The Lebesgue integral in abstract spaces®

Introduction

In this note we intend to establish some general theorems concerning
the Lebesgue integral in abstract spaces. This subject hag been discussed
by several authors (for the references see this volume, pp. 4, 88, 116, 156
and 157). Our considerations differ from those of other writers in that
they are not based on the notion of measure.

Let us fix a set of arbitrary elements H as an abstract space. We shall
denote real functions (i.e. functions whieh admit real values) defined
in H by x(f), y(t), 2(¢), ... where {<fl, or simply by #, 9,2, .... A set £
of real functions defined in H will be called linear if any linear combina-
tion, with constant coefficients, of two elements of £, also belongs to .

Let £ be a linear set of functions defined in . A functional ¥ defined
in £ is termed additive if for any pair of elements =, ¥ of £ and any real
number «, we have F(x-t+y) = F(z)+F(x) and F(ax) = a-F(x). The
functional 7 is non-negative if F(x) > 0 for any non-negative function ae L.

We say that a functional ¥ defined in £ is a Lebesgue integral (L-in-
tegral) in £ if the following conditions are satisfied:

A) The set £ is linear;
B) the functional ¥ is additive and non-negative;
) if 1° {7, = £ and ML, 2%z, (1) < M(¢) for » =1,2,... and
te H, and 3° limz,(f) = 2(t) for te H, then z¢H and lmF(z,) = F(2);
3 w

D) ifzeQ, F(2) = 0 and |y ({)] < z(t) for te H, then y L and F(y) = 0;
B) if 1° {2,) = €, 2,(1) < 2nyi(f) for » =1,2, ..., 2° lime,(t) = (1)
for te H, and 3° limF(z,) < oo, then 2¢8€ and lm F(z,) = F(z).

({4
‘The Lebesgue integrals considered in this note will moreover satisfy

the condition:
R) If ze Q, then ]Z[EQ

* Commenté sur p. 356.
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In Part I, a condition is established under which an additive and
non-negative functional defined in a linear set of functions €, may be
extended to an £-integral on a certain set € containing €. The L-integral
and the set € will be explicitly defined.

In Part II we admit that H is a metrical and compact space. We
consider an L-integral defined in sets containing all functions which
are bounded and measurable in the Borel sense. It is shown that each
Q-integral of this kind is determined by the values which it admits
for continuous functions. Conversely, any additive and non-negative
functional defined for all continuous functions may be extended as an
Q-integral to the class of functions measurable (B). We thus obtain the
most general C-integral defined for all functions bounded and meagur-
able (B).

In Part III we deal with an analogous problem supposing that H
is the unit sphere of the Hilbert space. In particular, the integral of a con-
tinuous function is expressed by explicit formulae.

i. Abstract sets

§ 1. We shall employ the following notation:

1. 2>y if 2(t) =y () for every t<H; in particular x >0 means
that x(f) = 0 for t<H;

2. |z = |@(t)| is the modulus of #(f) in the ordinary sense;

3. max (@, y) = o+y+ lz—yl), min(z, y) = s{z+y—l2—yl);

4. lima, — @ means that limaz,() = »(t) for teH; the relations
n n

limsupw, = «, liminfz, = » are defined similarly;
5. @ = Yo+ o)), © = J(z—|2|) (cf. Chap. I, p. 13).

§ 2. For the rest of Part I of this note we shall fix a set € of real
functions defined in H, and a functional f(z) defined for z¢€, subject
to the following conditions:

(i) The set € is linear;

(i,) if zeC, then |v]|<C;

(ii,) the functional f is additive;
(ii,) the functional f is non-negative;
(iiy) it 10 {x,} = € and MG, 20 |m,| < M for n =1,2,..., and

3¢ imw, = 0, then limf(x,) = 0.

Tt follows immediately from the conditions (i) that for any pair of

elements « and y of €, max(z, y), min{z, ¥), z and z also belong to €.
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It follows further that the condition (iiy) is equivalent to the following
condition:

(iig) If 1° {z,} = € and me€, 2° 2, =m for n=1,2,..., and 3°
liminf #, > 0, then Hminf f(x,) > 0.

