CHAPTER II.

Carathéodory measure.

§ 1. Preliminary remarks. In the preceding chapter, we
supposed given a priori a certain class of sets, together with a meas-
ure defined for the sets of this class. A different procedure is usually
adopted in theories dealing with special measures. We then begin
by determining, as an outer measure, a non-negative function
of a set, defined for all sets of the space considered, and it is only
a posteriori that we determine a class of measurable gets for which
the given outer measure is additive.

An abstract form of these theories, possessing both beauty
and generality, is due to C. Carathéodory [I}. The account that
we give of it in this chapter, is based on that of H. Hahn [I, Chap. VI],
in which the results of Carathéodory are formulated for arb-
itrary metrical spaces. This account will be preceded by two §§
describing the notions that are fundamental in general metrical
spaces.

§ 2. Metrical space. A space M is metrical if to each pair
a and b of its points there corresponds a non-negative number ¢(a, b),
called distance of the points a and b, that satisfies the following
conditions: (i) ¢(a, b)=0 is equivalent to a=b, (ii) o(a, b)=0(b, a),
(iii) o(a, b) +o0(b,¢) =e0(a,c). In this chapter, we shall suppose
that a metrical space M is fixed, and that all sets of points that
arise, are located in M. ,

The notation that we shall use, is as follows. A point a is limit
of a sequence {a,} of points in M, and we write a=lim a,, if

H

lim¢(a, a,)=0. Every sequence possessing a limit point is said to
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bhe eonvergent. Given a set M, the upper bound of the numbers ¢(a, b)
subject to aeM and beM ix called diameter of M and is denoted
by O0(M). The set M is bounded if J(M) is finite. For a clags M
of sets, the upper bound of the numbers Jd(M) subject to MM
is denoted by A(M) and called characteristic number of M.
By the distance ¢(a, 4) of a point a and a set A, we mean the lower
bound of the numbers ¢(a, #) subject to xeA, and by the distance

0 (4, B) of two sets A and B, the lower bound of the numbers o(x, y)
for xe A and y ¢ B.

We call neighbourhood of a point a with radius r >0, or open
sphere S(a; r) of centre a and radius v, the set of all points x such
that ¢(a, #) <r. The set of all points x such that ¢(a,z)<Cr I8
called closed sphere of centre a and radius v, and is denoted by S(a; 7).

A point a is termed point of accumulation of a set A, if every
neighbourhood of a contains infinitely many points of A. The set
A’ of all points of accumulation of A is termed derived set of A.
The set A+ A4’, that we denote by Z, is termed closure of A. If A=A,
the set 4 is said to be closed. The points of a set, other than its
points of accumulation, are termed ¢solated. A set is isolated, if all
its points are isolated. We call perfect, any closed set not containing
isolated points.

A point a of a set A is said to be an internal point of 4, if there
exists a neighbourhood of @ contained in A. The set of all the internal
points of a set A is called interior of A and denoted by 4A°. The set
A—A° is termed boundary of A. 1f A=A°, the set A is said
to be open. Two sets 4 and B are called non-overlapping, if
A.-B°=B-A°=0.

The eclass of all open sets will be denoted by ® and that of
all closed sets by §. In accordance with the convention adopted
in § 2 of Chap. I, p. 5, open and closed sets will also be termed
sets (®) and sets (§§) respectively. We see at once that the com-
plement of any set (®) is a set () and vice-versa.

The sum of a finite number or of an infinity of open sets, as
well as the common part of a finite number of such sets, is always
an open set. Any common part of a finite number, or of an infinity,
of closed sets, and also any sum of a finite number of such sets,
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are closed sets. Nevertheless, the sets (F.) and (®s) (cf. Chap. I, § 2,
p. 5) do not in general coincide with the sets (¢§) and (®), although
every set (§) is clearly a set () and, at the same time, a set (®s);
for, if F' is a closed set and G, denotes the set of the points « such
that o(w, F)<<1/n, we have F=IIG,, where G, are open. The cor-

responding result for the sets (®) is obtained by passing to the
complementary sets. Moreover, it follows that any set expressible
as the common part of a set (§) and a set (®) is both a set (§s) and
a set (®s).

