CHAPTER L

The integral in an abstract space.

§ 1. Introduction. Apart from functions having as argument
a variable number, or system of n numbers (point in »-dimensional
space), we shall discuss in this book functions for which the inde-
pendent variable is a set of points. Functions of this kind have
occurred already in classical Analysis, in several important particular
cases. But they only. began to be studied in their full generality
during the growth of the Theory of Sets, and in close relation to
the parts of Analysis directly based on that theory.

If we are, for instance, given a function f(x) integrable on e¢very
interval, then by associating with each interval I the value of the
integral of f(x) over I, we obtain a function F(I) that is a function
of an interval. Similarly, by taking multiple integrals of funetions
f(@y, @gy ..., ) of m variables, we are led to consider functions of
more general sets lying in spaces of several dimensions, the argu-
ment I of our function F(I) being now replaced by any set. for which
the integral of our given function f(wy, wa ..y a,) is defined.

We dwell on these examples in order to emphasize the natural
connection between the notion of integral (in any sense) and that
of function of a set. Needless to say, there are many other examples

“of functions of a set. Thus in elementary geometry, we have tfor
instance, the length of a segment or the area of a polygon. The
class of values of the argument of these two funetions (the length
and the area) is in the first case, the class of segments and in the
second, that of polygons. The problem of extending these classes
gave birth to the general theories of measure, in which the notions
of length, area, and volume, defined in elementary geometry for
o restricted number of figures, are now extended to sebs of pointxs
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of much greater diversity. It is, nevertheless, remarkable that these
researches arose far less from problems of Geometry than from
their connection with problems of Analysis, above all with the
tendency to generalize, and to render more precise, the notion of
definite integral. This connection has occasionally found expression
even in the terminology. Thus du Bois-Reymond called integrable
the sets that to-day are said to be of measure zero in the Jordan sense.

The theories of measure have, in the course of their development,
been modified in accordance with the changing requirements of the
Theory of Functions. In our account, the most important part will
be played by the theory of H. Lebesgue.

Lebesgue’s theory of measure has made it possible to dis-
tinguish in Euclidean spaces a vast class of sets, called measurable,
in which measure has the property of complete additivity — by this
we mean that the measure of the sum of a sequence, even infinite,
of measurable sets, no two of which have points in common, is equal
to the sum of the measures of these sets. The importance of this
class of sets is due to the fact that it includes, in particular, (with
their classical measures), all the sets of points occurring in problems
of classical Analysis, and further, that the fundamental operations
applied to measurable sets lead always to measurable sets.

It is nevertheless to he observed that the ground was prepared
for Lebesgue’s theory of measure by earlier theories associated
with the names of Cantor, Stolz, Harnack, du Bois-Reymond,
Peano, Jordan, Borel, and others. These earlier theories have,
however, to-day little more than historical value. They, too, were
suitable instruments for studying and generalizing the notion of
integral understood in the classical sense of Riemann, but their
results in this direction have been largely artificial and acecidental.
It is only Lebesgue’s theory of measure that makes a decisive step
in the development of the notion of integral. This is the more re-
markable in that the definition of Lebesgue apparently requires
only a very small modification of a formal kind in the definition
of integral due to Riemann. .

To fix the ideas, let us consider a bounded function f(ax, y)
of two variables, or what comes to the same thing, a bounded func-
tion of a variable point defined on a square K,. In order to deter-
mine its Riemann integral, or more precisely, its lower Riemann-
Darboux integral over K,, we proceed as follows. We divide the
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square K, into an arbitrary finite number of non-overlapping
rectangles R,, R, ..., Ry, and we form the sum
n

(1.1) Mo -m(Ry)

i—1
where v; denotes the lower bound of the funetion fon Ry, and m(R,)
denotes the area of R;. The upper bound of all sums of this form is,
by definition, the lower Riemann-Darboux integral of the function f
over K, We define similarly the upper integral of f over K, If
these two extreme integrals are equal, their common value is called
the definite Riemann integral of the funection f over K, and the
function f is said to be integrable in the Riemann sense over K.

The extension of measure to all sets measurable in the Lebesgue
sense, has rendered necessary a modification of the process of Rie-
mann-Darboux, it being natural to consider sums of the form (1.1)
for which {RB};-1,9, ..., I8 a subdivision of the square K, into a finite
number of arbitrary measurable sets, not necessarily either rectangles
or elementary geometrical figures. Accordingly, m(R;) is to be un-
derstood to mean the measure of E;. The v; retain their former
meaning, i.e. represent the lower bounds of f on the corresponding
sets K;. We might call the upper bound of the sums (1.1) interpreted
in this way the lower Lebesgue integral of the function f over K.
But actually, this process is of practical importance only for a class
of functions, called measurable, and for these the number obtained
as the upper bound of the sums (1.1) is called simply the definite
Lebesgque integral of f over K,. What is important, is that the func-
tions which are measurable in the sense of Lebesgue, and whose
definition is closely related to that of the measurable sets, form
a very general class. This class includes, in particular, all the func-
tions integrable in the Riemann sense.

Apart from this, the method of Lebesgue is not only more
general, but even, from a certain point of view, simpler than that
of Riemann-Darboux. For, it dispenses with the simultaneous
introduction of two extreme integrals, the lower and the upper.
Thanks to this, Lebesgue's method lends itself to an immediate
extension to unbounded functions, at any rate to certain classes
of the latter, for instance, to all measurable functions of constant
sign (cf. below § 10). Finally, the Lebesgue integral renders it per-
missible to integrate term by term sequences and series of functions
in certain general cases where passages to the limit under the in-

-
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tegral sign were not allowed by the earlier methods of integration.
The reason for this is to be found in the complete additivity of Le-
besgue measure. The fundamental theorems of Lebesgue (cf. below
§12) stating the precise circumstances under which term by term
integration is permissible, are justly regarded by Ch. J. de la Vallée
Poussin [I, p. 44] as one of the finest results of the theory.

Lebesgue’s theory of measure has, in its turn, led naturally
to further important generalizations. Instead of starting with area,
or volume, of figures, we may imagine a mass distributed in the
Eueclidean space under consideration, and associate with each set
ag its measure, (its ‘‘weight” according to Ch. J. de la Vallée
Poussin [I, Chap.VI; 11), the amount of mass distributed on the set.
This, again, leads to a generalization of the integral, parallel to
Lebesgue’s, known as the Lebesgue-Stieltjes integral. In order
to present a unified account of the latter, we shall consider in this
chapter an additive class of measurable sets given a priori in an
arbitrary absfract space. We shall suppose further, that in this
class, a completely additive measure is determined for the mea-
surable sets. These hypotheses determine completely a corresponding
method of integration in the Lebesgue sense. All the essential prop-
erties of the ordinary ILebesgue integral, except at most those im-
plying the process of derivation,remain valid for this abstract integral.
Ifrom this point of view, in a more or less general form, the Lebesgue
integral has been studied by a number of authors, among whom
we may mention J. Radon [1], P. J. Daniell [2], O. Nikodym [2]
and - B. Jessen {1]. For further generalizations (of a somewhat
different kind) see also A. Kolmogoroff [1], S. Boehner [1],
G. Fichtenholz and L. Kantoroviteh [1], and M. Gowu-
rin [1].

§ 2. Terminology and notation. Given two sets 4 and B,
we write A( B when the set A is a subset of the set B, i. e. when
every element of A is an element of B. \When we have both A( B
and B( A4, i. e. when the gets A and B consist of the same ele-
ments, we write 4 = B. Again, a¢ A4 means that ¢ is an element
of the set A (belongs to A). By the empty set, we mean the set without
any element; we denote it by 0. A set A is enumerable if there exists
an infinite sequence of distinct elements a,, ay, ..., ., ... consisting
of all the elements of the set A.
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Given a clags A of sets, we call sum of the sets belonging to
this clags, the set of all the objects each of which is an element of
at least one set belonging to the class A. We call product, or common
part, of the sets belonging to the class U, the set of all the objects
that belong at the same time to all the sets of this class. We call
difference of two sets A and B, and we denote by A — B, the set
of all the objects that belong to 4 without belonging to B.

Given a sequence of sets |4, — a finite sequence 4., 4, ..., 4.,
or an infinite sequence A, 4, ...,4,.... — we denote the sum by

yA,, by A,, or by A, - A,+ ...+ 4, in the finite case, and by

0

S 4, by L"Ai, or by A, 4+ A,+ ..+ 4,4+ .. in the infinite case.

éimilarly, [merely replacing the sign X by II, we have the expres-
sion for the product of a sequence of sets. If the sequence {4,) is
infinite, we call upper limit of this sequence, the set of all the ele-
ments a such that ae 4, holds for an infinity of values of the index n.
The set of all the elements a belonging to all the sets 4, from some n
(in general depending on ) onwards, we call lower limit of the se-
quence {4,). The upper and lower limits of the sequence {A,j. 12,
we denote by limsup 4, and lim inf 4, respectively. We have

1 n
o0 (o)

(2.1) lim 1nf A,=>114,C I[ Z A,,--hm sup 4.

k 1n-k 1 n=k
Jf lim sup A, = hm 1an/, the sequence {4} is said to be convergent;

its upper and lower limits are then called simply limit and denoted
by lim 4,.

if, for a sequence {A,! of sets, we have A, A4, for each n,
the sequence {4,} is said to be ascending, or non-decreasing; if, for
each n, we have A4, A4,, the sequence {4,} is said to be descending
or non-increasing. Ascending and descending sequences are called
monotone. We see directly that every monotone sequence is con-
vergent, and that we have lim A4,= Y4, for every ascending se-

I n
quence |4,), and lim 4,= Il A, for every descending sequence {4,}.