§ 3. We shall establish the following

TuEOREM 1. If the set € and the functional f satisfy the conditions (i)
and (il), then there ewists an L-integral F, defined in a set £ containing €,
such that F(x) = f(x) whenever xeC; moreover, this integral satisfies the
condition R).

The proof will result from several lemmas.

§ 4. We denote by L* the set of all functionals z(f) defined in H
for each of which there exist two sequences {z,} <= €, {y,} = € such
that

(1) minfz, > 2 = limsupy,.

Tt is easily seen that the set £* is linear and that € < L%

Given a function ze2*, we shall term upper L-integral of z the lower
bound of all (finite or infinite) numbers ¢ for each of which there exist
a function me@€ and a sequence of funections {#,} belonging to € such
that ©, > m for n =1, 2, llmlnf @z, =z and g = hmmf fxy,).

The definition of the lower 9 -integral is analogous to that of the upper
C-integral. The upper and lower L-integrals of a function z¢£* will be
denoted by p(2) and ¢(z) respectively. We obviously have ¢q(z) = —p(—z).

§ 5. The sequence {f(x,)} in the above definition of the upper £-in-
tegral, may obviously be supposed convergent (to a finite limit or +co).
Farther, if {x,} = €, me€, 2>0, x,>m for n=1,2,... and
liminfx, > 2, then hm 2, = 0 and consequently, by the eondmon (iis),

w

§2, limf(z,) = 0. Hence, if 2¢L%, 220 and p(z) <P < +oo, there

always exists a sequence of non-negative fumtz’ons 150”} belonging to € such
that hmlnfa;n z and f(x,) <P for n =1,2,

LEMMA 1. For any function xe € we have p(x) = f(x).
Proof. Writing z,, = x and m = «, we have

(1) limintw, 22 and x,>=m for n=1,2,...,
T

whenece p(#) < f(»). On the other hand, if x,,,,..., and m are any
functions which belong to € and satisfy the relations (1), then
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hmmf(wn~x) 0 and x, 2 =m—x for n =1,2,... 1t follows from
113) § 2, that hmmff =0, l.e. hmmff x,) == flx). Thus p(2) = f(x),

and finally p( J) —f(zz;).

TEMMA 2. If 2, € €%, 2, &% and if, moreover, p(z;) < +o00,p(7;) < oo,
then p(2;-+22) < p(2;)+p (7).

Proof. Let P, and P, be arbitrary numbers such that p(z;) <P
and p(#,) < P,. There exist two sequences {20}, {1 of functions

belonging to € and two functions m, e € and m,e € such that liminfa) > 2
n

and hmf (#)y < P; for j = 1,2 and such that 2 > m; for j =1,2 and

n =1, 2, ... Therefore, writing x, = #\)+#2 and m = m,;+m,, we
have hnlinf"vn >2+2 and x,>m for n=1,2,... Consequently

P2, +2g) < hmf ry) = hmf (i) +11mf ) < P,-+P,, whence p(z,+2,)

< p(%) +p(‘2)-

LEMMA 3. For any function zeL*, we have p(z) = q(2).

Proof. Since ¢(2) = —p(—7) (cf. §4), the inequality p(2) = ¢(2)
is obvious if one of the numbers p(z) or p(—=z) is +oco; while, if p(2) < +oo
and p(—z) < -+oo, it follows immediately from Lemma 2.

LeMMA 4. If 2e¢8%, p(z) < +oo, then also p(2)< +oo and p(z)

=p(2) +p(2).

Proof. Given an arbitrary finite number P > p(z), there exist a func-
tion meG and a sequence {x,} of functions belonging to € such that
@, =m for m=1,2,..., liminfw, >z and limf(z,) < P. Note that

K2

- T

Ly = 1y and consequently f(cco)n) < f(w,)—f(m), for n =1, 2,..., whence

p (%) <lminf f(2,) < +oco. Again
P = lim f(#,) = limint f(&,) - imint f(z,) > p(2) +p(2),

and therefore p(z) = p(z )—‘— (2); whence, in virtue of Lemma 2, p(?)
=p(2)+p(2)

Finally, we mention two propositions which are directly obvious:

LEMMA 5. If 2,68, 2,6 &F and 2, < 2y, then p(3) < p(2y); in parli-
cular, if ze8* and z = 0, then p(z) = 0.

