, ..., %, Which we can by (1) and (6)
expressin terms of the variables ¢y, ..., ¢z, 41, - - -, ¢~ Therefore from (5) it
follows that @, can also be regarded as functions of the variables g, ..., ¢4,
qis oo Qi b

Q5= Qi{qs - Qo 8> -+ > T 2) (G=12,..,k). (7

By (4) and (7) the first sum on the right side of equation (3) can
therefore be expressed in terms of the generalized coordinates.

We shall now consider the second sum on the right side of equation (3).
From (1) we obtain ((III) p- 473):

k k
ox; oY, 0z .
o, = 2, 3. 0 O = Z ay 0g;, b2 =2, 3, % (=12 ..m). (8)

j=1 i=1 j=

Consequently

n f k
E}y 0z
= >my oq; + yi £ 5q; -+ 2 8 ) = 9
2m ( =Zq 0+ g 2 5t o ,Zlaq,. g; (9)
k n !
. 0%, 0Yy;
= Ut T Y T A )
=Z ; ( gi og; o4,
In virtue of (6) we can regard x; (and similarly y;, 2;) as functions of
the variables ¢, ..., ¢x, ¢i» - - -» ¢;> @8 wellas of the time ¢. Assuming that x;

denotes the right side of the equality (6) and that gj, ..., gj, are indepen-
dent variables, let us calculate the partial derivatives with respect to
i, -+ -» ¢ We obtain:

ox; | 097 = 0x; [ 0qy, -, 0%} | 0q; = ox; | 04, (10)

ox; [ 0g; = 0w, | 0q; G=12...,k. (11)
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Calculating the partial derivatives of equations (6) with respect to g,

(and at the same time regarding ¢;, ..., ¢;, a8 independent variables), we
obtain
ox; 8 2 o*x 2z
i + ..+ TR 12
%0, 9, 0g, " 0. 2, "+ oty 1)
On the other hand we have
d Bx,) 0%x; 0%, 0%,
el ) I B TR R . . (13
dt (3% 2 0 o, o " g, o0 :
Since the order of differentiation does not affect the result, from (12)
and (13) we get
or;_ d (o, . (14)
og;  dé\og;
Let us note that
d | . ox, .. oy ox;
ey L 15
(5 = B ) 1)
hence, in virtue of (11) and (14), we obtain from this the formula
xg'%:i(x; Eyf’) ~x,_afc_’ (18)

and similar formulac for the variables y,, 2,. From these formulae we get
for arbitrary 7

n ) ay‘
igm(l a +y1, + a )

f
d < oy, ) & ( . 0y; )
= — >m;lx; 2; x; o Y; { 2;—1|. (17
dtigl ( + 8q;- aq] 2:1 Y og; + oq o
The kmetlc energy of the system is

B = %.21’”‘(”52 + i + %) (18)

In (18) let us substitute for z;, y;, #;, the right sides of the equalities
(6) and of the analogous equalities for y;, z;. In this way we shall repre-
sent F as a function of the variables ¢y, ..., ¢x, ¢;, -+, @i, &:

E=Eq,...,0, 4, i) (19)
Regarding q;, ¢;, t, as independent variables, we obtain from (19)
and (18)

L 2; oy; th)
y1__3 + z;.__’ , 20
Z ( T 0q; 0g; (20)
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z x: 8y 0z
o e
3417 i=1 9;‘ a " og;
From (17) we get in virtue of (20) and (21)
S 2y, az) d (8E) oF
mq\Z; - i : § TS Y -y (22
i:zl ( 0g; g 2q; T+ dog;)  dt\ogy 9, )

whence by (9)

n k
Doy b+ g5 oyt o 02) = Sog)| 3 () 2] qan)
i=1 j= t \2g; 95

From equations (3), (4), and (23), we obtain

(P, — mz;7) O, + (P, —my;) 0y, + (P;,—mgz;) 62,] =

e

i

k
oF oF (24)
= 6 . : .
igl o [QJ dt (aq ) + %‘]
From d’Alembert’s principle (2) it therefore follows that
oF ol
Z 8q; [Q, dt(aq ) +3 qJ] 0. @

Relations (24) and (I) hold whether the parameters q,, ..., ¢, are
dependent or not, and whether the constraints are unilateral or bilateral.
In the case of bilateral constraints inequality (I) becomes the

equality:
ol
dq; | Q; 0. I
Z q[Q dt(aq)+aq,] @

Let us assume that the parameters are independent. Consequently
04, ..., 0k, are arbitrary numbers. It follows from this that the coefficients
of d¢,in (I') are zero, and hence that

d [0F o
g — e f—— —-:0 .:1,2,...,]0,
Q; dt(aq;)—i—BQ; (J )
whence
d [0F o .
= = f=1,2,...,k). II
alo) = 0 .