Finally, given a class'(ﬁf of sets, we shall often call the sets
belonging to ¢, for short, sets (€). The eclass of the sets which
are the sums of sequences of sets (€) will be denoted by €.. The
class of the sets which are the products of such sequences will
be denoted by €, (see I'. Hausdorff [1I, p. 83]).
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§ 3. Abstract space X. In the rest of this chapter, a set X
will be fixed and called space. The elements of .Y will be called points.
It 4 is any set contained in X the set N — 4 will be called com-
plement of A with respect to X; the expression “with respect to X7
will, however, generally be omitted, since sets outside the space X
will not be considered. The complement of a set .4 will be denoted
by CA. We evidently have, for every pair of sets 4 and B,

(3.1) A—B=A.CB,
and for every sequence (X ,} of sets
IIx,=C3CXx,, 2N,=01cocx,,

3.2
(52 Iimsup X, = Climinf CX,, Iiminf X, = Climsup CX,,.

In the space X we shall consider functions of a set, and functions
of a point. The values of these functions will always be real numbers,
finite or infinite. A function will be ecalled finite, when it assumes
only finite values.

To avoid misunderstanding, let us agree that when infinite funec-
tions are subjected to the elementary operations of addition, subtrae-
tion ete., we make the following conventions: a-4-( 4 00)=(+oo)fa= +co
for a = F 00; (4 00)(—00)= (—00)+(+00) = (+00) — (+o0)=0;
a-(too)=(to0) a=2oco and a-(+o00)=(+o0)- a==F oo, according
as a>0 or a<0; 0.(4o0)=(40c0).0=0; a/(+c0)=0; a/0=-+oco.

We call characteristic function c,.(x) of a set E, the function
(of a point) equal to 1 at all points of the set, and to 0 everywhere
else. The following theorem is obvious:

(3.3) If E:l_?] E,y and B;-Ey=0 whenever ik, then ¢, (x)=2 ¢y (2).

If \E., s a monotone sequence of sets, the sequence of their
characteristic fumctions is also monotone, non-decreasing or non-in-
creasing according as the sequence (\E,} is ascending or descending.

If (E,; is any sequence of sets, A and B denoting its upper
and lower limits respectively, we have

cA(m):hm”sup CE”(.’IJ), and c,,(a:):hmmfcb."(w);
n
8o that, in order that a sequence of sets \E,\ converge to a set E,
it is necessary and sufficient that the sequence of their character-
. . ) . .
istic functions .ch,n(w)} converge to the function \c,(x)).
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A function assuming only a finite number of different values
on a set K is called a simple function on E. If v, vy,..., v, are all
the distinet values of a simple function f(z) on a set FE, the
function f(x) may on K be written in the form

i

fla)= ,\71’0,,0Ek(w) where E=E,+E,+..+E, and EE=0 for i¥j.

kB
The function f given by this formula over the set E will be denoted
by :@17 El; Vay Ez; very Oy 'E"}-

The notion of characteristic function is due to Ch. J. de la Vallée
Poussin [1] and {I, p. 7).

§ 4. Additive classes of sets. A class X of sets in the space X
will be called additive if (i) the empty set belongs to X, (ii) when
a set X belongs to X so does its complement CX, and (iii) the
sum of a sequence (X, of sets selected from the class ¥, belongs
also to the class X.

The classes of sets, additive according to this definition, are sometimes
termed completely additive. We get the definition of a class of sets additive in

the weal sense if we replace the condition (iii) of the preceding definition
by the following: (iii-his) the sum of two sets belonging to X also belongs to X.

The sets of an additive class ¥ will be called sets measurable (X),
or, in accordance with the definition given in § 2 (p. 5), simply
sets (). We see at once that, on account of the conditions (i) and (i),
the space X, as complement of the empty set, belongs to every
additive class of sets. Making use of the relations (2.1}, (3.1), and (3.2},
we obtain immediately the following:

(4.1) Theoremn. If X is an additive class of sets, the sum, the
product, and the two limits, wpper and lower, of every sequence of sets
measurable (%), and the difference of two sets measurable (X), are also
measurable (¥X).

In later chapters we shall consider certain additive classes of
sets that present themselves naturally to us, in connection with
the theory of measure, in metrical or in Euclidean spaces. In the
abstract space .\, about which we have made practically no hypo-
thesis, we can only mention a few trivial examples of additive
classes of sets, such as the class of all sets in .Y, or the class of all
finite or enumerable sets and their complements. Let us still mention
one further general theorem:
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(4.2) Theorecie, Given any class M of sets in X, there exists
always a smallest additive class of sets containing M, i. e. an
additive class Ny DM contatned in every other additive class that
contains M.

For let N, be the product of all the additive classes that con-
tain M. Such classes evidently exist, one such class being the class
of all sets in X. We see at once that the class 9, thus defined has
the required properties.

§ 5. Additive functions of a set. In the rest of this chapter
we suppose that a definite additive class X of sets is fized in the space X.
In accordance with this hypothesis, we may often omit the symbol &
in our statements, without causing any ambiguity.

A function of a set, @(X), will be called additive function of
a set (X) on a set K, it (i) F is a set (X), (ii) the function D(X)
is defined and finite for each set X (T K measurable (¥X), and if
(iii) P(2X,)= X P(X,) for every sequence X, of sets (¥X) ‘con-

tained in & and such that X,- X,=0 whenever ¢ k. For simplicity,
we shall speak of an “additive function” instead of an “additive
function of a set (X)” whenever there is no mistaking the meaning.
An additive function of a set (¥X) will be called monotone on FE
if its values for the subsets (X) of K are of constant sign. A non-
negative function @(X) additive and monotone, will also be termed
non-decreasing, on account of the fact that, for each pair of sets
A4 and B measurable (%), the inequality A(C B implies @(B) =
= P(A)+ P(B—A) = DP(A). For the same reason, non-positive
monotone functions will be termed non-inereasing.

(b.1) Theorein, If O(x) is an additive function on a set K, then

(5.2) ®(lim X,) =lim ®(X,)

1 n
for every monotone sequence (X, of sets (X) contained in E. If ®(X)

is a non-negative monotone function, then

(5.3) @(liminf X )< liminf ®(X,) and (D(Iirﬁ sup X,) =limsup P(X,)

n

for every sequence \X,| of sets (X) in K.
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Proof. Let (X}, 12

If {X,) is an ascending monotone sequence, then

be a sequence of sets (X) contained in #.

oo o0
lim Xn = _}_v Xll - —Xl ’+‘ l’ (XIH—l '—‘Xu)y
n i n 1

1

and consequently, @(X) heing an additive funection on K,

Dlim X,) — O(X,) + N (X — X,) =
n 1

n

n 1
—lm[O(X,) 4+ N O(Xp— X)) = lim O(X,,).
n ko1 n

If (X, is a descending sequence, the sequence {E — X,} is
ascending, and, by the result already proved,
O(B)y—® (lim X )=@[lim( #—X )] =lim @ (E—X,)= P (K)—limP(X,),
from which (5.2) follows at once.

Finally, if |X,} is any sequence, but #{X) is a non-negative
monotone function, we put
(5.4) Y.=[lX, for n=1,2,..

koon

The sets Y, are measurable (X) on account of (4.1), and form an
ascending sequence. We therefore have, by the part of our theorem
proved already
(5.5) P(lim Y,)=lm®(Y,).
Now, it follows from (5.4) that Y, X, and so, &(Y,) << @(X,),
for each n. On the other hand, liminf X, =1lim Y,, and therefore

the first of the relations (5.3) is an immediate consequence of (5.5).
We establish similarly (or, if preferred, by changing X, to F—X,)
the second of these relations, and this completes the proof of the
theorem.

KEvery function of a set @(X), additive on a set E, can easily
be extended to the whole space \X. In fact, if we write, for instance,
O (X)= P(X.F) for every set X measurable (X), we see at once
that @,(X) is a function additive on the whole space X, that co-
incides with @(X) for moasurable subsets of E and vanishes for
measurable sets containing no points of E. We shall call the func-
tion ®,(X), thus defined, the extension of ®(X) from the set K to
the space .\
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§ 6. The variations of an additive function. The upper
and lower bounds of the values that a function of a set @(X), ad-
ditive on a set K assumes for the measurable subsets of this set E,
will be called upper variation and lower variation of the function @

over E, and denoted by W(®P; E) and W(®; K) respectively. Since
every additive function vanishes for the empty set, we evidently
have W (®; BE)<<O<CW(®; E). The number W(®;E)-+ [W(D;E)|
will be called absolute variation of the function @ on K and denoted
by W(®; E).

(6.1) Theorem. If O(X) is an additive function on a set E, its
variations over E are always finite.

Proot. Suppose that W(®P; E)=- co. We shall show firstly
that there then exists a sequence K.}, 1. of sets (X) such that

yeen

(()2) E,,C’E" 1 f(”' ’ﬂ/>], W((D,E”)foo, ’d)(En)t>n”—]

For let us choose E;= K and suppose the sets E, for n—=1,2,...,k
defined so as to satisfy the conditions (6.2). By the second of these
conditions with n =k, there exists a measurable set A (C E, such that

(6.3) |B(A)| =B 4 k.