We shall denote by 9B, the smallest additive class that includes
all closed sets (cf. Chap. I, Th. 4.2). This class, clearly, includes also
all sets (®;) and (§.). The sets (B) are also termed measurable (B)
(in accordance with Chap.I, §4, p. 7). They are known as Borel sets.

We shall also give a few ‘“relative” definitions having re-
ference to a set M. The common part of M with any closed set
is closed in M; we see at once that, for a set PC M to be closed
in M, it is necessary and sufficient that P=M .P, i. e. that the
set P contains all its points of accumulation belonging to M. Sim-
ilarly, any set expressible as the common part of M and an open
set is termed open in M.

Any set of the form M.S(a; r), where aeM and r>0, is called
portion of M. TIf every portion of M contains points of a set 4,
i.e. if A7) M, the set A is said to be everywhere dense in M. If a set B
is not everywhere dense in any portion of M, i. e. if no portion
of M is contained in B, the set B is said to be non-dense in M. In
other words, a set B is non-dense in M, if, and only if, each portion
of M contains a portion in which there are no points of B. It fol-
lows at once that the sum of a finite number of sets non-dense in
the set M is itself non-dense in M. The sets expressible as sums
of a finite or enumerably infinite number of sets non-dense in M
are termed (according to R. Baire [1]) sets of the first category in M,
and the sets not so expressible are termed sets of the second category
in M. In all these terms, the expression “in M” is omitted when
M coincides with the whole space; thus, by “non-dense sets”,
we mean sets whose closures contain no sphere and by ‘“sets of
the first category”, enumerable sums of such sets.

A set M is called separable, if it contains an enumerable
subset everywhere dense in M.
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§ 3. Continuous and semi-continuous functions. If f(x)
is a function of a point, defined on a set 4 containing the point a,
we shall denote by Mu(f; a; v) and mu(f; a; r), respectively, the
upper and lower bounds of the values assumed by f(z) on the por-
tion A-S(a; r) of the set A. When » tends to 0, these two bounds
converge monotonely towards two limits (finite or infinite) which
we shall call respectively maximum and minimum of the function
f(x) on the set A at the point a, and denote by Mu(f; a) and myu(f; a).
Their difference o04(f; @)= M4(f; a)—m4(f; a) will be called oseil-
lation of f(x) on A at a. We clearly have

(3.1) my4(f; @) << fla) << Ma(f; a) for every point aceA.

It f(a)=mu(f; @), the function f(x) is said to be lower semi-
continuous on the set A at the point a; similarly, if f(a)=Ma(f; a),
the function f(x) is upper semi-continuous on A at a. If both con-
ditions hold together, and if f(x) is finite at the point a, i. e. if
my(f; a)=My(f; a)F oo, the function f(z) is termed continuous on A
at the point a. Functions having the appropriate property at all
points of the set A4, will be termed simply lower semi-continuous,
or upper semi-continuous, or continuous, on A. In all these terms
and symbols, we usually omit all reference to A, when the latter
is an open set (in particular, the whole space), or when A4 is kept
fixed, in which case the omission causes no ambiguity.

From these definitions we conclude at once that, if f(x) is
upper semi-continuous, the function —f(x) is lower semi-continuous,
and vice-versa; and further, that, if two functions are upper (or
lower) semi-continuous, so is their sum (supposing, of course, that
the functions to be added do not assume at any point infinite values
of opposite signs).

(3.2) Theorem. For every function f(x) defined on a set A, the
set of the points of A at which f(x) is not continuous on A, is the com-
mon part of the set A with a set ().

Proof. Let us denote by F, the sel of the points # of 4 at
which either f(x)=d-c0, or oa(f;2)==1/n. The set F=2F, con-

1

sists of all the points of A at which the function f(x) is not con-
tinuous. Now it is easy to see that each of the sets I, is closed in 4,
i. e. that F,=A-F,. Therefore F is the common part of A and the
set SF,, which is a set (§.).

n
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(3.3) Theorem. For a function of a point f(x) to be upper [lower]
semi-continuous on a set A, it is mecessary and sufficient that, for
each number a, the set

(3.4) Elae 45 f(#) = a] [Elxed; f(2) < all
be closed in A, i.e. expressible as the common part of A with a set (§).

Proof. We need only consider the case of upper semi-contin-
uous functions, as the other case follows by change of sign.