Equations (IT) are called Lagrange’s equations of the second kind.
Only the generalized coordinates appear in them.

From equations (IT) we can determine q,, ..., ¢,, as functions of the
time ¢; hence they enable one to determine the motion without passing
over to the natural coordinates,
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Let us now assume that the parameters are not independent, but must
satisfy relations (17), p. 472:

djr((h: s Gy t) =0 (7' =1, 2, ...,6’). (25)
The virtual displacements dq; consequently satisfy equalities (IV),

p. 473,

218515 54, r=1,2..,s). (26)
j

Equalities (I') hold for every system of numbers dq; satisfying (26).
From considerations analogous to those on p. 447 it follows that for each
moment ¢ it is possible to choose numbers 4, ..., 4,, satisfying the
equations:

d [oF o0,
Qs — dt( )+aq,+r§1 "3, = G=1,2..,k),
i.e.
d [oF ok s o
—_—— — = i lr——r .:1,2,.,,,]6. III
dt (ag,‘-) o4 ¢ +r§1 0q; g )} dn)

The Lagrange’s multipliers 4, depend on the time and are therefore
functions of the variable ¢; consequently A, = 2.(f).

Equations (IT') together with (25) enable one to determine the un-
known functions of time g, ..., qx and A,(¢),..., 4,(t). The number
of these equations is k + s, i. e. it is equal to the number of unknown
functions.

Remark. In forming equations (IT) it is first necessary to represent
E and @, as functions of the variables ¢, ..., ¢x, ¢i, --+» s ¢

In order to obtain @; we substitute in the formula for virtual work
O'L = X(P;, bx; + Pi dy; + P;, 62;) the expression obtained from (1)
for o, 0y,, 024, T4y Ysy 24, %3, Yis %, and then we arrange the terms according
to 8¢5, ..., 675. The coefficients of dqy, ..., 6 will be the components ¢,
of the generalized force.

Substituting next for #;, y;, z;, in the formula for kinetic energy
E = }Emx2 + y; -+ 2;?) the derivatives obtained by differentiating (1)
with respect to ¢, we get £ as a function of the variables ¢,, ..., ¢x, 45, - -,
» T

Having determined £ and @; as functions of the variables ¢,, ..., qx,
s -+ Gi» £, We form the derivatives: 0F / 0q; as well as 0F | 9g; and
finally d

T t (0F | og;).

Substituting in (II), we obtain Lagrange’s equations.
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Lagrange’s equations in a potential field. Let us assume that the
acting forces Py, ..., P,, have a potential ¥V at each moment #. The po-
tential V is therefore a function of the variables Xy, ..., 2, t; in addition:

P = oV |ox, P, =3V /oy, P,,=0V]0z (i=1,2,...,n),(27)
whence by (5)

< oV ox; OV dy, = oV o, .
= e =12 ...,k).
9 i=1 (axi og;  dy; og; + 0z, a%‘)’ G 2 b) (28)
Expressing the coordinates ;, ..., Zp, In V in terms of ¢, ..., q, by
means of (1), we can regard V as a function of the variables G155 ¢y and
of the time ¢. From (28) we therefore get

Q; = aV/ 0q; G=12,..., k). (29)

From (29) and (27) we see that the components ¢, of the generalized
force are expressed in the same way as the coordinates of the forces P,
Hence we can regard V as the generalized potential of the forces Q..

From (II) and (29) we get

d(aE)_a_EhaV

dt\ag;)  0u; dgy
i. e.
d [oE oE +7) .
== =0 (=1,2,..,k. (30
dt(a%__) . ( ) (30)
Since V does not depend on the derivatives 435 o5 G5, it follows that
oV | 6q; = 0. Consequently
OF | 8q; = 2(E 4 V) | og; (G=1,2,..,k. (31)

From (30) and (31) we get
d (0(F 4 V) HNE +T)
a—t( og; )M og;
The sum of the kinetic and potential energies, i. e. £ + V is called the
kinetic potential.