If W(®h; A)=o00, we have only to choose E, 1=A in order to
satisfy the conditions (6.2) for n=Fk+ 1. If, on the other hand,
W(®; A) is finite, we must have W(®P; E,— A) =+ oo, and, by (6.3),
|PD(Er— A)| = |P(A) —|P(E)| =k, so that the conditions (6.2)
will be satisfied for n=%k-+ 1, if we choose K, 1= E,—A. The
sequence {I,} is thus obtained by induection.

Now, on account of Theorem 5.1 and of the third of the con-
ditions (6.2), we should have the equality @ (lim¥E,)=lim®(E,)=00,

and since every additive function of a set is, by definition, finite,
this is evidently impossible. Q. E. D.

It follows from the theorem just proved that every funetion
@(X) additive on a set F is not only finite for the subsets (%)
of KB, but also bounded; in fact, the values it assumes are bounded
in modulus by the finite number W(®; E).
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Theorem 6.1 can be further completed as follows:

(6.4) Theorem. For every function F(X) additive on a sel E,
the variations W(®;X), W(@;X) and W(P;X) are also additive
functions of a set (X) on E, and we have, for every measurable set
XCE

(6.5) P(X) = W(D; X) + W(P; X).

Proof. To fix the ideas, consider the function Q(X)=W(&; X).
Since this function is finite by Theorem 6.1, we have to show
that for every sequence |X,} of measurable sets contained in F,
and such that X;.X,=0 whenever i &,

(66) ‘QI(EXH) ZE‘Ql(Xn)-

For this purpose, let us observe that for every measurable set X (_ 2 .X,

we have @(X)=30(X.X,)<<20,(X,), and hence

1

(6'7) Q](EXM)gE‘Ql(Xn)'
On the other hand, denoting generally by Y, any measurable set
variable in X,, we have Q,(3X,)=0(2Y, =220(Y,), and

H

therefore also 2,(2X,) = Y &(X,). Combining this with (6.7) we

get the equality (6.6). v

Finally, to establish (6.5), we observe that for every measurable
subset Y of X we have @(Y)=0(X)— P (X —V)<<{P(X)—W(D;1),
and so W(P; X)<P(X)—W(P; X).Similarly W(D; X)=P(X)—W(P; X).
These two inequalities give together the equality (6.5), and the
proof of Theorem 6.4 is complete.

It follows from this theorem that every function of a set @(.X)
additive on a set K is, on K, the difference of two non-negative
additive functions. The formula (6.5) expresses, in fact, @(X) as
the sum of two variations of @(X), of which the one is non-negative
and the other non-positive; this particular decomposition of an
additive function of a set will be termed the Jordan decomposition.
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We can now complete Theorem 5.1 as follows:

(6.8) Theovem. If O(X) is additive on a set E, we have
¢ (lim X,)=1lim O(X,) for every convergent sequence \X,) of sets (%)

contained in K.

In fact, making use of the Jordan decomposition, we may
restrict ourselves to mnon-negative functions @(X), and for these
Theorem 6.8 follows at once from the second part of Theorem 5.1.

§ 7. Measurable functions. Given an arbitrary condition,
or property, (V) of a point z, let us denote generally by E[(V)]

the set of all the points x of the space considered that fulfi\ll this
condition, or have this property. Thus, for instance, if f(x) denotes
a function of a point defined on a set £ and « is a real number,
the symbol

(7.1) E[meE;f(aa)>a]

denotes the set of the points # of K at which f(@) > a.

: A funection of a point, f(x), defined on a set H, will be termed
wmeasurable (X), or simply function (%), if the set &, and the set (7.1)

for each finite a, are measurable (X). It is easy to see that'

(7.2) In order that a function f(x) be measurable on a measurable
set K, it suffices that the set (7.1) should be so for all values of a be-
longing to an arbitrary everywhere dense set B of real numbers (the
same holds with the set (7.1) replaced by the set BlweE; f(x) Z=al).

In fact, for every real a, the set R contains a decreasing
sequence of numbers |r,) converging to a. We therefore have

Elewe B f(x) >a]= _}_E[w e B;f(x) >r,] and, each term of the sum
v notux

on the right being measurable by hypothesis, the same holds for
the sum itself (ef. Theorem 4.1).

Every function f(x) measurable on a set K, can be continued
in various ways, so as to become a measurable function on the
whole space X. For definiteness, we shall understand by the ex-
tension of the function f(z) from the set E to the space X, the func-
tion fy(z) equal to f(z) on F and to 0 everywhere else. For brevity,
we shall often deal only with functions measurable on the whole
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space X, but it is easy to see that all the theorems and the
reasonings of this. and of the succeeding, § could be taken relative
to an arbitrary set (%X).

The equations

[es}

B{f()<al=CElf(e)>al, {E{@=a=IB

n 1w [

fle) > a— ;l?
Blfn)<d=0B[f@)=a),  Blfe)—a=Blf@>al- Bifw) o]
Blja)< +ool= ¥ Blf(e)< ], Blf(o) > —o0] = X Blj@) > —n)
BI(@)=+ o0)=CB[/(@) < o0, B[j(a) = — ] = OB [f(z) > — o)

show that for every measurable funetion f(x) and for every number a,
the left hand sides are measurable sets. Conversely, in the definition
of measurable funetion, we may replace the set (7.1) by any one
of the sets K[f(x) = a], E[f(x) < a] or E[f(x) <a]; this follows at

once from the identity

=CE[f(r)<a]=0C IE [f(m) <a—{——i

no bt |

Blf(a)>a) = SB|f0)= 0+,

nolx

To any function f(x) on a set I, we attach two functions f(x)
and f(x) on E, called, respectively, the non-negative part and the
non-positive part of f(x) and defined as follows:

() =f(®) or O aceording as flx)=0 or flo)<0,
() = f(x) or 0 according as f(x)<<0 or [(z)=0.
We see at once, that in order that a function be measurable on a set E,

it is mecessary and sufficient that ils two parts, the non-negative and
the non-positive, be measurable.

I

O

Returning now to the notions of characteristic function, and
simple function introduced in § 3, we have the theorem:

(7.3) Theorem, In order that o set E be measurable (X), it 18 ne-
cessary and sufficient that its characleristic function be measurable.
More generally, in order that, on a set E, a simple function f(w) be
measurable (X), it is necessary amd sufficient that, for each value
of f(x), the points at whick this value is assumed on E, should con-
stitute a measurable subset of L.

Another theorem, of great utility in applications, is the fol-
lowing: ’
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(1.4)  Theorvem. Every function f(x) that is measurable (X) and
non-negative on a set E, is the limit of a non-decreasing sequence
of simple functions, finite, measurable and non-negative on E.
In fact, if we write for each positive integer n and for vekl,
i—1 . i—1 ) o
fu(W) =1 “2”—’ /t'f 2T <f($) < 57', 1 <Z<‘3 M
no, if  flz)=mn,
the functions f,(x) thus defined are evidently simple and non-negative,
and, on account of Theorem 7.3, measurable on E. Further, as is
casily seen, the sequence |f,(x)) is non-decreasing. Finally limf,(x)=f(x)
for every xeE; for, if f(x) <+oo, we have, as soon as n exceeds
the value of f(x), the inequalities 0<Cf(w)— f.(x) <1 /2%, while,
if f(w)=+4 oo, we have f,(@)=n for n=— 1, 2,.., and so

lim f,(z) = 4 00 = f(x).

§ 8. Elementary operations on measurable functions.
We shall now show that elementary operations effected on measur-
able functions always lead to measurable functions.

(8.1) Theorem. Given two measurable functions (@) and g(x), the sets

Elf(@) > g(x)], E[f(x)=g(x)] and Bif(@) = g@)],

X
are measurable.
The proof follows at once from the identities

B> g = 3 B> 2] 8 g <2

n o m-1 v m
B[f>g1=CBly>]] and B[f=g)=R[/>g]- Blg=>{].
(8.2) Theovem. If the function f(x) is measurable, lf(@)|« is also
a measurable function.
For a> 0, the proof is a consequence of the identity
E[[f@)|>a] = B[f(z) > a! “] + B[f(x) < —al ],
X X X
which is valid for every a>>0, while for « < 0 its left hand side

coincides with the whole space and therefore constitutes a mea-
surable set. For <0, the proof is similar.
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(8.3) Theorem. HEovery linear combination of measurable functions
with constant coefficients represents a measurable function.

The identities

for o >0,

Bl f@) + > ) = B[ fo) > * |

a
. . a—f3
Ble-j@) + >0l = Blfe) <" jor ao,
valid for every function f(x) and for all numbers a, ¢ =0, and g,
show, in the first place, that a. f(x) + § is a measurable function,
if f(x) is measurable. It follows further, from Theorem 8.1 and
from the identities:

@m¢+@m>ﬂzap>—§g+ﬂ for >0
o

mwﬁw4>ﬂzap<——g+ﬂ for a<0

«
that if f(xr) and g(x) are measurable functions, so is e -f(x) 4- 8 - g(«).

(8.4) Theorem. The product of two measurable functions f(x)
and g(x) s a measurable funetion.

Measurability of the product f.g is derived by applying Theorems
8.2 and 8.3 to the identity fg=L[(f+ g)?—(f—g)%], the com-
pletion of the proof, by taking into account possible infinities
of f and ¢, being trivial.