Let f(z) be a function upper semi-continuous on 4, a an ar-
bitrary number, and z,e¢ A a point of accumulation of the set (3.4).
For each >0, the sphere S(z,; r) then contains points of that set,
and this requires Mu(f; @y; 7)=>a and so Mu(f; wy)=>a. Since by
hypothesis M (f; z,) = f(®,), We derive f(x,) = a, so that x, belongs
to the set (3.4). This set is thus closed in 4.

Suppose, conversely, that the set (3.4) is closed in 4 for each a.
Since the relation My(f; ) = f(x) is evident for any z at which
f(x) = + oo, let wx, be a point at which f(xy) <4 oo, and a any
number greater than f(x,). The set (3.4) is closed in A and does not,
contain z, and so, for a sufficiently small value 7, of r, contains
no point of the sphere S(x,;7). Thus Mu(f; o) <<Ma(f; zo; 7)< for
every number a>> f(x,), and hence M(f; ®,) < f(w,), which, by (3.1),
requires M (f; @o) = f(%g)-

An immediate consequence of Theorem 3.3 (cf. Chap. I, § 7,
particularly p. 13) is the following

(3.5) Theoremn. Every f[unction semi-continuous on a set (B) s
measurable (B) on this set. More generally, if X is any additive
dass of sets including all closed sets (and so all sets measurable (B)),
every function semi-continuous on a set (X) is measurable (X) on
this set.

§ 4. Carathéodory measure. A function of a set I'(X),
defined and non-negative for all sets of the space M, will be called
outer measure in the sense of Carathéodory, if it fulfills the fol-
lowing conditions:

(C,) I'X)<<I'(Y) whenever XY,
(Cy) rex) <2 X, for each sequence | X} of sets,

(Cy) I'xX+y)=I'X)+1'(Y) whenever (X, Y)>0.
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It should be noted that of these three conditions, the last one, only, has
a metrical character. Now in this §, as well as in the §§ 5 and 6, we shall use
ouly properties (C,;) and (C,) of the Carathéodory measure. Hence all the re-
sults of these §§ remain valid in a perfectly arbitrary abstract space.

In order to simplify the wording, we shall suppose, in the
rest of this chapter, exeept in § 8 which is concerned with certain
special measures, that an outer Carathéodory measure I'(X) is
uniquely determined in the space considered.

A set E will be termed measurable with respect to the given
outer measure 1'(X), if the relation I'(P+Q)= I'(P)+-I'(Q) holds
for every pair of sets P and ¢ contained, respectively, in the set ¥
and in its complement CFE; or, what amounts to the same, if
I'(X)=I'(X-E)+I'(X-CE) holds for every set X. By condition (C,)
this last relation may be replaced by the inequality I'(X)Zz=
=I'(X-E)+ I'(X-CE).

The class of all the sets that are measurable with respect to I,
will be denoted by £,. We see at once that this class includes all
the sets X for which I'(X)==0 (in particular, it includes the empty
set). Moreover it is clear that complements of sets (£r) are also
sets (Lr).

The main object of this §is to establish the additivity of
the class £r (in the sense of Chap. I, §4) and to prove that the
function I'(X) is a measure (£p) in the sense of Chap. I, § 9.
This result will constitute Theorems 4.1 and 4.5.

(4.1) Theorem. If S isthe sum of a sequence X )1, ... of sets (8r)
no two of which have common points, the set S is again a set (L) and
I'(8)y= 2 I'(X,); more generally, for each set
(4.2) Ir'Q)=23r@Q X, + I'(Q - CN).

n

k
Proof. Let S,= 3 X,. We begin by proving inductively that

n=1
all the sets S, are measurable with respect to 1", and that, for each %
and for every set @,

k
(4.3) I'Q) = :YII’(Q-X") + 17(Q- C8y).
Suppose indeed, that §, is a set (£r) and that the inequality (4.3)
holds for every set @, when k= p. Since X, is, by hypothesis,
a set (8r) and S,-X,r;= 0, we then have
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rQ)=r@ X, +I'@ -CXp1) =
—TQXp) + 1@ CXpy1-8p) + I'(@-CXpyy- C8)) =
+1
— QX0 + 1(Q-8,) + TN(Q-CS, )= I'Q-X,) + T'(@-C8y1)

n=1
and this is (4.3) for k= p + 1. In view of condition (C,), p. 43,
it follows farther that I'(Q)=I(Q-Sp+1)+ I'(@-CS,.1), which
proves that S,y1 is a set (£r).
Combining the inequality (4.3), thus established, with the in-
equality I'(Q-CS,) = I'(Q-C8), we obtain, by making k—> oo, the

inequality I'(Q)> > I'(Q-X,) + I'(Q-C8), and from this (4.2)
n=1

follows on account of condition (C,).