=0 (G=1,2..,k. (32)

Putting
W=F847V, (33)
we obtain by (32)
d oW ow .
Bl A TR LA =1,2...,k). (III
dt( aq;) e ( ). ()

Lagrange’s equations of the second kind therefore assume form (I1I)
when the forces have a potential (or — which amounts to the same thing
— a kinetic potential) at cvory moment.
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Cyclic coordinates. The coordinate ¢, (where j is'a certain number) is
called cyclic if the kinetic potential W does not depend on g¢;, i. e. if

oW | 2, = 0. (34)

If ¢, is a cyclic coordinate, then from equations (III) and (34) we
obtain
a@Em _,
dt\ ag;

oW [ 9q; = const. = c. (35)

whence

Equation (35) is a differential equation of the first order. Therefore,
if some coordinate ¢; is cyclic, then its corresponding equation in Lagran-
ge’s equations (ILI) can be replaced by a differential equation (35) of the
first order.

Example I. Two pulleys of radii R and r are fastened to a common
axis. Two heavy material points 4, and 4, ot masses m; and m, hang on
inextensible strings passing over the pulleys (Fig.
321). Determine the motion of the system, assu-
ming that there is no friction.

Let us assume that the motion takes place in
a vertical plane. Let us give the z-axis a direction
vertically upwards. Denote by z; and 2, the coor-
dinates of the points m,; and m, at the time ¢,
and by 2 and 23 those at ¢t = 0. Let ¢ denote
the angle of rotation of the pulleys, reckoning
from the initial position. Assuming the angle of
rotation as positive when clockwise, we obtain: Fig. 321.

21 =2 + Rp, z,= 23— ro. (36)

The angle ¢ therefore determines the position of the system; hence
we can take ¢ as the parameter.

Let I, and I, be the moments of inertia of the pulleys with respect
to the common axis. The kinetic energy is

E = Jmz;2 4 Imgz? + 3, 0* 4+ 3,07, (87)
where @ denotes the angular velocity of the pulleys. By (36) we have
z; = Re' and 2z; = — re, and in addition w = ¢*. Putting I = I, + I,,

we obtain from (37)
B = 3m R+ my? + I) @2,
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The potential of the force of gravity is
V = — mygz, — mygzy = — mag(2] + Rep) — myg(2; — rg),
and therefore the kinetic potential W = E 4 V:
W = }m, R + my? + I) ¢ — myg(z] + By) — mayg(z3 — rop),

from which:

oW | 80p = — (m R —myr) g, OW [ 0p* = (m B2 + my® + I) ¢-. (38)
Lagrange’s equation (III), p. 488, in our case has the form
afn
dt\oe op ’
hence in view of (38) (m,R? +4- my? + I) @' + (m B — myr) g = 0, whence
@ = (mgr —m;R) g | (m B2 + mgr® + I). (39)

Therefore the angular acceleration is constant.

From (36) we have z;' = Ry, and zy = — r¢, consequently the
material points will move with a uniformly accelerated motion.

In particular, when R = r, we have Atwood’s machine (p. 193 and
375).

Example 2. A system composed of three rigid rods 04, AB, BC, of
equal léngth I and equal mass m moves under the influence of the force of
gravity in a vertical plane I (Fig. 322). The rods are pinned at 4 and B,

and fixed at O and €, where O and C lie on the
z horizontal line OC = 1.

Let us choose axes 2 and zin the plane Il taking
O as the origin of the system and giving the z-axis
the horizontal direction OC and the z-axis an upward
sense. Let us denote by ¢ the angle which the rods
04 and OB make with the vertical, and by 8y, S,
Fig. 322. 3, the centres of gravity of the rods (assuming that
they lie at the geometric centres of these rods).

The angle ¢ defines the position of the system of rods; consequently ¢
is a parameter.

The instantaneous motion of the rods 04 and BC is an instantaneous
rotation about O and C with an angular velocity ¢*. The rod 4B moves
with an advancing motion (cf. example 1, p. 321) with a velocity v of the
point A, where |v| = I|g*|. The kinetic energy of the system is therefore

B = {p* + b 4 o = (I + jmlt) g%, (40)
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where I denotes the moment of inertia of the rod with respect to an end.
The coordinates z,, z,, 2,, of the centres of gravity S,, S,, S, are:

2y =—4%lcosp, z=—1lcosgp, z,=—3%lcosp,
consequently the potential of the force of gravity
V = —mg(z, + 25 + 23) = 2mgl cos g. (41)

