CONTENTS | |] | Preface | Ш | |--------------|----------------------|--|----------------------------| | | | CHAPTER I. THEORY OF VECTORS. | | | | | I. Operations on vectors. | | | ത തന്തതനാത മ | 2.
3.
4.
5. | Preliminary definitions Components of a vector Sum and difference of vectors Product of a vector by a number Components of a sum and product Resolution of a vector Scalar product. Distributive law. Associative law. Square of a vector. | 1
2
3
4
5
6 | | 3 | | Analytic representation of a scalar product | 7 | | § | 8. | Vector product. Change of order of factors. Associative law. Distributive law with respect to a sum. Components of a vector product | 9 | | § | 9. | Product of several vectors | 12 | | § | 10. | Vector functions. Limit. Continuity. Derivative. Vector functions of many variables | 13 | | § | 11. | Moment of a vector. Moment of a vector with respect to a point. Moment as a vector product. Moment of a sum of vectors having a common origin. Components of a moment. Moment of a vector with respect to a line | 15 | | | | II. Systems of vectors. | | | ş | 12.
13. | Total moment of a system of vectors | $\frac{19}{20}$ | | § | 14. | Equipollent systems. Systems equipollent to zero. System of three vectors equipollent to zero | 21 | | 0000 | 16.
17.
18. | Vector couple Reduction of a system of vectors, Reduction theorem, Table Central axis, Wrench Centre of parallel vectors Elementary transformations of a system | 23
23
26
27
28 | | | | CHAPTER II. KIN EMATICS OF A POINT. | | | | | I. Motion relative to a frame of reference. | | | 0000000 | 2.
3.
4.
5. | Time Frame of reference Motion of a point Graph of a motion Velocity. Velocity as a derivative of the path Acceleration. Uniform straight line motion. Hodograph | 32
33
34
34
36 | | 3 | ′. | along a plane curve. Motion along a space curve. Uniform motion. Uniformly accelerated motion. Motion along a cycloid | 39 | |--------|-------------|--|----------------------| | 8000 | 9. | Angular velocity and acceleration. Angular velocity vector. Plane motion in a polar coordinate system. Areal velocity. Dimensions of kinematic magnitudes. General definition of dimension. | 48
46
47 | | 3 | , | Determination of dimension | 49 | | | | II. Change of frame of reference. | | | 8 | 13. | Relation among coordinates, Motion along a helix. Relation among velocities | 52
56
59
65 | | | | CHAPTER III. DYNAMICS OF A MATERIAL POINT. | | | | | I. Dynamics of an unconstrained point. | | | § | | Basic concepts of dynamics. Inertial frame, absolute time. Mass and force. Material point. | 69 | | § | | Newton's laws of dynamics. Laws of motion. Equilibrium of a point and forces. Force of inertia. D'Alembert's principle | 71 | | § | 3. | Systems of dynamical units. C. g. s. system. Measurement of masses and forces. Metric gravitational system of units. Dimensions of | | | ş | 4.
5. | dynamical magnitudes Equations of motion Motion under the influence of the force of gravity. Vertical projection. | 74
77 | | 99999 | 6.
7. | Motion in a resisting medium. Vertical projection. Oblique projection | 80
82
84 | | _ | 9. | Central motion. Binet's formula. Planetary motions. Kepler's laws. Corollaries of Kepler's laws. Law of universal gravitation. Mass of the earth. Kepler's equation. | 85
87 | | | | Work. Constant force. Variable force. Work of a sum of forces. Dimension and units of work. Potential force field. Stress field. Lines of forces. Definition of a potential | 92 | | | | field. Potential. Dimension of the potential. Relation between force and potential. Potential surfaces | 96 | | δ | 13. | Examples of potential fields. Constant field. Central field. Newtonian gravitational field. Axial field. Sum of potential fields. Kinetic and potential energy | 100
104 | | 3 | 14. | Motion of a point attracted by a fixed mass. Motion along a conic. Motion along a straightline. Harmonic motion. Simple harmonic motion. Table of position, velocity | 106 | | | | and acceleration of the point. Plane harmonic motion. Damped harmonic motion. Forced harmonic motion. Lissajous' curves | 110 | | § | 16. | Conditions for equilibrium in a force field. Stable equilibrium. Dirichlet's | 118 | | | | II. Dynamics of a constrained point. | | | §
§ | 18. | Equations of motions. Reaction. Equations of motion. Kinetic energy Motion of a constrained point along a curve. Motion along a plane curve. | 121 | | 3 | 19.
20. | Mathematical pendulum | $123 \\ 127 \\ 129$ | | 3, , | . I. | Equilibrium of a constrained point. Stable equilibrium. Equilibrium in a potential field | 131 | | | | III. Dynamics of relative motion. | | |--------|------------|---|-------------------| | ş | 22.