(8.5) Theoreim. Given a sequence of measurable functions {f.(x)},
the functions

upper bound f, (), lower bound f,(x), limsupf.(x) and liminff,(z)
are al,zeo measurable. ' ' '

The measurability of h(x) = upper bound f.,(x) follows from
the identity E[h(x) >a] = .:_ E[f,,(w)>a]il For the lower bound, the

corresponding proof is derived by change of sign.

Hence, the functions h,(x)=upper bound [fuy((@), fot2(2), ...]
are measurable, and the same is therefore true of the function
limsup fn(2) = lim h,(®) = lower bound h,(x). By changing the sign

of fu{x), we prove the same for lim inf.
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§ 9. Measure. A function of a set #(X) will be ealled a meas-
ure (X), if it is defined and non-negative for every set (%), and if
M(EX,,) = E."‘(Xu)

n n
for every sequence (X, of sets (X) no two of which have points
in common. The number u(X) is then termed, for every set X mea-
surable (X), the measure (p) of X. If every point of a set K, except
at most the points belonging to a subset of F of measure (1) zero,
possesses a certain property V, we shall say that the condition V
is satisfied almost everywhere (u) in E, or, that almost every (u) point
of ¥ has the property V. We shall suppose, in the sequel of
this Chapter, that, just as the class % was chosen once for all,
a measure i corresponding to this class is also kept fixed. Accordingly,
we shall often omit the symbol (u) in the expressions ‘“measure
(1), “almost everywhere (u)”, ete. Clearly o«(X)<Cu(Y) for any
pair of sets X and Y 1easurable (X) such that X(C Y, and
WX X,)<XYu(X,) for every sequence of measurable sets (X,
n 0

A measure may also assume infinite values, and ix therefore notin gen-
eral an additive function according to the definition of § 5

The results established in this chapter concerning perfectly arbitrary meas-
ures will be interpreted in the sequel for more special theories of measure, (for
instance, those of lebesgue and Carathéodory). For the present, we shall
be content mentioning a few examples.

Let us take for ¥, the class of all sets in o space X. We obtain a trivial
example of measure (X) by writing o (X) — 0 identically, (or else n(X) -0}
for every set X (” .\. Another example consists in choosing an element a in .V
and writing #(X)=1 or ;(X)=0, according as u¢eX or not. In the case of an
enumerable space X, consisting of elements a,, dg,...,an, ..., the general form
of a measure ;(X) defined for all subsets X of .\ is n(X y=Zknfu(X) where

{ky} is asequence of non-negative real numbers and f,(X) is e(’;lual to 1 or O ac-
cording as a,e¢X or not. It follows that every measure defined for all subsets
of an enumerable space, and vanishing for the sets that consist of a single point,
vanishes identically. The similar problem for spaces of higher potencies is much
more difficult (see 8. Ulam [1]). For a space of the potency of the continnum
gee also 8. Banach and C. Kuratowski [1], E. Szpilrajn [1], W. Bierpinski
[T, p. 60], W. Sierpinski and E. Szpilrajn [1].

We shall now prove the following theorem analogous to The-
orem 5.1:

(9.1) Theorem. If X,} is a wmonotone ascending sequence of
measurable sets, then hm w(X,) —_—y(lim X.). The same holds for

monotone descending sequmces provided, however that u(X,)=} oco.
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More generally, for every sequence |X,} of measurable sets,
(9.2) H (hm 1nt X)) << Hminf ¢ (X,)

1

and, if further p( 2 X, 4 oo,
(9.3) (imsup X,) = >11m sup t{Xn),

n

so that, tn particular, if the sequence (X, converges and its sum has
finite measure, im u(X,) = p(lim X,).
n n

Proof. For an ascending sequence {Xnjn-is. the equation
Hm u(X,)= pu(lim X,) follows at once from the relation

lim X = N X = X, 4 3 (Knst — Xo),
n n-.1 n-.1

and if the sequence {X,, is descending and u(X;)-}oco, then the
measure u(X) is an additive function on the set X, and consequently
the required result follows from Theorem 5.1.

In exactly the same way, if for an arbitrary sequence {X,}
of measurable sets, M X, is of finite measure, the measure u(X)

n

is an additive function on this set, and the two inequalities (9.2)
and (9.3) follow from Theorem 5.1. To establish the first of these
inequalities without assuming that the sum of the sets X, has finite
measure, we write as in the proof of Theorem 5.1

Yn_‘IIXk

kon
Since the sequence is ascending, and Y, X, for every », we have
(llm 1ann) = u(hm Yu) = hmy(Y,,) S hm inf u(Xa).

We conelude thls § Wlth an 1mportant theorem due to D. Ego-
roff, concerning sequences of measurable functions (¢f. D. Ego-
roff [1], and also W. Sierpinski [3], F. Riesz [2; 3], H. Hahn
[1, pp. 556—8]). We shall first prove the following lemma:

(9.4) Lemma. If E is a measurable set of finite measure (u) and
if {fn(x)} i a sequence of finile measurable functions on E, con-
verging on this set to a finite measurable function f(x), there exists, for
each pair of positive numbers ¢, n, a positive integer N and a mea-
surable subset H of E such that w(H) <7 and

(9‘5) |fn(w —f(ac |<8
for every n > N and every relF— H.

S. Saks, Theory of the Integral. 2
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Proof. Let us denote generally by K, the subset of F con-
gisting of the points # for which (9.5) holds whenever n > m. Thus
defined, the sets E,, are measurable and form a monotone ascending
sequence, since for each integer m, we have

En= [] BlweB;|f(@)— fn(@)| <.

n—=nm-+1 x

Further, since !f.(x)} converges to f(x) on the whole of E, we have
E=)E, and so, by Theorem 9.1, wu(E)=limu(E,), i. e.

o m

limpu(E— E,)=0, and therefore, from a sufficiently large m,

onwards, w(E—E,)<<n We have now only to choose N =m,
and H=FE—E,,, and the lemma is proved.

(9.6) Egoroff’s Theorem. If E is a measurable set of finite
measure (w) and if {fa(@)) is a sequence of measurable functions finite
almost everywhere on E, that converges almost everywhere on this set to a
finite measurable function f(x), then there exists, for each e>0,
a subset Q of E such that w(E—@Q) <& and such that the converg-
ence of {fn(x)} to f(x) is uniform on Q.

Proof. By removing from E, if necessary, a set of measure (#)
zero, we may suppose that on E, the functions fu(x) are everywhere
finite, and converge everywhere to f(z). By the preceding lemma,
we can associate with each integer m >0 a set H,(C E such that
u(H,)<¢/2m and an index N, such that

9.7)  |ful@)—F(@)|<<1/2™ for m> N, and for xe B —H,.

Let us write Q = E-— Y H,,. We find

m—1

/4(E—Q) g E M(HIH)< E 5/2"1 == &,

m=1 m-=1

and since the sequence f,(®) converges uniformly to f(z) on the
set @ on account of (9.7), the theorem is proved.
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The theorem of Egoroff can be given another form (ef. N. Lusin [I, p. 20]),

and, at the same time, the hypothesis concerning finite measure of £ can be
slightly relaxed.
(9.8) If E is the sum of a sequence of measurable sets of finite measure (¢) and
if {fu(x)} is a sequence of measuwrable funclions finite almost everywhere on this set,
converging almost everywhere on It to a finite function, then the set E can be expressed
as the sum of a sequence of measurable sets H, By, E,, ... such that u(H)=0 and
that the sequence {fa(x)} converges wniformly on each of the sets En.

For the proof, it suffices 10 take the case in which the set E is itself of fin-
ite measure. With this hypothesis, we ean, on account of Theorem 9.6, define

32y

n

. . Al
by induction a sequence {Ex}i—1,2,... of measurable sets such that i (J4— > Ex) -~ 1/n,

k=1

and that the sequence {f,(x)} converges uniformly on the set 7 for each k. Choosing
oo

H=FE— > Br, we have u(H)-=0, and the theorem is proved.
=1

As we may observe, the hypothesis that the set F is the sumn of a sequence
of sets of finite measure, is essential for the validity of Theorem 9.8. For this pur-
pose, let us take as a space X, the interval [0, 1], and as an additive class %,
of sets, that of all subsets of .X. Further, let us define a measure (1, by writing
to(X)=o00 whenever the set X¢e%, is infinite and o(X)=n, if X is a finite
set and »n denotes the number of its elements. The sets of measure (u,) zero then
coincide with the empty set. Finally, let {gn(x)} be an arbitrary sequence of fun-
ctions, continuous on the interval [0, 1], converging everywhere on this interval,
but not uniformly on any subinterval of [0, 1].

To justify our remark concerning Theorem 9.8, it suffices to show that
the interval X, = [0, 1] is not representable as the sum of a sequence {Hn} of
sets such that the sequence of functions {g:(x)} converges uniformly on each of
them. But if such a decomposition were to exist, we might suppose firstly —
since the functions ¢gn (x) are continuous — all the sets Ku closed. Then, however,
by the theorem of Baire (cf. Chap. II, § 9) one of them at least would contain &
subinterval of [0, 1]. This gives a contradiction, since by hypothesis, the se-
quence {gn(x)} does not converge uniformly on any interval whatsoever.