In virtue of (40) and (41) the kinetic potential W = E + V will there-
fore be

W = (I + ¥mB) @2 -+ 2mgl cos g, (43)
whence :
oW [ op = — 2mglsing, W | 9p = 2(I + }ml?) ¢-. (43)
Lagrange’s equations (III), p. 488, will assume the form
d oWy oW _ .
dt\og]  9p

hence in virtue of (43) 2(I + Imli?) ¢ + 2mgl sinp = 0, whence

mgl . ‘

= . 44

» o S (44)

Comparing equation (44) with the equation of the simple pendulum

((I), p. 130) we see that the given system of rods will oscillate like a simple
pendulum of length (I + Imi?) | ml.

Example 3. A line [ lies in the vertical plane xz and rotates about the
centre O of the coordinate system with a constant angular velocity w.
A heavy point 4 of mass m is constrained to the line I (Fig. 323). Deter-
mine the motion of the point 4.

Let us denote by O’ the projection of the
point O on the line [, by ¢ the angle between 0O’
and the z-axis, and let us put p = 00’ = const.
Let us assume that the line I has the direction
of the z-axis at ¢ = 0. Consequently

¢ = ol. (45)

Let us give the line ! an arbitrary sense and Fig. 323.
denote by ¢ the coordinate of the point 4 on
the line [, taking the point O’ as the origin of this axis. Therefore the
coordinates = and z of the point 4 are:
x = pcoswt—qsinwt, 2z = psinwt + q cos wt. (46)

The system is consequently rheonomic and g is the parameter.
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The virtual work is expressed by the formula 6'L = — mgéz (the
z-axis has a sense vertically upwards). Since 6z = dq cos wt by (46), §'L =
= — myg 0q coswt. Therefore the generalized force is

) = — mg cos wt. (47)

Let us now calculate the kinetic energy E. Differentiating (46), we
obtain:

= — (pw + ¢') sinwt — qw coswt, 2 = (pw -+ ¢') cos wt — qw sin wi;
consequently
E = Jm(x? + 2%) = $m|(po + ¢') + ¢*?], (48)
whence
0F | 9g = mge?, OF | 09" = m(pw + ¢’). . (49)
- By (II), p. 486, Lagrange’s equation has in our case the form
d (0B o°F
di¢ (aq. - a‘q" = Qr
from which by (49) and (47) we obtain mq - — myw? = — myg cos wt, 1. e.
¢ —qw® = — g cos wl. (50)
The homogeneous equation ¢** — gw? = 0 has the general solution

q = c;1€®" + c,27 !, where ¢; and ¢, are arbitrary constants. A particular
solution of equation (50) is, as is easily verified, ¢ = g cos wt / 2w?. There-
fore the general solution of equation (50) is

g = ce®t & cpe—ot E*‘61074@()@;«;::. (51)

The constans ¢, and ¢, are determined from initial conditions.

Equations (46) and (51) determine the motion of the point.

Remark. Weight has the potential V = — mgz; hence, by (46), V =
= —mg(p sinwt + ¢q coswt). In virtue of (48), therefore, the kinetic
potential W = E + V is equal to

W = dml(pw + ¢')* + ¢*w?] — mg(p sinwt + g coswt).  (52)

By (III), p. 488, we have

4w ow_
de\og | o
whence by (52) we obtain equation (50).

b

Example 4. Two heavy material points 4 and B of masses m + p and
m hang at the ends of a weightless and inextensible string passing over a
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pulley (Atwood’s machine, p. 193 and 375) (Fig: 324). An insect C of
mass u crawls along the string on the side of the weight B. Denoting by &
the projection of the vector BC on the z-axis having its origin at the
centre of the pulley and a direction vertically downwards, we have

b = f(2), (53)

where f(t) is a given function. Determine the motion
of the system of points 4, B, C.
Let z,,2,,25, be the coordinates of the points 4, B, C;
I the length of the string, r the radius of the pulley, and
I the moment of inertia of the pulley with respect to
the centre. Taking the coordinate 2z, as the parameter g, 4

weo have 4B

mo 1z
2y =q, 2g=1l—q—1, Zg=1—q—ra+ f(t), (54)
whence 0z, = 8q, 6z, = — dq, 023 = — dq. Fig. 324.