Finally, the same condition enables us to derive from (4.2)
that 1'(Q) = T'(Q-8)+1(Q-C8), and this shows that § is a set (£r)
and completes the proof.

(4.4) Lemma. The difference of two sets (Lr) is itself a set (2r).

Proof. Let XeQp and Y e8p, and let P and  be any two
sets such that PC X — Y and QC C(X — Y). Write Q=0 Y
and Q,=@-CY. Making successive use of the three pairs of in-
clusions Q,CY, @,CCY; PCX, @,CC(X—Y)-CYCCX; and
Q.CY, P4+Q,CCY, we tind I'(P)+-T'(Q)=T"(P)+T"(Q)+T'(Q)=
=T (P+Q,)+I'(Q,)=I'(P+@Q), which shows that X—Y is a set (£r).

(4.5) Theorem. L, is an additive class of sels in the space M.

Proof. We have already remarked (p. 44) that the empty
set and that complements of sets (£;) are sets (8r). To verify the
third condition (iii) for additivity (cf. Chap. I, § 4, p. 7), let us
observe firstly that, on account of Lemma 4.4 and of the identity
X.Y=X—CY, the common part of any two sets (£r) is itself
a set (2r). This result extends by induction to common parts of
any finite number of sets (£r) and, with the help of the identity

%J Xi:C[i [ CX;,, we pass to the similar result for finite sums of

sets. Finally, if X is the sum of an infinite sequence {Xuju-1,2 .

of sets (2r), we have X=8;42 (S.11—8,) where 8,=>Y X Now,
1

n—= b=

clearly, of the sets S8, and S,y1—~&,, no two have common
points, and, moreover, by the results already proved, they all
belong to the class €. Consequently, to ascertain that X is a set (£r),
we have only to apply Theorem 4.1. The class £r is thus additive.
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Theorem 4.5 connects the considerations of this chapter with
those of the preceding one. Thus, in accordance with the conven-
tions adopted in Chap. I, pp. 7 and 16, the scts (2,) may be termed sets
measurable (£), and I'(X) may, for X e®;, be regarded as a
measure associated with the class £;. This class, together with
the measure I, determines further the notions of functions
measurable (¥7), of integral (8,7, of additive function
of a set (2r) absolutely continuous (&, I'), and the other
notions defined generally in Chap. I. Since the outer measure I’
determines already the class £, we shall omit in the sequel the
symbol representing this class, whenever the notation makes expli-
cit reference to the outer measure; thus we shall say “function
integrable (I')” instead of “function integrable (£;, I')” and the
integral (I') of a function f(x) over a set K will be denoted simply

by [f(@)dD(w), instead of by (L) [ f@)aT ().
I E

In accordance with Chap. I, § 9, the value taken by I'(X) for
a set X measurable (£;) will be termed measure (I') of X; when
X is quite arbitrary, this value will be called its outer measure (I').

It E,is a subset of a set E such that I'(F— E,)=0, then
for any function f(x) on E the measurability (8r) of f on E is
equivalent to its measurability (£r) on E, This remark and
Theorem 11.8, Chap. I, justify the following convention:

If a function f(x) is defined only almost everywhere (/")
on a set K, then, E, denoting the gset of the points of E at which
f(x) is defined, by measurability (Lr), integrability (I') and integral (I")
of f on the set E we shall mean those on the set E,.

Let us note two further theorems.

(4.6) Theorem. Given an arbitrary set E, (i) I'(E.- 2 X,)=31"(E-X,)

for every sequenmce \X,} of sets measurable (2r) mo two of which have
common points, (i) I'(E-lim X,)=1im I'(E-X,) for every ascending

sequence \X,} of sets measurable (1), and this relation remains valid
for descending sequences provided, however, that I1'(E.X,)=F oo,
(iil) more generally, for every sequence {X,} of sets measurable (8r)
P'(E - liminf X,)<liminf I'(E-X,), and, if further I'(E-2 X,) oo,

then also I'(E.limsup X,) = limsup I'(E- X,,).
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Part (i) of this theorem is contained in Theorem 4.1, and
parts (ii) and (iii) follow easily from (i) (¢f. Chap. I, the proofs of
Theorems 5.1 and 9.1).