§ 10. Integral. If we are given in the space X an additive class
of sets ¥ and a measure u defined for the sets of this class, we
can attach to them a process of integration for functions of a
point. In fact:

(i) If f(x) is a function (X) non-negative on a set E, we shall
understand by the definite integral (X, 1) of f(x) over E the up-
per bound of the sums '

n

4\71@/" M(Ek)’

y =
where {Epr-12... is an arbitrary finite sequence of sets (¥) such
that E=F, +E,+ ..+ E, and E;-E,=0 for ik, and where
vy, for k=1,2,....,n, denotes the lower bound of f(x) on F,.
2%
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(ii) If f(x) is an arbitrary function measurable (¥X) on a set K,
we shall say that f(x) possesses a definite integral (X, u) over E, if
one at least of the non-negative functions ffw) and ——Z(w) (cf. §3)
possesses a finite integral over E according to definition (i). And,
if this condition is satisfied, we shall understand by the definite
integral (X, 1) of the function f(x) over K the difference between

the integral of ]?(w) and that of ——f( over E. The definite integral
(%, u) of f(x) over E will be written ( / flz (w). If this integral

is finite, the function f(x) is said to be integrable (X, u). For every

function f(x) possessing a definite integral over a set K, we evi-

dently have

(@ [ Fap = @) [fan— @ [ (—paw= (@ [fau+@ [fdp.
We see at once that the two definitions (i) and (ii) are co m-

patible, i. e. that they give the same value of the integral to any
non-negative measurable function. Moreover:

(10.1) If g = |0y, X159y Xgj e Oy Xy 18 a simple non-negative func-
tion on the set B =2X, -+ Xy + ... + Xy, the sets X; being measur-
able (X), then

m

/ gap = ) v (X)),

For, if {E}}; 1, i8 an arbitrary subdivision of E into a finite
number of sets (X) without points in common, and if w; denotes
the lower bound of g(x) on E; we have w;<_v; whenever E;. X;5=0.

Hence ) wu(E) =Y \’w,u(E X)) \”' S’@,M(E X)_Ifn"v,u(X),
= . -

== =

and therefore / gdu << Y'v,u(X ). The opposn;e inequality is ob-

vious, since the sets X,, X,,..., X, themselves constitute a subdivision
of E into a finite sequence of sets (¥X) on which the values of g(x)
are vy, v, ..., v, respectively.
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§ 11. Fundamental properties of the integral. We sha.ll
begin with a few lemmas concerning integration of simple functions.
As in the preceding §§, the symbols %, # ete. will often be omitted.

(11.1) Lemma. 1° For every pair of functions g(x) and h(x), simple,
non-negative, and measurable (X) on a set E, we have

(11.2) [ [g(@) + hi@)ldr @) = [ g@) du (@) + [ W) du ().
3 E E

20 If the function f(x) is simple, non-negative, and measurable (X)
on the set A+ B where A and B are sets () without common points, then

(11.3) | fw) du (@) = / (@) du (@) + [ f(@) du().
A+B B

Proof. As regards 19, let
9 =191 Gy; 92y Gs -5 guy G} and b ={hy, Hyj hyy Hy; ...5 by H,},

where F=G,+..--G,=H;+...+H,.
We then have, by (10.1),

III

[ tato) e N (@) =3 S gty p (6 1)) =

;g,ZM(G H)+ "h ZH(G -Hj) =

=.i!;gm( I+ X i(Hj)= [ 9(0) du (@) + [ hi@) du (a).
i= i ¥

As regards 2° if E=A+B and f=if;, Q; fs Qs; v fry Quls
where FE =Q,+Q,+...+Q,, we have

/f ) du(® —\"f,uQ)—-i\jf, w(d-Q)+ 2 fl B-¢) =
= [ f(@) du (@) + [ f@)dp (@).
i B

(11.4) Lemnma. If {g.(x)} is a non-decreasing sequence of functions
that are simple, non-negative, and measurable (X) on a set E, and if,
for a function h(x), simple, non-negative, and measurable, on E,
we have lim g,(x) == Mx) on E, then

(11.5) lim [ g, (2) du (@) = [ W(@) dp @),

n h' B
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Proof. Let h={v, Ei; vy Ep;...; v, Eni, where
0oy <v,<..<vy and E=E +E,+..+E,

We may suppose o, > 0, for, otherwise, we should have

/hdy_ / hdu, and, since /g,,dy/ /q,,d,u, we could replace
BE, i E K,

the set E by the set F —FE, on which h(x) does not vanish any-

where. Further we shall assume first that v, < + oo.

Let us choose an arbitrary positive number ¢ < v;,, and let
us denote, for each positive integer n, by ¢, the set of the points
x of E for which g,(x)> h(x)-—¢. The sets @, evidently form an
ascending sequence converging to F, and, by Theorem 9.1, we have
#{(Q,) —> p (E). This being so we have two cases to distinguish:

(i) #(E) = co. We then can find an integer », such that for
n>mn, we have n(H-—¢@,) < & and thorefore, by Lemma 11.1,

/gndu [ gudnz [ [M@)—eldn (@)=
Qn Qn
= [ hdp—en(Q)=> /hdu—-m,,, (B—Qu)—¢1(Q) = [ hdp—{v,,+u(E)]-¢;
Q £
and, passing to the limit, making first n —>oc, and then ¢— 0,
we obtain the inequality (11.5).

(il) u(F)=oo. Then, since /g,,d,u/( 1— &) 1 (@), we obtain

lim / gndu=co, 8o that the inequality (11.5) is evidently satisfied.

”I Suppose now v, = -+ co. Then by (10.1) and by what has
already been proved, lim / gadp Z=v-u( ) —I—MZ]?J, E;) for any
finite number v, and con;eqfuently for v = + oo = »,, also; whence,

in virtue of (10.1) the inequality (11.5) follows at once.

(11.6) Lemma. If the functions of a mnon-decreasing sequence
{gu(x)} are simple, non-negative, and measurable (X) on a set E, and if

g(x) = Lim g,(x), then hm/g,, Ydu (x) = / g(x) du ().

Proof. Let E,,H,,...,.E, be an albltrary subdivision of E
into a finite number of measurable sets, and let v, vy ..., vy be
the lower bounds of g(x) on these sets respectively. Let us write
v={vy, E; 09 Ey; ...; 0y, En}. We evidently have lim g, (x)=g(z)=v(x)

on F, and hence, by Lemma 11.4 and by Theorem 10.1
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tim g, dn = [y ap = N, u ().

1 . 'E‘ l‘_:']

It follows that lLim / gndu'z== / gdun, and since the opposite
n I'(/v ,;v

inequality is obvious, the proof is complete.
We are now in a position to generalize Lemma 11.1 as follows:

(11.7) Theorem. The relation (11.2) holds for every pair of functions,
g(z) and h(z), non-negative and measurable (X) on the set E, and the
relation (11.3) holds for every function f(x) non-negative and measur-
able (X) on the set A+ B, where A and B are sets (X) without
points in common.

Proof. By Theorem 7.4 there exist two non-decreasing se-
quences {g,(x)} and {h,(x)} of simple non-negative functions mea-
surable (¥X) on HE, such that ¢(x) = limg,(x) and h(r) = lim A,(z).

Now, by Lemma 11.1 (1°), we have /‘(g,, + hy)dy = /ig,,d‘u -+ /'h,,du
i B K

and hence, making # -»>co, we obtain, on account of Lemma 11.6,

the relation (11.2). Similarly, if we approximate to f(x) on A+ B

by a non-decreasing sequence of simple non-negative functions and

make use of Lemma 11.1 (2°), we obtain the relation (11.3).

(11.8) Theoremn, 19 For any function measurable (X), the integral over
a set of measure zero is cqual to zero. 2° If the functions g(x) and
h(x) measurable on a set E are almost everywhere equal on F, and
if one of the two is iniegrable on E, so is the other, and their integrals
over B have the same value. 3° If a function f(x) measurable (X)
on a set E has an integral over E different from -+ oo, the set of the
points x of E at which f(x) = + oo has measure zero. ‘In particular,
if the integral of f(x) over E is finite, the function f(r) is finite
almost everywhere on F.

Proof. We obtain at once part 1° of this theorem by making
successive use of the definitions (i) and (i) of § 10.

As regards 2° it is evidently sufficient to consider the case
of non-negative functions g(«) and h(z). If we denote by K, the
set of the points = of £ at which g(») =+ h(z), we have by hypothesis
u(E,) = 0, and, on account of (1°) and of Theorem 11.7, we obtain

'/.gd,uz /‘gdyz /.hdu = /hhd.u, as required.
£ E ’ E

KB, EE,
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Finally, as regards 3% let us suppose that for a function f(x)
measurable (X) on ¥ we have f(r) = + oo onaset F,(_ E of positive

measure. We then have / . ]% dp = / fo du = n-u (B, for every n, and
E E,
S0 / f dn = 4 oo. Consequently, the integral of f(x) over E, if it

i
exists, is positively infinite, and this completes the proof.