The virtual work of the weights is equal to

8L = (m + p) g 62, + myg 2 + pg 025 = (m + p) g 8¢ -—mg g —

— ug 0q = 0;
hence the generalized force is
Q =o. (55)
The kinetic energy ¥ is
E = §(m + p)2i® + dmz® + dueg? + 3o, (56)
where o denotes the angular velocity of the pulley. From (54) we have:
si=q, H=—¢ xn=—¢+[ (67)

Since r|w| = |zi| = |¢’| it follows that w* = ¢ /%, whence by (56)
and (57)
B =30m + 0 g* + dnq + bule — P+ Ha )

From this
oE oL o .
—aqm(), —aq.——(2m+2,u+I/r)q—‘uf. (58)

Lagrange’s equations (II), p. 486, will assume the form
dem B
dt\og| o¢ ¥

By (55) and (58) we obtain from this
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(@m o+ 2+ 1) g —pfr =0 (59)
and after integra.tion
@m 4 20+ 1] 1%) q—p f§) = et + ey (60)

The constants ¢, and ¢, are determined from the initial conolitions.
Let us assume that at ¢ = 0:
f0) =0, f(0)=0, 2y=q=4¢qp 2 =¢q =0
From equation (60) and its derivative we obtain:
=02m+2u+1/r)q, c¢=0. (61)
Putting k = 2m + 2u + I /1%, we get from formulae (60) and (61)
q= % . /(t) + qo, and consequently by (54):

=E10 + a0 r=1—rn—g+ T f), (62)

Since k — u > 0, it follows from (62) that if the insect C' crawls
up the string, then the weight 4 will also go up. At the moment the insect
reaches the pulley, i. e. the height z; = 0, we shall have, as follows
from (62),

B =qo— k-— (I —rm—qq).

Example 5. A material point 4 of mass m moves along the zy-plane
under the action of a central force P whose projection P on the radius
vector OA (where O denotes the origin of the coordinate system) is a
function of the distance r = 04 and

= f 7*)' (63)

Let us introduce the polar coordinates r, ¢. The coordinates z, y, of
the point 4 will therefore be expressed by the formulae:

x=rcosp, y=rsing. (64)
The polar coordinates 7, ¢, are consequently mdependent parameters.
From (64) we obtain after differentiating:
x =1 Ccosp —rp sing, y =r sing -+ rp: cosp.
Therefore the kinetic energy is
E = im(@x? + y?) = Im(r? 4 r2p?). (65)

Since the field is a central field and the force depends on the distance,
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the field is a potential field (p. 101). Consequently by (63) and (3), p. 101,
the potential is

V = [Pdr= [f(r)dr, (66)
and the kinetic potential W = I/ 4 V is by (65) and (66),
W = tm(r? + r2p?) + [P dr. (67)

Since the kinetic potential W does not depend on ¢, it follows that ¢
is a cyclic coordinate, whence (p. 489) oW | d¢* = const., i. e.

mrip' = const. 68
'

Lagrange’s equation for the coordinate » has the form ((ITI), p. 488,
with r instead of ¢;)

d (oW ow ‘
az(‘ér) — % =0 (69)
From (67) we get
mr —mre? — P = 0. (70)

From (68) we have ¢ = const /mr? = ¢ /7%, where ¢ is a certain
constant. Substituting this value of ¢- in (70), we get m(r*—c? [ #3) = P,
i.e.

o2 [ ¥ = f(r) [ m.
From this equation we can determine r as a function of the time ¢.

Example 6. Motion of a point on a surface of revolution. A curve lying
in the xz-plane and having the equation

z = f(x), (71)
generates a surface of revolution S by rotating about the z-axis. The
equation of the surface § is therefore the equation

2= f(J/a* + 7). (72)
Let us introduce polar coordinates 7, ¢, in the xy-plane.
Then
x=rcosp, y=rsing, z= f(r). (73)

The variables r, ¢, are therefore independent parameters.

A material point of mass m, constrained to remain on the surface S,
is subjected to the action of a force P. Determine Lagrange’s equations
of the second kind.