LEMMA 6. If 2¢8%, then p(i2) = J-p(&) for any non-negative num-
ber M.
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§ 6. We shall now denote by € the set of all funections ze £* for which
Pp(2) = q(3) # co. The following proposition is an immediate consequence
of Lemmas 2 and 6:

LEMMA 7. If €8 and 2,¢L, then (A2, 0y%,) e and (A 2,-+1,2,)
= P (21) +1:.p(22) for any pair of finite numbers A, and 7.

LevMMA 8. If 2¢£, then |z]e <.

Proof. Since |2| = 5—3’, it is enough to prove that ¢<$ and 7el.
To this end, let us remark that, in virtue of Lemma 4, p(2) < -+ oo,
P(2) > —ooand p(2) :p(5)+p(§f>;by symmetry, ¢(2) > —oo, ¢(2) < o0
and q(z) = q(g)—(—q(g). Since, by hypothesis, p(2) = ¢(z), it follows that

(P &)1+ [p(2)—q(2)] = 0, and s0 by Lemma 3, p(3) — q(3) # oo
and p(2) = ¢(2) # oo "

LEMMA 9. If 2 is the limil of a non-decreasing sequence {z,} of functions
belonging to £ and limp (z,) << oo, then 2L and p(z) = limp(z,).

Proof. We can clearly assume (by subtracting, if necessary, the
function 2, from all functions of the sequence {z,}) that z, = 0. Writing
Wy, = Zp1—3, Tor n = 1,2, ..., we shall now follow an argument similar
to that of Theorem 12.3, Chap. I. First, we have z > z, and p(2,) = q(2,)
for every n, and so

(1) q(2) = limg(z,) = limp (2,).

n

To establish the opposite inequality, let ¢ be an arbitrary positive
integer and let us associate (ef. the remark at the beginning of § 5) with
each funetion w, a sequence {wﬁf’}k:’lagw of non-negative funetions

belonging to € such that

(2) liminta{® > w, and (3)  f(a) < plw,)+e/2m
k

i

Let us write y;, = Zwﬁf) The functions y; clearly belong to € and,

n=1

by (2), we have liminfy > }'w; = 2. On the other hand, in virtue of (3),
e %

k
we find f(yx) < X p(w,)te<p(ony)te<lmp(e) e for k=1,2,...
n=1 %

Therefore, p(z) < lminf f(y;) <limp(2z)+e, and since ¢ is an arbitrary
P k

positive number, this combined with (1) gives 0 <p(2) = ¢q(2)
= limp (2z) << 400, which completes the proof.
k
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LEMMA 10. If ML and {zn} s a sequence of functions belonging to L
such that |2, < M fm n=1,2,..., then, putting ¢ = liminf 2, and h
n

= hmsupyn, we have g8, hel, and

p(9) <lminf p(z,) < limsup p(z,) < p(h).

Consequently, if the sequence {z,} is convergent and z = limgz,,, then
n
p() = limp(z,).

Proof. The lemma corresponds to Theorem 12.11, Chap. I, and its
proof is analogous to that of the latter. Let us write, for each pair of
integers ¢ and j > 4, g;; = min(2;, 2,4, ...,4;). The sequence {9i}i—tisn,.
is non-increasing, and consequently the sequence {M —g;ti_;i 1. is
non-decreasing. Let ¢; = hmgw Since the funection g, clearly belong

to £, it follows from Lemma 9 that M —g;eLand p(M —g,) = hmp(M — i),
ie. g;¢8 and p(g,) = hmp(gw) Hence, applying again Lemma 9 to the

non-decreasing sequence {g:} which converges to g, we obtain ge 2 and
p(g) = limp(g;) <liminfp (z;).

By symmetry we have the analogous result for % and the proof is
complete.