We now generalize Lemma 11.1 (1°) and also complete The-
orem 11.7, as follows:

(11.9) Theoremn of distributivity of the inteyral. Every linear
combination with constant coefficients, a-g(x) -+ b-h(x) of two fune-
tions g(x) and h(x), integrable (X, u) over a set E, is also integrable
over E, and we have

(11.10) [(ag+bhydin=a [gdu+b [ hdp.
I K I

Proof. By Theorem 11.8 (3°), the set of the points at which
either of the functions g(x) and h(x) is infinite, has measure zero,
and if we replace on this set the values of both functions by 0, we
shall not affect the values of the integrals appearing in the relation
(11.10). We may therefore suppose that the given funetions ¢ and A
are finite on K. Further, the relations

I

'agdy =a .gdu, ‘bhdu=b [ hdu
ﬁ" E £

being obvious, we need only prove the formula (11.10) for the
case a=b=1. Finally, the set ¥ can be decomposed| into four
sets on each of which the two funections ¢g(r) and h(x) are of cons-
tant sign. So that, on account of Theorem 11.7, we may assume
that the functions g(x) and h(z) are of constant sign on the whole
set E. Now, by the same theorem, the relation

(11.11) [(g+mdu= [ gdu+i[ hdn
K K K

holds whenever the funections ¢ and A are both non-negative or

both non-positive on H, and it only remains, therefore, to show

that this relation is valid when ¢ and h have, on E, opposite signs,

the one, g(x) say, being non-negative, the other, h(x), non-positive.
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This being so, let E, and E, be the sets consisting of the points
z of ¥ for which we have g¢g(x)+h(x)>=0 and g(z)+h(z) <0,
respectively. The functions g, g--k, and —h are non-negative on E,
and we therefore have, by Theorem 11.7,

[gdu=[(g+hn) du+ [(—h) du= [ (g+h)du— [hau.
£, , o i, i,

Similarly

— [hdu= [(—h)du= [(—g—h) du+ [ gdu =—[ (g+}h) dx + [ gdu.
s K, k. Iy 5, K,

Therefore, for i=1, 2, we have /A(g+h) dy = /‘gdy +/'hdu, and

i

by Theorem 11.7 we obtain the relation (11.11).

(11.12) Theoremn on absolute integrability. 1° In order that
a function f(x) measurable (X) on a set E should be integrable (X, i)
on K, il is necessary and sufficient that its absolute value should be
s0. 2° If, for a function g(x) measurable (X) on a set E, there exists a
function h(x), integrable (X, n) and such that |g(zx)| <<h(x) on E,
then the function g(x) also is integrable on E; in particular, every
function measurable (X) and bounded on a set E of finite measure (u)
18 integrable (X, 1) on E.

Proof. As regards 1° we have by Theorem 11.7

[1fldu= [ fan + [ (—p da,
I r

E

and integrability of |f| is therefore equivalent to that of f and that
of ——-g‘ holding together, i. e. to integrability of j.

As regards 2° we have the inequalities g(x)<|g(x)|<Ch(z) and
—g(x) < lg(x)| << h(x) on E, and, since h(x) is, by hypothesis, inte-
grable on H, it follows that the same is true of the non-negative fune-
tions § and —¢, and therefore of the function g(w).
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As an immediate consequence of Theorem 11.12 we have the
following theorem, known as the

(11.13) First Mean Value Theoren. Given, on a set E, a
function f{x) bounded and measurable (X) on E and a function ¢(x)
integrable (X, u) on H, the function f(x)- g(x) is integrable on FE
and there ewists a number y lying between the bounds of f(x) on
B, such that
(11.14) [ (@) |g(@)| duw) =y - [ |g(@)| du().

I

I

Proof. If we denote by m and M respectively the lower and
the upper bound of f(x) on E, and make use of Theorem 11.12,
we verify successively, that the functions (|M|4|m))-|g(2)l, If(z) g(z),
f(x)lg(@)) and f(xz) g(x) are integrable on E. Further, we have
m|g (x) << f(x)-|lg(x)| << M |g ()] over E, and, therefore also,

m [1g du< [ Flgldus< M [lgldu, and so choosing y—| [F-lgldu:] /lglau]
FE E E E E

(or, if the denominator vanishes, an arbitrary y between m and M),
we obtain the formula (11.14) with m< y<C M.

§ 12. Integration of sequences of functions. In this §,
we shall establish some theorems on term by term integration of
sequences and series of funections.

(12.1) Theovem. If the functions of a sequence {g.(x)} are finite and
integrable (X, 1) on a set E of finite measure, and the sequence
converges uniformly on E to a function g(x), then the function g(x)
also is imtegrable over K, and we have
(12.2) lim /'g,,(m) dp (@) = [ g(@) du(z).

nop

i

Proof. By Theorem &.5, the function ¢(x) is measurable (%)
on K. The functions g(x)—g.(x) are therefore all measurable also,
and, further, since the sequence lg.(x)} converges uniformly to g(x)
the functions g(x)—g.(z) are all bounded, at any rate from some
value of the index » onwards. These functions are thus, by The-
orem 11.12 (2°), integrable on #, and it follows, by Theorem 11.9,
that the function ¢ (x)=[g(2) — ¢g.(2)] + g.(x) is integrable too.
Finally, denoting by &, the upper bound of |g(x) — g.(z)] on E,
we have
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| [a@) du (@) — [ gu@)du@)| < [19@) —ga(@)| dp(@)< eu(B),
I I I

and this establishes the relation (12.2) since, by hypothesis, &,->0
and y (B) = oo,

Neither the theorem thus established, nor its proof, contains,
at bottom, anything new, as compared with the similar result for
the classical processes of integration of Cauchy, or of Riemann.
We now pass on to the proof of theorems more closely related to
Lebesgue integration. Among these theorems, a fundamental part
is played by the following one, which is due to Lebesgue:

(12.3) Theorem. Let f(x) = Y f.(x) be a series of non-negative functions

n=1

measurable (X) on a set E. Then

(12.4) [ f(@)d

‘h.

II
i |\<8

/ ful@w) du (2
f‘

Proof. From Theorem 11.7, we derive in the first place, that

/.fdu /[V fodul = Y /f,, du for every m, and so

111

(12.5) | fdu= : [ fudu.

E ==l
To establish the opposite inequality, let us attach, in accordance
With Theorem 7.4, to each function f.(z) a non-decreasing sequence
{gn We-1.2... of simple functions measurable and non-negative on E,
in such a manner that hm g (@)=7F.(®) for n—=1, 2,... Let us write

8r(m) :;’ 9¥(x). The functions s,(x) are clearly simple, measurable,

and non-negative, on K, and they form a non-decreasing sequence.

Further, for each m, and for k Z>m, we have l,\’ qfk)( ) < () << f(x).

m
Making k-»>oco, we derive D fi(x)<<lim si(z) << f(v) for every m,
i1 k

and so, f(m)zlim sx(w). Therefore, by Lemmas 11.6 and 11.1 (19),

/ fdu= hm / spdp = lim V /gfk) du << \ /‘fid_u,

aIl, 11[,

and this, combined with (12.5), gives the equality (12.4).
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Theorem 12.3 may also be stated in the following form:

(12.6) Lebesgque’s Theorem on integration of monotone se-
quences of functions. If (f(x)} is a non-decreasing sequence of
non-negative functions measurable (X) on a set E, and f( w)—hm fn(2),
then /f( ydu (x) = hm/ fu(z) du ().

i

LU

Proof. If we write ¢,(®) = f.+1— f.(2), we obtain

f@) = fu(@) + Y g.(a),

and the functions ¢,(x) will be non-negative and measurable on FE,
so that by Theorem 12.3

N . o . . k—1 .
[fau = | frau + 3 [ gudn =1im [ [f, + 3 guldu = lim [ f, dp.
| | =l g kg n—1 kg
Q. E. D.
(12.7) Theorem of additivity for the integral. If {E.} is a
sequence of sets measurable (X) mo two of which have common poinis,
and E=) E,, then

(12.8) /fdu =Y /f(lu

for every function f(x) possessing a definite integral (finite or infinite)
over E. “

Proof. It is clearly sufficient to prove (12.8) in the case of
a function f(x) non-negative on F. Supposing this to be the case,
let us write f,(x)=F(x) for z¢E,, and f(x)=0 for se H—E, We
then have f(z)=2f.(x) on E, and, the functions f, being measurable

n

and non-negative, we may apply Lebesgue’s Theorem 12.3. This
gives, by Theorem 11.7,

/fd/t—-_J /f,,d,u——m'/f,,du_a/fdu Q. E. D.
i E LK

n
n F

If a function f(x) has a definite integral (%X, u) over a set H,
then f(z) also has a definite integral over any subset of E mea-
surable (%X). We may therefore associate with it the function of
a set (¥X) defined as follows:

(12.9) F(X)= [ f(@)du(x) where XCE and Xe%.
X
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The latter will be called the indefinite integral (%, n) of f(x) on E.
It follows from Theorem 12.7 that, whenever the function f(x)
is integrable (X, 1) on E, its indefinite integral is an additive fune-
tion of set (¥%) on K.

We end this § with two simple but important theorems. The
first is known as Fatou’s lemma, and appears for the first time
(in a slightly less general form) in the classical memoir of P.Fatou
[1, p. 375] on trigonometric series. The second is due to Lebesgue
[, in particular p. 375], and is called the theorem on term by term
integration of sequences of fumctions; cf. also Ch. J. de la Vallée
Poussin [1, p. 445—453], R. L. Jeffery [1] and T. H. Hilde-
brandt [2].