We shall first determine the generalized forces. From equations (73)
we have:

dx = dr cosgp —r dp singp, dy = Orsing 4 r dp cosg,
oz = f'(r) or. (74)
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The virtual work is »
8L = P, béx -+ P, oy + P, oz (75)
Substituting (74) in (75), we obtain
0'L = (P,cosp + P, sing + P, f'(r)) or +
+ (— P, singp -+ P, cos ) r dp.
The coefficients of 6r and dg are the generalized forces. Let us denote
them by @, and @,. Consequently:
Q, = P,cosp + P,sing + P, f(r), @, = (— P,sing + P, cosp)r. (77)
Let us now determine the kinetic energy. Differentiating (73), we
get:
x* = 1 cosp — re  sing, y* = r sing - re° cosg, z = f'(r)r. (78)

The kinetic energy B = dm(z2 + y® + 2%), whence by (78)

(76)

B = m[(1 + f¥r) r2 + g2, (79)

and from this
OF [ or = mlf'(r) ["(r) r® + rg?],  2H|dp =0, (80)
oF | or = m[1 4 f¥(r)] r, oF | 0p = mriyp. (81)

From equations (II), p. 486, putting ¢, =7, ¢, = ¢, ¢1= @,

Q, = @,, we obtain by (80) and (81):
m A O Pl O PO et =@ (8)
md(rg) [ dt = Q,. (83)

The generalized forces @, and @, are given by formulae (77).
Let us assume that the motion takes place in a potential field, e. g.

in a gravitational field. The potential will then be V = — mgz (when the
z-axis has a sense vertically upwards). Hence by (73) we have
V = —mg f(r), (84)
whence for the kinetic potential W = E 4 V:
W OBy, W_OE W, 0N OB
o ™I T T T

It follows from this that the coordinate ¢ is cyclic. For the coordinate
r equations (III), p. 488, assume the form

d ‘
gl + 2N r1—=If ) () r® + e —g ()] = 0. (85)
Since ¢ is a cyclic coordinate, oW | dp* = const, i. e.

r?¢* = const = c. (86)
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From the theorem on the conservation of total energy (p. 105) it
follows that £ — V = const; hence by (79) and (84)
L4 f2r) 2 + rPe? 4 g f(r) = const = c,. (87)
From the equations of the first order (86) and (87) we can determine
the metion of the point.

Example 7. Spherical coordinates. We shall
investigate the motion of a free material point
A(x, y, z) moving under the influence of a
force P in a spherical coordinate system r, 9, ®s

coordinate system (x,y,z), ¢ is the angle
between OA and the z-axis, and ¢ the angle
between the x-axis and the projection 04’ of
the segment OA4 on the zy-plane (Fig. 325).

We have:
x = rsind cosp, y = rsind sing, 2 = r cosd. (88)

Since the material point is free, the parameters », 4, ¢, are indepen-
dent. From (88) we get:
0x = Or sind sing + 7 6 cosd cosp — r dp sind sing,
Oy == Or sind sing -} r 60 cosd sing + r dp sind cosg, (89)
0z = dr cost) — r 89 sindl. ‘ :
The virtual work is equal to 6'L = P, dx + P, oy | P, 6z, whence
by (89)
0'L = (P, sind cosp + P, sind sing + P, cosd) r +
+ r(P, cos¥ cosp |- P, cosd sing — P, sind) 88 + (90)
+ 7. sind(— P, sing 4 P, cosp) dp. :

The coetficients of dr, 39, and dp, are the components of the general-
ized force. Let us denote them by Q,, @, and @, Consequently:

Q, = P, sind cosp + P, sind sing + P, cosd,
Qs == 1(P, cosd cosp 4 P, cosd sing — P, sind), (91)
@, = rsind(— P, sinp + P, cosyp).
Let IT be a plane passing through 04 and the z-axis. From the point 4 let us
draw the axes O, @, perpendicular to O4: the axis @ in the plane II, and the

axis @ perpendicular to II. Let us give the axes senses in the direction of the
increase of the angles ¥, ¢, and let us denote by P,, Py, P,, the components of the

force P in the directions 04, ©, @, respectively. Tt is easy to show that in virtue
of (91):

) @r = P,, Qy = rPy, Qp = rsindpl,, (92)
32
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The kinetic energy is F = im(x? -+ y2 + 2?). The derivatives
x',y", %2, are obtained from (89) by writing r,9, ¢, instead of dr, 69, dg.
Substituting the values obtained, we get

E = Im(r? + rip-?sin®d + r20-%), (93)
whence:
OF | or = mr(p? sin®? 4 92), OF | 09 = mrip?sind cosd, (94)
oE | op = 0,

oF | or = mr, OF |04 = mr*d, OF | dp = mrip sin?d. (95)
Putting in Lagrange’s equations (II), p. 486:
Q=71 qo=gp, g3=7,
we get by (94) and (95):
mr — mr(p?8in® + 92) = @Q,,

m%(ﬁqﬁ sin*}) = Q,, (96)
m (% (r29") — mrPp? sind cosd = Qs .