We shall conclude this § by mentioning the following lemma which
is an immediate consequence of Lemma 5:

LEMMA 11. If 2¢L,2 = 0 and p(2) = 0, then any funclion x such that
le| <z belongs to £ and for any such functwn x we have p(x) = 0.

§ 7. Let F(x) = p(x) for xeL. The lemmas of the preceding sections
show that the set € and the functional F(z) satisfy the theorem stated
in § 3. Theorem 1 is thus proved.

It is easily seen that if an L-integral F, defined in a linear set ¢, o2
satisfies the condition f(z) = F,(2) for z¢€, then F(x) = ' (x) for all
xzeL. Consequently the functional f determines completely an L-integral
in the set L.

II. Metrical compact sets

§ 8. Let now H be a complete and compact metrical space. We shall
specify € as the set of functions continuous in H.
The set € satisfies evidently the conditions (i), § 2. It may be shown

QOeuvres w
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that any additive and non-negative functional f defined in € satisfies
the condition (iig) (1).

Theorem 1 permits to define a Lebesgue integral F () for all functions
# belonging to a certain set £ » €, in such a manner that the condition
R), p. 252, is satisfied and that F(x) = f(2) for x<€C.

Evidently, every function (¢) which is constant on H belongs to E.
Tt follows by condition C), p. 252, that every bounded function measurable
in the sense of Borel belongs to €. :

We have thus proved the following

THEOREM 2. Hvery additive and mon-negative functional, defined for
all functions which are continuous in a complete compact space H, may
by extended to an L-integral defined in a certain linear set {containing all
bounded functions measurable in the sense of Borel) so that the condition R)
be satisfied.

The values of this C-integral for functions bounded and measurable
(B) are, of course, determined by the given functional f. Hence the most
general C-integral defined for this class of functions may be obtained
by choosing an arbitrary additive non-negative functional defined for
all functions which are continuous in H and by extending this functional
by means of the method described in Part I of this note.

Any linear functional f(z) defined in the set E is the difference of
two additive non-negative functionals f;(#) and f(x) (cf. Banach [I,
p. 217]). Extending these functionals by means of Theorem 1 over two
sets, €, and £, say, respectively, we see that it is possible to extend the
functional f(#) over the linear set £ = £,-£,. This set will contain all
bounded functions measurable (B). The extended additive functional
F(w) evidently satisfies the conditions C) and R), p. 252, and is non-
-negative.

ill. The Hilbert space
§ 9. We shall now understand by H the unit sphere of the Hilbert
space, i.e. the set of all sequences {#;} for which Z 93 < 1. The distance
of two points t = {191} and ¢ = {0} is defined, as usually, by the formula

oty ) = [Z(ﬁ — 09"

7=1

With regard to this definition of distance the space H is not compact
and therefore we cannot apply Theorem 2 directly.

(*) A functional of this kind is necessarily linear. Every linear funetional defined
in € satisfies the condition (ii;). See Banach [38, p. 224].
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Let €, be the set of functions » = x(f) = x(9,, P35, ...) Which are
continuous in H and whose values depend only on the first # coordinates
¥4, 80 that @ (9, s, ...) = 0(01, F5, ..., 94, 0, 0,...) for any ¢ = {§;}<H.
Clearly €, = €,.,.

It is easily seen that the set € = } €, satisfies the conditions (i),

n=1

§ 2. Any functional f defined in € for which the conditions (ii) hold may
be extended to an L-integral defined in a certain set £ containing G.

LeMMA 12. The set £ contains all bounded functions mesurable (B)
defined in H.

Proof. Let # be a bounded continuous function defined in H. For
any point t = (9;, 95, ..., ¥u, ...) and any positive integer n, we write
p(t) = (91, ..., 04, 0,0,...). Evidently #,¢C and limz, = . If I is

3
the upper bound of |x(f)| for teH, then |z, < M. Since the constant
funetion 2 = M certainly belongs to €, it follows from the condition C),
p. 252, that z%.

Consequently every bounded and continuous function belongs to £
and by the condition C) the same is true of any bounded function meas-
urable (B).

LEMMA 13. Every additive and non-negative fmwtwnal f(m defined
in € satisfies the condition (ii,), § 2.