(12.10) Theorem (Fatou’s Lemma). If {f.(x)} is any sequence
of non-nega,tive functions measurable (X) on a set E, we have

/hm inf f,(x) dn(z) << llm inf / fu(x) du(x

Proof. Let us write g:(x)=lowerbound [f:(z), fir1(®), fira(®), ...]
where i=1,2,.... Thus defined {g;(x)} is a non-decreasing sequence
of non-negative functions measurable on F, and converges on the
set E to liminf f;(x). We therefore have, by Lebesgue’s Theorem 12.6,

[limint (@) de(e) =lim [ g() de (@) < Tim ing / fil@) dp ().

i i

(12.11) Lebesgue’s Theorem on term by term integration.
et {f.(x)} be a sequence of functions measurable (X) on a set E,

fulfilling, for a function s(x) integrable (X) on E, the imequality
Ifl@) << s(x) for n=1, 2, ... Then

liminf [ f, du > [ limint f, dp,
i3 I’: " n

(12.12)
Hm sup [ fodu << / lim sup fudue.

" E
If, further, the sequence {f,) converges on E to a function f, the sequence
is integrable term by term, i. e. we have

(12.13) m [ f,du = / fau.

Ilﬁ o4
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Proof. Let ¢g(x)=liminf f,(x) and let h(x)= lim sup f.(x).

We may clearly suppose s(x) < - co throughout E. We then derive
from IFatou’s Lemma 12.10, lim inf/ (s+fu)du = / (s+ g)du and
n E ,;.

lim inf /Ks—-f,,)du} /‘(s—h)d‘u, which gives at once the rela-
"ok B
tions (12.12).
Further, if lim f,(x)=7(2), we derive from (12.12) the relation

lim inf [ f,du>> [ fdp = limsup [ f.du which gives the equality
n I"] I"f n I;y

(12.13).

§ 13. Absolutely continuous additive functions of a set.
The fact that the indefinite integral of a function integrable (%X, u)
on a set F is, on K, an additive function of a set (¥), raises the
problem of characterizing directly the additive functions expres-
sible as indefinite integrals.

If we restrict ourselves to the l.ebesgue integral of functions of a real var-
iable, we may regard indefinite integrals as functions of an interval, or, what
comes to the same thing, as functions of a real variable. In that case, a neces-
sary and sufficient condition for a funetion to be expressible as the indefinite
integral of a real function was given, in 1904, still by Lebesgue {I, p. 129, foot-
note]. A little later (in 1905), G. Vitali [1] explicitly distinguished the class
of functions possessing the Lebesgue property by introducing the name of *“ab-
solutely continuous functions”.

The condition of Lebesgue and Vitali was later extended to funetions of
a set by J. Radon [1] (cf. also P. J. Daniell [2}]). But Radon considered only
additive functions of sets measurable in the Borel sense in Euclidean spaces,
and only measures determined by additive functions of intervals (cf. below Chap-
ter I11). The final form of the condition of l.ebesgue-Vitali, as given in
Theorem 14.11 below, is due to O. Nikodym [2].

An additive function of a set (¥X) on a set E, will be said to
be absolutely continuous (X, u) on FE, if the function vanishes
for every subset (X) of E whose measure () is zero. An additive
function @(X) of a set (X) on a set K [will be termed singular (X, jz)
on E, if there exists a subset F,(_ E measurable (&), of measure (u)
zero, such that @(X) vanishes identically on E — K, i. e.
O(X)= D (E, X) for every subset X of F measurable (¥X). The
following statements are at once obvious:
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(13.1) Theorem. 1° In order that an additive function of a set (X) on a
set E should be absolutely continuous (X, u) [or should be singular]
it is mecessary amd sufficient that its two variations, the upper and
the lower, should both be so. 2° Every linear combination, with con-
stant coefficients, of two additive functions absolutely continuous
[or singular] on a set B is itself absolutely continuous [or singular]
on E. 3% If a sequence {@,(X)} of additive functions, absolutely
continuous [singular] on a set E, converges to an additive function
@O (X) for each measurable subset X of E, then the function ®(X) is
_also absolutely continuous [singular]. 4° If a function of a set (%)
is additive and absolutely continuous [singular] on a set E, the
function is so on every measurable subset of H. 5° If E=}E,

where B, is a sequence of sets (X), and if an additive function HX)
on E is absolutely continuous [singular] on each of the sets Eu, the
function is absolutely continuous [singular] on the whole set E.
60 An additive function of a set cannot be both absolutely conti-
nuous and singular on o set B, without vanishing identically on E.

For sets of finite measure, it is sometimes convenient to apply
the following test for absolute continuity:

(13.2) Theorem. In order that a function O(X) additive on a set B of
finite measure, be absolutely continuous (X, n) on H, it is necessary
and sufficient that to each £>0 there correspond an >0, such that
w(X)<n imply |O(X)|<e for every set XC E measurable (%).

Proof. It is evident that the condition is sufficient. To prove
it also necessary, let us suppose the function @(X) absolutely con-
tinuous in E. We may assume, replacing if necessary, ?O(X) by
its absolute variation, that @(X) is a non-negative monotone func-
tion on E. This being so, let us suppose, if possible, that there
exists a sequence {E,},—12.. of measurable subsets of E, such that
w(B,)<1/2" and that O(E,)>n, where 1, is a fixed positive number.
Let us write E,=lim sup E,. For every =, we then have

w(B) << Y u(Ey) < 1/2" ', and therefore u(E,)=0. On the other

h=n

hand, by Theorem 5.1, we have @(L,) == lim sup @(E,) ==, This

n
is a contradiction, since @(.Y) is absolutely continuous, and the
proof is complete.
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(13.3) T'heorem. In order that a function P(X), additive on a set
E, be singular (X,n) on E, it is necessary and sufficient that for
each ¢>>0 there exist a set X C E measurable (X) and fulfilling the
two conditions u(X) e W(D; E—X) < e,

Proof. The condition is clearly necessary. To prove it suf-
ficient, let us suppose that for each n there is a set X, F meas-
urable (%) such that u(X,)<<1/2" and W(&; E—X,)<1/2%, and

let us write E, = lim sup X,. We then have u(H,) << Y n(X,) <{1/27!
n K

for each n, and so u(E,) =0. On the other hand, by Theorem 5.1
we have W(®; E—E,) < lim inf W(®; ¥— X,) = 0. The function

P(X) is therefore singular on E.

§ 14. The Lebesgue decomposition of an additive
function. Before proving the result announced in the preceding §,
we shall establish some auxiliary theorems. We begin with the follow-
ing theorem due to H. Hahn [I, p. 404] (ef. also W. Sierpinski [11]):

(14.1) Theorem. If O(X) is an additive function of a set (X) on a
set B, there exists always a set P I measurable (%), such that
W(D; P)=0=W (O; E— P), or, what comes to the same thing,
such that ®(X)= 0 for every measurable set X C P and P(X)<T0

for every measurable set X (_ E — P.

Proof. For each positive integer n, we choose a set E, such
that @(E.)=W(P; E)—1/2". By Theorem 6.4 we then have,

(14.2) W(D;B.)>=>—1/2" and W(O;E—E,)<<1/2".
Writing P=liminf E,, we see that F— P =lm sup (E— E.)C Y (E—E,)

n="m

for every m, and therefore, by (14.2),

— LR N |

W(P; E— P) g'”%”W(QJ;E—Ln) S o
which gives W(®; F — P)=0. On the other hand, the lower var-
iation W(®; X) is a non-positive monotone function of a measurable
set X C E, and, by Theorem 5.1 and the first inequality (14.2),
we must have the relation |W(®; P) < liminf|W(®; E,) = 0, which

gives W(®; P) = 0 and completes the proof.
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(14.3) Lemana, If O(X) is a non-negative additive function of a
set (X) on a set E, there ewists, for each a> 0, a decomposition
of E into a sequence of measurable sets without common points,
H,E,E,, .., En ... such that u(H) = 0 and that

(14.4) a-(n—1) (X)L O(X) <Can-pu(X)
for every set X C En measurable (X).

Proof. By Theorem 14.1, there exists, for each positive in-
teger n, a measurable set A, such that @®(X)—an-u(X)>=>0 for
every measurable set X (_ A4, and O(X)—an-u(X)<C0 for every

measurable set X (C E— A, Write B,= Y A,. Any measurable
h=n

subset X of B, may be represented in the form X = Y X, where

k=—n

X, are measurable sets, X, 4, for k=mn, n+1, .., and X; - X;=0
for i4=j; and so O(X)=) (X)) =D ak u(Xp)=an-u(X). We obtain

k=n k=n
thus a descending sequence of measurable sets {B,} such that
(14.5) O(X)=an-u(X) if XCB,, Xe%,

OX)<an-u(X) if XCHE—B, Xeg,

the second relation being obvious, since E—B, is a subset of
E—A,.

Let us now write E,=F-—B,, E,=B, —B, for n=2,3, ..,
and H=Ilim B,. Thus defined the sets H, E,, E,, ..., E,,... are mea-

surable and without common points, and E=H-+} E,. Taking

n==1

into account the relations (14.5), we see at once that the inequality
(14.4) holds whenever X is a measurable subset of E,. Finally, H _ B,
for each positive integer n, and therefore, by the first of the rela-
tions (14.3), we get @®(H)Z=an - u(H), which requires u(H)=0 and
completes the proof. '

(14.6) Theorem, If E is a set (X) of finite measure (u), or,
more generally, a set expressible as the sum of a sequence of sets (%)
of finite measure, every additive function of a measurable set D(X)
on E is ewpressible as the sum of an absolutely continuous additive
function U(X) and a singular additive function &(X) on E. Such a de-
composition of P(X) on E is unique, and the function T(X) is, on E,
S. Saks, Theory of the Integral. 3
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the indefinite integral of a function integrable (X, u) on E. If ®(X
is a non-negative monotone function on E, so are the corresponding
functions P(X) and O(X).