23. | Laws of motion | | | § | 24. | Relative equilibrium. Relative equilibrium in a frame moving with an advancing motion | | | § | 25. | Motion relative to the earth. Force of gravity. Magnitude and direction of the earth's force of attraction. Force of Coriolis. Deviation to the east of a falling body. Foucault's pendulum | | | | | CHAPTER IV. GEOMETRY OF MASSES. | | | | | I. Systems of points. | | | § | ı. | Statical moments. Statical moment of a point. Statical moment of a system of points | 151 | | § | 2. | Centre of mass. Centre of mass of two systems of points. Plane system of points. Linear system of points. Centre of mass of two points. Symmetric sys- | | | § | 3. | Moments of the second order, Moment of inertia. Product of inertia. Radius of gyration. Concentrated mass. Moments of inertia with respect to pa- | 152 | | § | 4. | rallellines. Products of inertia with respect to parallel planes | | | § | 5. | cipal axes of inertia | $\frac{161}{166}$ | | | | II. Solids, surfaces and material lines. | | | §
§ | | Density. Calculation of mass. Material surface, material line | | | Ş | 8. | Centres of gravity of some curves, surfaces and solids. Broken line. Triangle. Trapezoid. Polygon. Sector of a circle. Segment of a circle. Prism. Cylinder. Pyramid. Cone | | | § | | Moments of inertia of some curves, surfaces and solids. Segment. Rectangle. Square. Trapezoid. Triangle. Parallelogram. Rectangular parallelepiped. Circumference of a circle. Circle. Surface of a sphere. Sphere. Cylinder of a revolution. Cone of revolution | | | | | CHAPTER V. SYSTEMS OF MATERIAL POINTS. | | | § | | Equations of motion. Unconstrained systems. Internal and external forces. Equilibrium of a system of points. D'Alembert's principle. Constrained systems. Rigid system. Atwood's machine | 186 | | Ş | 2. | Motion of the centre of mass. Kinematic properties of the centre of mass. Resultant of a system of weights. Dynamic properties of the centre of mass | 194 | | § | | Moment of momentum. Angular momentum with respect to a point. Angular momentum in an advancing motion. Angular momentum in a motion relative to the centre of mass. Angular momentum with respect to an axis. Dynamic properties of angular momentum. Motion in a gravitational field. Rotation of a system about an axis. Angular momentum in relative motion. | 198 | | Ş | 4. | Work and potential of a system of points, Work. Work equal to zero. | 100 | | | | Potential of a system. Potential of the force of gravity. Potential of the internal forces | 208 | | 9 | 6.
7. | Kinetic energy of a system of points. Kinetic energy of a system in an advancing motion. Kinetic energy in a rotating motion about an axis. Theorem of König. Principle of the equivalence of work and kinetic energy. Kinetic energy in relative motion Problem of two bodies Problem of n bodies. Problem of three bodies Motion of a body of variable mass. | $\begin{array}{c} 221 \\ 224 \end{array}$ | |---|------------|---|---| | | | CHAPTER VI. STATICS OF A RIGID BODY. | | | | | I. Unconstrained body. | | | Ş | 1.
2. | Rigid body. Rigid systems of material points | 231 | | ş | 3.
4. | a point. Moment of a force with respect to an axis. Equilibrium of forces Hypotheses for the equilibrium of forces. Transformations of systems of forces. Change of the point of application of a force. Law of composition and resolution of forces. Equipollent systems. Force couple. Reduction of a system of forces. Plane system of forces. System of parallel forces. Gravitational forces. Systems of couples | 235 | | § | 5. | Conditions for equilibrium of forces. Analytic form of the conditions | | | § | 6. | for equilibrium. Plane systems of forces | 244 | | § | | Resultant of a part of a system | 249 | | | | tion of the centre of gravity and the statical moment of plane figures | 253 | | | | $II.\ Constrained\ body.$ | | | § | | Conditions of equilibrium. | 257 | | | | Reactions of bodies in contact. Normal and tangential reactions. Supports. Centre of pressure. Reactions of a string | 258 | | ş | !0.