Proof. We define in H a distance pg,(¢,¢) of two points ¢
= {0, Dy, ...}, ¥ = {"917 "927 o) by

' > 1 Di—Ds
(1) 01(t, 1) = Z?ﬁlﬁ—_‘%f

We easily verify that with regard to this distance the set H is com-
plete and compact.

Let € be the set of all functions defined in H which are continuous
according to the distance defined by the formula (1). Evidently € < G.

Let f be an additive non-negative functional defined in €. Let
Ba(l) = @(01y ey 90, 0,0,...) for G and ¢ = (4,, 0y, ...) e H.

With regard to the dlstanee (1), H is a complete and compact space,
and hence the function x(¢)e€ is uniformly continuous. It follows that
the sequence {x,} uniformly converges to ». This implies the convergence
of the sequence {f(x,)} (*). Let f(w) = limf(x,).

(*) Indeed, if ¢ >0, there exists a positive intéger N such that —e L p—wg < &
whenever p > N, ¢>N. Since the constant funection 2 = 1 belongs to &, we have,
for k = f(1), the inequality —ke < f(xp)—f(xg) < ke which proves the convergence
of {f(zn)}.
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If >0, then x, >0 for each n, and consequently f(x) = 0. The
funetional f x), clearly additive, is therefore non-negative. The set H
being compact, it follows, by what has been established in Part I1, that f
satisfies in H the condition (113) (with € and f replaced by € and f respecti-
vely). Since € < € and f() = f(#) for x<G, the functional f satisties the
condition (ii;) in €.

§ 10. Now consider an additive non-negative functional f(») defined
in €. Let f,(x) denote the functional defined in €, by the formula,

(2) ful@) = flx) for 2@,
We obviously have
(3) fulz) = fn+1(m) for 2eC,.

Conversely, if we choose any sequence {f, ()} of additive non-negative
functionals, the functional f, being defined in €, (where n =1,2,...)
subject to the condition (3), then the formula (2) determines an additive
non-negative functional f () in €. We thus obtain the most general additive
non-negative functional f(x) defined in €, and by what has been estab-
lished in the preceding §, the most general Lebesgue integral for all
functions bounded and measurable (B).

The set €, may be interpreted as the set of all functions of n variables
9, ..., 9, which are defined and continuous in the sphere 9oy < 1.
Tt is known that the most general additive and non-negative functional
defined in €, may be represented by a Stieltjes integral.

These general considerations will now be illustrated by the following
example. Suppose that the functionals f, are given by the formula

(4) ff By, eees Day 0,0, ) @u(Be, oevy Fn)dDy ... Ay
ﬂ-(- +19

for x<@,, where ¢, denotes a fixed non-negative function integrable
in the sphere 9*-+...4-9% < 1. The condition (3) may be written in the
form

+1/1- 8 —...—p
Py O) = [ @an (P By Fup) A
—]/1 Yy,
To satisfy this condition, we may put, for instance, ¢; = 1/2 and
Pui1 = guf2V1—0;—...—0; for n >1. We thus obtain
1
(5) On(Dyy oeey Oy) =

219 . V11— —. . —0h_;
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Let # be an arbifrary function bounded and continuous in H. We
write again z,, = x (9, ..., 9, 0,0, ...). If [#| < M, where M is a constant,
then limg, = o, |z, < M.

n

Now let F' be an L-integral which for functions belonging to € coin-
cides with the functional f subject to (2). We then have F(z) = lim F(x,)

= limf,(x,). If further f, is represented by the formula (4), then
F@) =tm [...[ @(dy,...,04,0,0,. 00,(S, ..., 8,)d9, ... 43,

and, in particular, if ¢, is given by (5),

ady ... dd,
21— .. V1I—9P—. . —

Plo)—tim | - [ @0y 90,0,0,.0)

2 2
Bt o<l

This formula defines explicitly a certain L-integral for all functions
bounded and continuous in H.

The above considerations may be extended to certain spaces of
the type (B) (cf. Banach [38, Chap. V]), e.g. the spaces I®, L® with
p > 1