Proof. Since every additive function of a set is the difference
of two non-negative functions of the same kind (cf. § 6), we may
restrict ourselves to the case of a non-negative @(X). Further, we
shall assume to begin with that the set E has finite measure. By the
preceding lemma, there exists, for every positive integer m, a de-
composition of B into a sequence of measurable sets H{", B{™, E("')
without eommon points and subject to the condmons.

14.7)  E=H"+E"+ ..+ EB"+.., wH™)=0,

(14.8) 27" (n—1)- w(X) < O(X)< 2" n-p(X), if XCH, XeX.
We therefore have, for all positive integers m, n, and k,

2" w(BY BT = (BB 2 () - (BB,
and

2 " (BB Z 0B BT 227 (n— 1) w( BB,
from which it follows that (2n—k-+1) u(EY’- BY"™)>>0, and that
(k—2n+2)u (BY™ . BY"™)>= 0. Hence w(EE . B T))=0 whenever

either &k >2n-+1, or k<2n—2.
We may therefore write

(14.9) (m)(— EgllllH»Zl) %I,l,ljl)+E(ll'+1)—|—E(": |-1) _I_ Q(m) where U (Q(m))

This being so, let H=) V™4 N Q. We write f0(w)=2m(n—1)

m==1 m, n=1

for xeB"—H, n=1,2,..., and f@(z)=0 for xeH. We thus obtain
a sequence {f(z)} of non-negative functions measurable (¥) on the
set E. By (14.9) we have clearly [f+D(x)—fm(x)|<<2—™ on E, so
that the sequence {f*”(x)} converges uniformly on E to a non-neg-
ative measurable function f(x)

The set H being of measure zero, we have, by (14.7) and (14.8),
for every measurable set X E and for every positive integer m,

O(X) = O(X-H)+Y 27 (n—1) - a(X - B) = O(X -H) + [ o du,

and ' X

HX)< O(X-H) +%’ 2 (X B)=0(X - H)+ [ 1o dp 42— u(X).
X
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Henece, making m-»co, we derive @(X)z‘/.f(X)du(w)—i—@(X-H).

X
This decomposition, so far established subject to the hypo-
thesis that the set E is of finite measure, extends at once to sets
expressible as the sum of an enumerable infinity of sets of finite
measure. In fact, if K=} A,, where the A4, are sets (%) without

n—=1
common points and of finite measure, then, by what we have al-
ready proved, there exists on 4. a non-negative function f,(x) in-
tegrable on A4,, and a measurable set H,(A, having measure
zero, such that O(X.-A4,)= /.f,,dtu—l-(D(X-H,,), for n=1, 2, ... If we
X'.An
now write H=} H,, and f(x)=f.x) for xe¢A,, we obtain a measur-

able set H(_E of measure zero, and a function f(X), non-negative
and integrable on K, such that, by Theorem 12.7, for every meas-
urable set X K

n X-A

(14.10) OX)=Y [fdu+ X OX-H)= [fap+ OX-H).
X

n

Now, the indefinite integral vanishes for every set of measure zero,
and therefore is an absolutely continuous function; on the other
hand, we have @(X-H)=0 for every measurable set X E—H.
Thus, since the set H has measure zero, formula (14.10) provides
a decomposition of @(X) into an absolutely continuous function
and a singular function. Finally, to establish the unicity of such
a decomposition, suppose that O(X)=T,(X)+ 0,(X)=TH(X)+06,(X)
on K, the functions &;(X) and %,(X) being absolutely continuous, and
the functions ©,(X) and 6,(X) being singular. Then ¥ (X)—U,(X)=
=0,(X)—0,(X) identically on E, whence by Theorem 13.1 (2°
and 6%, we have T (X)="y(X) and O,(X)=0,(X), and this com-
pletes the proof of our theorem.

The expression of an additive function as the sum of an ab-
solutely continuous function and of a singular function will be termed
the Lebesgue decomposition. The singular function that appears in
it is often called the fumction of the singularities of the given function,
From Theorem 14.6, we derive at once

3*
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(14.11) Theorem of Radon-Nikodym. If E is a set of finite
measure, or, more generally the sum of a sequence of sets of finite mea-
sure (#), then, in order that an additive function of a set (X) on E be
absolutely continuous on E, it is mecessary and sufficient that this
function of a set be the indefinite integral of some integrable function
of a point on H.

The hypothesis that the set & is the sum of an at most enumerable infin-
ity of sets of finite measure, plays an essential part in the assertion of the theorem
of Radon-Nikodym, just as in Theorem 9.8. To see this, let us take again the
interval [0, 1] as our space X, and let the class X, of all subsets of [0, 1] that
are measurable in the Lebesgue sense (cf. below Chap. I1I) be our fixed additive
class of sets in the space X;. A measure u; will be defined by taking «(X)=00
for infinite sets and g, (X)=n for finite sets with n elements. This being =0, the
sets (X;) of measure (u,) zero coincide with the empty set, and therefore, every
additive function of a set (X,) on X] is absolutely continuous (¥, ;). In particular,
denoting by A(X) the Lebesgue measure for every set X ¢ X;, we see that A(X)
is absolutely continuous (%X, ;) on X;. We shall show that A(X) is not an inde-
finite integral (¥X,, #;) on .X,. Suppose indeed, if possible, that

NI = [ g(@) dny ()
X

for every set X e¢%;, the function g¢(x) being integrable (¥;, «;) on X;. Since
A(X) is non-negative, we may suppose that g¢(x) is so too. l.et E=E[g(x)>0]
X

and Ep=E[g(x)>1/n] for n=1, 2,... We have A(A’l—E):/.gdyl:O, so that
x .
X —K
A(E)=A(X,)=1 and this requires the set £ to be non-enumerable. Since E=23 Ky,
n
the same must be true of K, for some positive integer n,. Thus

A (E"n) = / g(w) d 0 (II/') = #a (E”u)/ﬂ’ﬂ:"v ’
E”u

which is evidently a contradiction.

§ 15. Change of measure. Any non-negative additive func-
tion »(X) of a set (X) may clearly be regarded as a measure cor-
responding to the given additive class ¥. When such a function
v(X) is defined only on a set F, we can always continue it (cf. § 5, p.9)
on to the whole space. The terms measure (¢), integral (X,»)
ete. are then completely determined for all sets (%), but, in this
case, it is most natural to consider only the subsets of B for which
the function »(X) was originally given.
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(15.1) Theorein., Whenever, on a set E measurable (X), we have

(15.2) W X) = (¥) [ glaydu(z) + HX)

X
where HX) is a non-negative function, additive and singular (%X, w)
on E, and where g(x) is a mon-negative function integrable (X, )

over H, then also
(15.3) (%) [ f(@) dv(@) = /f @) du(@) + (%) [ f(z) d9(x)
X X

for every set X CE measurable(X) and for every function f(x) that possesses
a definite integral (X,v) over X. If, further, the function f(x) is integrable
(X,7) over E, the formula (15.3) expresses the Lebesgue decomposition
of the indefinite integral / 'fdv on K, corresponding to the measure u,
D¢
the function 6(X) = / fd% being the function of singularities (X, u)
X
of the indefinite integral / fav.
X

Proof. We may clearly assume that f(x) is defined and non-
negative on the whole of the set K. We see at once that, for each

set Y (CF measurable (% /c z) =v(Y)= /g z)du(z)+9(Y)=

= /.cy(m)g( Ydu(xz) + / (w) dd(x), and hence also that for every
v
finite function h(x) s1mple and measurable (¥) on a set X C E,

(15.4) | W) dv(x) = [ W) g(x) du(x) + [ h(z) d3().
X X X

Let now {h,(x)} be a non-decreasing sequence of finite simple
functions measurable (%) and non-negative on X, converging to the
given function f(x). Substituting h,(x) for A(x) in (15.4) and making
n — oo, we obtain (15.3), on account of Lebesgue’s Theorem 12.6.
If, further, f(x) is integrable (%,») over E, the identity just es-
tablished shows at once that the product f(x) g(x) is integrable (X, u)
over F and hence, that the indefinite integral X{fgdu is absolutely

continuous (X,u) 'on E. On the other hand, the function 6(X)
vanishes on every set on which the function $#(X) vanishes, and
therefore, is singular (%, #) on E together with $(X). This completes
the proof.



38 CHAPTER 1. The integral in an abstract space.

The wide scope of Theorem 15.1 is due to the fact that, if
#(X) and »(X) are any two measures associated with the same class
% of measurable sets and we have at the same time u(E) <+ oo,
and »(E) <+ oo, for a set FeX, then the measure » can be repre-
sented on E in the form (15.2), where g(x) is a function integrable
(%, 1) over the set E and $(X) is a non-negative function, additive
and singular (%, #) on the same set (cf. Th. 14.6). Hence, with the

above hypotheses and notation, in order that / ' fdv = / ' fg du
X b'¢

should hold identically on E, it is necessary and sufficient that
the indefinite integral / 'fdv be absolutely continuous (X, ) on E.
X

This condition is clearly satisfied whenever the measure »(X) is
itself absolutely continuous (¥, u).