A part of Theorem 4.6 will be slightly further generalized. Given
a set K, let us denote, for any set X, by I't (X) the lower bound of
the values taken by I'(E.-Y) for the sets Y measurable (£,) that
contain X.

(4.7) Theorem. Given a set E, (i) to every set X corresponds
a set X° DX measurable (2p) such that I’y (X) = I'(E-X°),
(i) I'(KE- hmlnf X << l’“(]iminf X.) <1iminf IS (X,) for every se-

quence { X} 0]‘ sets, and, in partwulcw, P(E hm X,,)<P° (hm X,)=

=1m 'Y X,) for every ascending sequence X,,,

n

Proof. re (i). For every positive integer n there is a set ¥, )X,
measurable (8r), such that I'(E.-Y,) <C<I'h(X)41/n. Writing
X°=11Y,, we verify at once that the set X° has the required

properties.

re (11) Taking (i) into account, let us associate with each set X,
a set X,IJX,,, measurable (£7) and such that I'(E- XY =T%X,).
The set lim inf X?,'_jliminf X, is measurable (2r) and, we therefore

have, by Theorem 4.6 (iii)
I'’@iminf X,) << I'(E - liminf X)) << hmmfr(E X,,)_hmme X ).

n n

The second part of (ii) follows at once from the first part.

% § 5. The operation (A). We shall establish here that
measurability (€r) is an invariant of a more general operation
than those of addition and multiplication of sets.

We call determining system, any class of sets U={d,, n,..,u, I
which with each finite sequence of positive integers n,, %, ..., %, there
is associated a set A, ., ..n,. The set
(5.1) N AL A e A gy

Ny, Hyeey T oo
where the summation extends over all infinite sequences of indices
Mgy Mgy <voy Mty -y 18 called nucleus of the determining system A and
denoted by N(). The operation leading from a determining system
to its nucleus is often called the operation (A).
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The operation (A) was first defined by M. Souslin [1] in 1917. When
applied to Borel sets, it leads to a wide class of sots (following N. Lusin, we call
them analytic) and these play an important part in the theory of sets, in the
theory of real functions, and even in some problems of classical type. A system-
atic account of the theory of these sets will be found in the treatises of H. Hahn
[II], F. Hausdorff {1I], C. Kuratowski [I}, N. Lusin [II] and W. Sierpin-
ski [II].

We mentioned at the beginning of this § that the operation (A) includes those
of addition and of multipli¢ation of sets. This remark must be understood as follows:
If Mis a class of sets such that the nucleus of every determining system formed of sets (M)

itself belongs to M, then the sum and the common part of every sequence {Ni} of sets
(M) are also sets (M). In fact, writing Pny,ng,...n,=Nny and @ny,ng, ..., np= Nr we
gee at once that the nuclei of the determining systems {Puny,ng,...,np} and
{Qny, ny,...,n,} eoincide respectively with the sum and with the common part of

the sequence {N;}. Thus, Theorem 5.5, now to be proved, will complete the result
contained in Theorem 4.5, and in conjunction with Theorem 7.4, establish mea-
surability (¢p) for analytic sets in any metrical space (ef. N. Lusin and
W. Sierpinski [1], N. Lusin [3, pp. 25—26], and W. Sierpinski [12; 15])..
The proof of this can be simplified if we assume regularity of the outer meas-
ure I' (cf. §6) (see C. Kuratowski [I, p. 58}).