Equations (96) are the equations of motion in spherical coordinates.

§ 8. Hamilton’s canonical equations. Let ¢, ..., ¢,, be independent
parameters. The kinetic energy ¥ is in the general case a function of the
variables q,, ..., ¢4, 43, ..., ¢, and of the time f. Regarding these variables
as independent let us put

oK .
—-:p]- (?: 1, 2’..., k). (I)
og;

The expressions (1) are called generalized tmpulses.

In virtue of (I), p; are functions of the variables qy, ..., ¢x, 45, -+ @i, &
we can therefore write

P; = Qi(QI’ s Q4 e Qk, t) (7: 1’2""’k)' (1)

It can be proved under rather general assumptions that equations (1)

can be solved for the variables g¢;, ..., ¢;. Consequently
q; = ij(qu,,,’gk, Pi-oes Prs t) (7: 1527"'7k)‘ (2)

The kinetic potential W = E + V is a function of the variables
Qi s Q> G5+ o5 Gy L
W="Fq,. 40 G b)- (3)
Substituting (2) in (3), we get

W =FQqy ..oy 2 P1s - Prs 1)- (4)
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The function F is therefore a function compounded of the function
F by means of the functions ;. From the theorem on the derivative of a
compound function we obtain:
oF oF L oFdg; oF & aF ag
o ¢ S 3g; 09; api =1 Bq ap;
Since V' does not depend on the derivatives ¢j, ..., ¢;, it follows
that oV | 6¢; = 0; from W =V 4 E we have
oW | 6q; = 0K | 2g;. (8)
Hence by (I) and (3) we have oF | 0¢; = p,. From (5) we conse-
quently get:

oOF oF & o OF L g .
____+j:§1p75q:, api_;p,% (G=1,2,...,k). (7)

(G=12..%k. (5

0g; 0g,
Let us put )
k
H=73pag—W (II)
i=1
and assume that ¢; and W are functions of the variables g¢;, ..., g4,
P1y -+ Pa b, 1. €. that they denote the functions (2) and (4). Then
k
H = z%%‘ —F. (8)
i=1
Forming partial derivatives, we obtain from (8):
oH & oq; ©oF OoH & B¢ OF
TR Gt 2P, oy ©)
hence in virtue of (7):
oH | 8q; = — oF | 8q;, °H | 2p; = ;. (10)
Lagrange’s equations (I1I), p. 488, have the form
dew) oW .
dt aq; aq, = 0 (7 == 1’ 3 ey ). (11)
By (I) and (6) 0W [ 2¢; = p;. From equation (11) we get
p; = W | 3, G=1,2...k (12
whence by (3) oF [ 6q; = p;, and hence by (10):
) oH . _©oH -
Pi~~@, (‘h_a—pi (¢=1,2,..., k). (III)

The function H is called Hamilton’s function, and equations (III)
are called Hamilton’s canonical equations.
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The variables p, or the generalized impulses are therefore defined
by equations (I), and the function H by equations (II). In equations (I1I)
the function H is a function of the variables ¢, p;, {. Equations (I1I) con-
sequently form a system of differential equations of the first order, where
the unknown functions are ¢, and p; as functions of the time .

The investigation of motions of systems having a potential is
therefore reduced to the examination of differential equations of the form
(IIT). Hence the name canonical equations.

Scleronomis systems. Let us assume that a system is scleronomic.
By (I), p. 498, we therefore have

8E
Zp,q; = 2, —4;. (13)
i=10g;
Let the natural coordinates be expressed by the functions:
= filqn o dr)s Y= @lQes 5 @)y 2= pildn 5 qa) (14)
(t=1,2,..,n)
Consequently ’ ;
ox, ox;
i = =— ¢i = Qk- 15
i aql 91 + + aqk qx ( )
Forming partial derivatives with respect to ¢;, we get:

ox; | 0q; = dx, [ dq;,

Oy; [ 0g; = by, | 0q;, Oz; | 0q; == dz; | 0q;. (16)
We have
E = {>my(x? + y? - 22); (17)
i=1
hence

d 8(17 oq; a‘b
whence by (16)

ol i

4= Zm (xz 3 (l! + 1 J% % + zi (1]):
oq; i=1

and from this

o= Sl G G+

8q

NI oY, ) .,(821-‘. Loz )]
+yz(aq1ql+.--+aqqu +21‘aq1q1+---+aqk(1k .
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Therefore in virtue of (15)

k n

> gy = St + gt + =) = 28,
=1og; i1

whence by (13)

v ‘
> = 28. (18)
j=1

From (II), p. 499, and (18) we get

o =2E—W. , (19)

