APPENDIX

ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND ORDER WITH CONSTANT COEFFICIENTS

This is the name given to equations of the form

$$y'' + ay' + by = \varphi(x), \tag{I}$$

where a, b, are given real numbers, $\varphi(x)$ is a known function; the sought for function satisfying (I) is y = f(x).

Equation (I), in which the function $\varphi(x)$ is zero, is called a homogeneous equation.

A homogeneous equation therefore has the form

$$y'' + ay' + by = 0. (II)$$

In order to solve the homogeneous equation (II), we take

$$y = e^{rx}, (1)$$

where r is chosen so that equation (II) is satisfied.

Differentiating (1), we obtain:

$$y' = re^{rx}, \quad y'' = r^2 e^{rx}. \tag{2}$$

Substituting (1) and (2) in (II) we obtain

$$r^2e^{rx} + are^{rx} + be^{rx} = 0,$$

whence after dividing by e^{rx}

$$r^2 + ar + b = 0. (III)$$

Equation (III) is called the characteristic equation of (II).

The form of the solution of the homogeneous equation (II) depends on whether the roots r_1 , r_2 , of the characteristic equation (III) are real (equal or different), or complex. Let us therefore examine the three cases:

 1° Roots r_1, r_2 , are real and different. The most general solution of equation (II) is then

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}, (3)$$

where c_1 , c_2 , are arbitrary constants.

 2° Roots r_1 , r_2 , are real and equal. The most general solution of equation (II) is then

$$y = (c_1 x + c_2) e^{r_1 x}, (4)$$

where c_1 , c_2 , are arbitrary constants.

 3° Roots r_1, r_2 , are complex. Since equation (III) has real coefficients a, b, then r_1, r_2 , are conjugate imaginary numbers.

Let us take:

$$r_1 = \alpha + \beta i$$
, $r_2 = \alpha - \beta i$.

The most general solution of (II) is in this case

$$y = e^{xx}(c_1 \cos \beta x + c_2 \sin \beta x), \tag{5}$$

where c_1 , c_2 , are arbitrary constants.

In order to find the general solution of (I), we try first to find a particular solution of this equation. If we succeed and $y = \psi(x)$ is this particular solution, then we next solve the homogeneous equation (II). The most general solution of equation (I) is obtained by adding the particular solution $\psi(x)$ to the general solution of the homogeneous equation (II).

Example 1. Solve the equations:

(a)
$$y'' - 3y' + 2y = 0$$
; (b) $y'' + 2y' + y = 0$; (c) $y'' - 2y' + 5y = 0$.

The characteristic equations are:

(a)
$$r^2 - 3r + 2 = 0$$
; (b) $r^2 + 2r + 1 = 0$;
(c) $r^2 - 2r + 5 = 0$.

The roots of these equations are:

(a)
$$r_1 = 1$$
, $r_2 = 2$; (b) $r_1 = r_2 = -1$; (c) $r_1 = 1 + 2i$, $r_2 = 1 - 2i$.

The most general solutions therefore have the form:

(a)
$$y = c_1 e^x + c_2 e^{2x}$$
; (b) $y = (c_1 x + c_2) e^{-x}$; (c) $y = e^x (c_1 \cos 2x + c_2 \sin 2x)$.

Example 2. Solve the equation

(d)
$$y'' - 3y' + 2y = 4x^2$$
.

We try to find a solution of the form

$$y = ax^2 + bx + c. ag{6}$$

In order to determine a, b, and c, we substitute (6) in (d). After forming derivatives, we get:

$$2a - 3(2ax + b) + 2(ax^2 + bx + c) = 4x^2$$

whence

$$2ax^{2} + (-6a + 2b)x + (2a - 3b + 2c) = 4x^{2}$$
.

Equating coefficients, we obtain:

$$2a = 4$$
, $-6a + 2b = 0$, $2a - 3b + 2c = 0$;

consequently:

$$a = 2$$
, $b = 6$, $c = 7$.

Therefore by (6) the particular solution of equation (d) is

$$y = 2x^2 + 6x + 7. (7)$$

The homogeneous equation y'' - 3y' + 2y = 0 has the general solution

$$y = c_1 e^x + c_2 e^{2x} (8)$$

(cf example 1 (a)). Therefore by (7) and (8) the most general solution of equation (d) is

$$y = c_1 e^x + c_2 e^{2x} + 2x^2 + 6x + 7,$$

where c_1 , c_2 , are arbitrary constants.