With every determining system U =1{An n,,..,nyjy We shall also
associate the following sets. Nhap a5 () will denote, for each
finite sequence hy, hy, ..., by of positive integers, the sum (5.1)
extended over all sequences, 7, My, ..., Nk, ... Such that n; << h; for
i=1,2,..,s. We see at once that the sequence IN® (W n=1,2, ...,
together with every sequence INH s i B U Yy 2, .., 1S MONIOtONE
ascending and that
(5.2)  N(W) = lim N*(A), N"ivhw-‘-’hk(%):lilm N figs o e (),

h 1
Further, for every sequence of positive integers h, Ras coey By oory WO
shall write

N, () ZA,II, N, 0, (A ZA,I‘A,,“,,, Ce

=0y ny=hy, s

Nh],hz, hk 2 AII] An] ng ~--'An],nz,m npy

ny hy, ng:hz,. . ”k:hk

We see directly that if the sets of the determining system A
belong to a class of sets M, the sets Ny, n, ..n,(U) belong to the
clags Mss.
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(5.3) Lemina. For every determining system U={A, uy ..ny ond
for every sequence of positive integers hyy Boy vovy Py oo

(5.4) N (A) - Ny, 1y (W) Ny, gy e (W) - oo C N(A).

Proof. Let # be any point belonging to the left-hand side
of (5.4). We shall show firstly that a positive integer ny<CTh; can
be chosen so that, for each k>>2, the point @ belongs to a set
Ay Angng oAy ny,..ony, T0r which n,=nY and n;<h; for i=2, 3, ..., k.
Indeed, if there were no such integer n}, we could associate with
each index n <<h,, a positive integer k., such that « belongs to no
product A,,-A,,,,,Z-...-A“,,,_z,,__,,,k“ for which n;<Ch; when =2, 3, ..., k..

Denote by p; the greatest of the numbers ky, ks, ..., kn,. The point x
thus belongs to none of the sets A,,I-A,,l,,,zn..-A,,l,,,2,.,,,,,p‘ for which
n<h; when i=1,2,..,p, and therefore is not contained in
their sum Ny, n,, .4, (A). This is a contradiction since, by hypo-

thesis, © is an elerrfént of the left-hand side of (5.4).

After the index n!, we can determine afresh an index n)=<C hy,
so that, for each k=3, the point  belongs to a set An-Aupng e Augny,..ony
for which ny = nf, n, = n) and n;<<h; when i=3,4,..,k For, if
there were no such index, we could find, as previously, a positive
integer p,>>3 such that 2 belongs to no product AppAnpy e Angng,eeny,
for which n,=n) and n;<h; when =2, 3, ..., Py And this would
contradict the definition of the index nf.

Proceeding in this way, we determine an infinite sequence of
indices {n!} such that n{<<h; when i=1,2,.. and such that

'7”t’An'f'A%‘l’,%g'---‘An‘f)n‘j,u-,n‘,"'--- Thus «eN (), and this completes
. p 4

the proof.

Temma 5.3 is due to W. Sierpinski [13). The proof contains a slightly
more precise result than is expressed by the relation (5.4) and shows that the
left-hand side of that relation coincides with the sum (5.1), when the latter i
extended only to systems of indices 0y, gy ooor ks oo restricted to satisfy
1y << by, my < hyy ooy My, < hyy oot

Let us call degenerate, a determining system {An,ny,....ng} such that, for
some sequence {hz} of positive integers, we have An, ny,...,n;=0 whenever ns - ha.
Then, for this sequence {hr}, the relation of inclusion (5.4) becomes an identity
and we are led to the following theorem:

Ij a degenerate determining system consists of sels belonging to a class M,
its nucleus is a set (Mics). A similar theorem cannot hold for non-degenerate
gystems: in fact, as shown by M. Souslin, the operation (A) applied to Borel
sets (and even to linear segments) may lead to sets that are not Borel sets (cf.
F. Hausdorff [1I, p. 182—184]).

S. Saks, Theory of the Integral. 4
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(5.5) Theorem. The nucleus of any determining system W={A4,, n,, .., ny
consisting of sets measurable (1) is itself measurable (Qr).

Proof. Let us write, for short,

N= N(Q{), Ntz ol == Nsnp, oltp (Cu),- —an,nz,“.,nk = N111,112,...,11k (Q[).
We have to show that, for any set E
(5.6) I'(Eyz=TI(E-N)+ I'(E.-CN).

We may assume that I'(E) < oo, since (5.6) is evidently fulfilled
in the opposite case.

Let us denote (as in § 4, p. 47) by I'3(X) the lower bound
of the values of I'(E-Y) for sets ¥ )X measurable (27) and let ¢
be an arbitrary positive number. Taking into aceount (5.2) and
Theorem 4.7, we readily define by induction a sequence of positive
integers {hs) such that I')(Nn)=I'(E.-N)—¢/2 and

IR (Ntvhyhp) ZZ T Nkt obp1) —e[2% for k=2,3,....