According to the definition ((33), p. 488), we have W = E 4 V,
where V' is the potential. From (19) it therefore follows that

H=F-7. (20)
Now, E —V is the total energy of the system.
Therefore: in scleronomic systems Hamilton’s function H denotes the

total energy of the system.
Let us assume that the potential ¥ does not depend on the time. H is

then a function of the variables ¢y, ..., ¢4, P4, .., pi only. Consequently
oH oH ‘
— ; 21
zz (BQ1 ¢+ 320129') =
From equations (III) we obtain
oH ~ oH .. G
2.0 + ap, Vi T TP+ aipi = 0,

whence by (21) dH /dt = 0, i. e. H = const.

We have therefore proved that if a scleronomic system moves in a
potential field, then it is subject to the principle of the conservation of
total energy.

Example 1. A free material point of mass m moves in a potential field
having a potential V.

Let us take the natural coordinates z,y,z, as parameters. The
generalized impulses will be defined by relations (I), p. 498, if we sub-
stitute z, y, 2, for ¢, ¢, ¢5. Consequently: :

Py = O | 0x', py== 0K |y, ps = 0E | 0z. (22)
Since B = {m(x? + y2 + 2°2),
Pr = Mx’, Pp= My, Pps=mz. (23)

We see from this that p,, p,, p,, are the projections of the momentum
on the coordinate axes,
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Determining from (23) a7, 4, 2, we obtain
1
= 5 (1 P2 + ). (24)

Since the system is scleronomic, Hamilton’s function H denotes its
total energy. Consequently H = E — V, whence by (24)

1. ‘
H = — (p} + p} + p2)— V.

2m
From this 0H | 0p, = p, [ m, etc., 0H | ox = — oV | oz, etc. Hamil-
ton’s equations (IIT) therefore assume the form:
pi=0oV|ox, py=20V /0oy, p;=20V /o, (25)
ro=pilm, oy =pylm, 2 =p;/m. (26)

Determining p,, p,, p, from (26) and substituting in (25), we obtain
Newton’s equations:
ma =0V [ 0x, my- = oV [dy, mz.= oV | oz

Example 2. A material point of mass m is constrained to remain on
the surface of a cylinder of revolution 2 |- y* = 7% The point is acted on
by an elastic force P whose projections are:

P, = —kmx, P,=—k*my, P,=— k®mz, (27)
where k is a certain constant.

The elastic force — as is easily verified — has the potential
V= —4ma® gy + 22). (28)
Let us introduce the polar coordinates r, ¢, in the xy-plane. Therefore
x = rcosg, and y = rsing, whence (because r — const) we have
x4yt = 22,
The kinetic energy is consequently equal to
' B = fm(x® 4 y* + 22) = Jm(r2p? + 22). (29)
The variables ¢, 2, can be taken as independent parameters. Denoting
by p; and p, the corresponding generalized impulses and writing ¢, 2,

instead of ¢, ¢,, we obtain from (I) 0F | 0p* = p, and 0F | 0z = p,,
whence by (29):

Py = mrgr, p, = mz. (30)

Determining ¢ and 2= from (30) and substituting in (29) we obtain

1
B = [t + phl.
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By (28) V = — }k*m(r* 4 2%); hence Hamilton’s function ((20),
p- 501) assumes the form
H=EF—V =g [l +pll+ e+, @)

Consequently Hamilton’s equations (ILI) are:
pi=—0H | dp, py = -—0H | 0z, ¢ = OH | Op,, = = 0H | 0p,,
and hence by (31):
p; =0, py=—kmz, @ =p[mr 2z =p,:m (32)

The last two of the equations (32) are equivalent to equations (30).

The first of the equations (32) gives p, = const; hence by (30)
mrip' = const, i.e. ¢* = const. The projections of the point on the hori-
zontal plane will therefore go around the base of the cylinder with a uni-
form motion.

In virtue of (30) the second of the equations (32) gives mz-* = — k?mgz,
i.e.z 4 k?2 = 0. Comparing it with equation (2), p. 110, we see that the
projection of the point on the z-axis will execute a simple harmonic
motion.