 . | Friction | 267 | | • | 12 | nation of the reactions acting on a fixed axis Equilibrium of heavy supported bodies. Body supported at two points. | 270 | | | | Body supported at $n > 2$ points | 278 | | § | 13. | Internal forces | 284 | | | | III. Systems of bodies. | | | § | 14. | Conditions of equilibrium | 286 | | - | | Systems of bars. Stresses in bars. Pin-connections. Systems of bars. Decimal balance | 288 | | § | 16, | Frames. Plane frame. Analytical method of determining stresses in a frame. Determination of stresses in a frame (by means of force diagrams). Determination of stresses by means of sections | 294 | | § | 17. | Equilibrium of heavy cables, Chain. Cable. Loaded cable | 302 | | | | CHAPTER VII. KINEMATICS OF A RIGID BODY. | | | § | 1. | Displacement and rotation of a body about an axis. Parallel displacement or translation. Rotation about an axis | 307 | | § | 2. | Displacements of points of a body in plane motion. Rotation about | | | § | 3. | a point. I Theorem of Euler. Plane motion of a body | 310 | | • | . • | theorem. Twist | 312 | | § | 4. | Advancing motion and rotation about an axis. Advancing motion. Ro- | | |---|-----|--|------| | _ | _ | tation about an axis | 318 | | § | 5. | Distribution of velocities in a rigid body. Relations among the velocities | | | | | of the points of a body. Velocities of points of a straight line and a plane. Instantaneous motion of a rigid body | 321 | | § | 6. | Instantaneous plane motion. Determination of the instantaneous centre | 041 | | 3 | ٠. | of rotation | 324 | | Ş | 7. | Instantaneous space motion. Rotation about a point. Instantaneous mo- | | | • | | tion in the general case. Velocity of transport. Instantaneous twist. De- | | | _ | | termination of the motion of a body | 330 | | § | 8. | Rolling and sliding. Curve of instantaneous centres. Cone of instantaneous | | | | _ | axes. Surface of central axes | 337 | | 3 | у. | Composition of motions of a body. Two simultaneous rotations. Composition of several simultaneous rotations. Relative motion of a body. Steady | | | | | precession | 342 | | δ | 10. | Analytic representation of the motion of a rigid body. Instantaneous | 942 | | 3 | | angular velocity. Central axis. Plane motion. Euler's angles. Euler's angles | | | | | in a steady precession | 350 | | § | 11. | Resolution of accelerations. Plane motion. Motion in space | 357 | | | | | | | | | CHAPTER VIII. DYNAMICS OF A RIGID BODY. | | | Ş | ı. | Work and kinetic energy. Dynamical magnitudes. Work. Kinetic energy. | 360 | | § | 2. | Equations of motion. Motion of the centre of mass. Principle of angular | | | | | momentum. Principle of kinetic energy. D'Alembert's principle. Advancing | | | | | motion of a body. Conditions of equilibrium. Reactions of bodies in contact. | 004 | | § | 3 | Work of the friction | 304 | | 3 | ٠. | Determination of the reaction on an axis of rotation. Axis of rotation as a | | | | | central axis of inertia. Centre of percussion | 374 | | Ş | 4. | Plane motion. Plane motion of a plane figure. Plane motion of a body | 385 | | § | 5. | Angular momentum. Angular momentum with respect to the centre of | | | | | mass of a body or with respect to its fixed point. Derivative of the angular | | | | , | momentum | 393 | | ş | 7 | Euler's equations. Motion of an unconstrained rigid body | 397 | | 3 | ٠. | Angular momentum and kinetic energy. Rotation about a spherical point. | | | | | Rotation about a point whose ellipsoid of inertia is an ellipsoid of revolution. | | | | | Determination of Euler's angles. Rotation of a body about a point in the gene- | | | | | ral case | 399 | | § | 8. | Rotation of a heavy body about a point | 406 | | ğ | 9. | Motion of a sphere on a plane | 409 | | 3 | ıv. | plane. Motion of the axis in a horizontal plane | 410 | | | | plane. Motion of the axis in a norizontal plane | 412 | | | | CHAPTER IX. PRINCIPLE OF VIRTUAL WORK. | | | § | | Holonomo-scleronomic systems. Bilateral constraints. Unilateral con- | | | 3 | •• | straints. Degrees of freedom of a system | 418 | | § | 2. | Virtual displacements. Point on a surface. Point on a curve. Holonomo- | 110 | | • | | scleronomic systems. Bilateral constraints. Unconstrained rigid body, Fixed | | | | | point. Fixed axis. Motion of a figure in a plane. Unilateral constraints | 422 | | § | 3. | Principle of virtual work. Virtual work. Unconstrained body. Body | | | | | having a fixed point. Plane motion of a body. Body having a fixed axis. | | | | | Body having a fixed axis of twist. Serew. Determination of stresses in the bars | 49.4 | | § | 4. | of a frame | 434 | | 3 | | | 446 | | § | 5. | Lagrange's generalized coordinates. Parameters of a system. Virtual | | | - | | displacements. Virtual work. Generalized forces. Conditions of equilib- | | | | | rium. Equilibrium in a potential field | 451 | ## CONTENTS ## CHAPTER X. DYNAMICS OF HOLONOMIC SYSTEMS. | 00000000 | Holonomic systems. Non-holonomic systems. Virtual displacements. Point on a surface. Point on a curve. Example Systems of points. Generalized coordinates. D'Alembert's principle, Equilibrium of forces. D'Alembert's principle. Work and kinetic energy in scleronomic systems. Lagrange's equations of the first kind. Lagrange's equations of the second kind. Lagrange's equations in potential field. Cyclic coordinates. Motion of a point on a surface of rev lution. Spherical coordinates. Hamilton's canonical equations. Scleronomic systems CHAPTER XI. VARIATIONAL PRINCIPLES OF MECHANICS. | 467 es 468 474 478 480 a o 483 | |------------------|---|--------------------------------| | § | I. Variation without the variation of time. Variation of a function. Vari | a- | | • | tion of an integral. Variation of a derivative. Variation of a compour function. Systems of points | $^{\mathrm{1d}}$ | | § | | ı's
ed | | | mic systems in a potential field | 512 | | § | of points. Variation together with the variation of time of an integral | 522 | | § | 4. Maupertuis' principle (of least action). Hölder's transformation. Mo general form of Hamilton's principle. Maupertuis' principle | re
527 | | \boldsymbol{A} | ppendix. Ordinary differential equations of the second order with constant coefficients | 534 | | T) | ńdex | 537 |