Thus the sets Ny, .., D N#om being measurable (2r) together
with the A, ny, .. ngs

lj(E'Nhl,hzy,mhk)>PF?(Nhlth*""hk)> IT(EN)_.,S
for each %k, and therefore

IY(E) - P(E'Nhl,hz,...,hk) + P(E'CNhl,hZ,A..,hk) 2

5.7
(6.7) = T(E-N)+ T'(B-CNu n, 1) —e.

Now the sequence of sets {Nn,u,, ... 0 r=1,2,.. is descending, and
by Lemma5.3 its limitis a subset of N. The sequence {CN, ... 012, ..
is thus ascending and its limit contains the set CN. Hence, making
k—>oco in (5.7), we find, by Theorem 4.6(ii), the inequality
I'E)yZI(E-N)+1I'(E-CN)—¢, and this implies (5.6) since ¢ is an
arbitrary positive number.

§ 6. Regular sets. A set X will be called regular (with respect -
to the outer measure I'), if there exists a set 4 measurable (£r),
containing X and such that I'(4)= I'(X). Every measurable set
is evidently regular, and so is also every set X whose outer measure (1)
is infinite, since we then have I'(X)=I'(M)=oco. If every set
of the space considered is regular with respect to the outer measure I,
this measure is itself called regular; cf. H. Hahn [I, p. 432],
C. Carathéodory [1; I, p. 258].
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Denoting by I'%(X) the lower bound of the values of I'(Y)
for sets Y DX measurable (£r), we see readily that the relation
I'(X)= I'(X) expresses a necessary and sufficient condition for
the set X to be regular. From Theorem 4.7(ii), taking for the
set B the whole space, we derive the following:

(6.1) Theorein. For any sequence {X,} of reqular sets I'(lim inf X, )<

1

< liminf I'(X,), and, if further the sequence {X.} is ascending
I'(lim X,) = lim I'(X,).

n n

The generality and the importance of this theorem consist in that all
outer measures I' that occur in applications satisfy the condition of regularity,
and, for these measures, the last relation of Theorem 6.1 therefore holds for
every ascending sequence of sets. Nevertheless, for measures that are not them-
selves regular, the restriction concerning regularity of the sets X is essential
for the validity of Theorem 6.1 as is shown by an example of irregular measure
due to C. Carathéodory [II, pp. 693-—696].

We may observe further that, for any fixed set K, the function of a set I'5(.X),
defined in § 4, p. 47, is always a regular outer measure, even if the given measure
I'(X) is not. Conditions (C,) and (C,) together with that of regularity, are at once
seen to hold, and (C;) may be derived from Theorem 7.4, according to which
closed sets are measurable (8p).

§ 7. Borel sets. We shall show in this § that, independently
of the choice of the outer measure I', the class 87 contains all
Borel sets.

(7.1) Lemma. If Q is any set contained in an open set G, and Q,
denotes the set of the points a of @ for which ¢(a, CG)Z=1/n, then
lirln I'@n) = I'(Q).

’ Proof. Sinee the sequence @, is ascending and @ = lim @,,
it suffices to show that lim I'(Q,)==1'(Q). For this purpose llét us
write Dy=Qui1—Q.. We then have ¢(Dui1,@n)=>1/n(n+1)>0,

provided that D,y;#0 and @, 0. Hence, taking into account
condition (Cg), p. 43, it is readily verified by induction that

(7.2) I’(Q2n+1)>rS{%;-Dzk):k;P(Dzk), F(an)>]1£§D2k~1)=k%7|F(Dzk71)

(o)

for every positive integer n. Writing, for short, a,= pX I'(Dy;) and
h=n

4%



52 CHAPTER II. Carathéodory measure.

by=2 I'(Dy—1), we obtain at once, by condition (Cy), p. 43,
h=n-1
(7'3) F(Q) 7(Q’n) "}" Qpy + bn
Now two possibilities arise: either both series, 2 I'(Dy) and
k=

M I'(Dy,—1) have finite sums, or, one at least has its sum infinite.
=t :

In the former case a,—>0 and b,—0, so that, the required inequal-
ity I'(Q)<<lim I'(@,) follows by making n—oco in (7.3); while, in

the latter case, the inequality is obvious, since by (7.2) we have
then lim I'(Q,) = co.

(7.4) Theorem. Every set measurable (V) is measurable (£,).

Proof. Since the class £y is additive and since B is the smallest
additive class including the closed sets (ef. § 2, p. 41), it is enough to
prove that every closed set is measurable (£r), i. e., denoting any
such a set by F, that -

(7.5) I'(rP+@) = I'(P)+ 1'(Q)

holds for every pair of sets P_F and @ CF. Since the set CF
is open, there 1s, by Lemma 7.1, a sequence {Q,} of sets such that
Q. Q, 0(Qu, F) = 1/n for n=1, 2, ..., and lim I'(Q,) = I'(Q). Thus

0(@ny P) = 0(@n, F) > 0, and so, on account of condition (C,), p. 43,
we derive .l’(P—l—Q ZI'(P+Q,)=1I'(P)+1I'(Q, for each n, and,
making n— co, we obtain (7.5).

The arguimnents of this § depend essentially on property (C;) of outer meas-
ure, and on the metrical character of the space M, which did not enter into
§§ 4—6. It is possible however to give to these arguments a form, independent
of condition (C,), valid for certain topological spaces that are not necessarily
metrical (ef. N. Bourbaki [1}).

From the preceding theorem coupled with Theorem 3.5, we
derive at once the following

(7.6) Theorem. (i) Every function wmeasurable (B) on a set K
is measurable (%) on E. (i) Every function that is semi-continuous
on a set (8r) is measurable () on this set.
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§ 8. Length of a set. We shall define in this § a class
of functions of a set that are outer Carathéodory measures and
that play an important part in a number of applications.

Let @ be an arbitrary positive number. Given a set X, we
shall denote, for each €>0, by A([)( X) the lower bound of the

sums 2 [6(X;)]% for which {X/. 12, . is an arbitrary partition of X

into a sequence of sets that have diameters less than &, When
¢—>0, the number AY(X) tends, in a monotone non-decreasing
manner, to a unique limit (finite or infinite) which we shall denote
by A.(X). The function of a set A.(X) thus defined is an outer
measure in the sense of Carathéodory. For, when >0, we clearly

have (i) AQ(X)<<AP(Y) it XC¥, (i) AQ D X)<IAD(X,), if {X.)

is any sequence of sets, and (iii) AY(X+ Y)= AD(X) + AD(Y),
if ¢o(X, Y)>e. Making ¢—>0, (i), (ii), (iii) become respectively
the three conditions (C,), (C,), (C,), p. 43, of Carathéodory for A.(X).

We shall prove further that the outer measure A, (for any «>>0)
is-regular in the sense of §6, i. e. that every set is regular with
i‘espect to this measure. We shall even establish a more precise
result, namely

(8.1) Theorem. For each set X there is a set He®s such that
XCH and A, (H)= A, (X).

Proof. For each positive integer n, there is a partition of .Y
into a sequence of sets {Xf-")}i—uz,.., such that

(8.2) (X)) <<1/2n for i=1,2,..., and f[é(XE"))]“<Aa(X)+1/n.

i—1

We can evidently enclose each set X{” in an open set G\ such that
(8.3) 3G < (L+ 1/n) 0(X().
Writing H = ] | )’ G, we see at once that H is a set (®s) and that

n== 117

X(CH. Moreover, for each n, H = EH G\ and the relations (8.2)

i==1
and (8.3) imply that J(H. Gg"))<1/n for ¢=1,2,... and that
AY(H) < 2[6 A< (141/n)* [AX)+1/n]. Making n—» oo,

we find in the limit A.(H)<<A.(X), and, since the converse in-
equality is obvious, this completes the proof.
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In Euclidean n-dimensional space 2, (see Chap. III), the sets
whose measure (4,) is zero may be identified with those of measure
zero in the Lebesgue sense. By analogy, in any metrical space,
sets whose measure (A.) is zero are termed sets having a-dimensional
volume zero, and in particular, when a =1, 2, 3, sets of zero length,
of zero area, of zero volume, respectively. For the same reason, sets
of finite measure (A.) are termed sets of finite a-dimensional volume
(or of finite length, finite area, finite volume, in the cases a==1, 2, 3).
In particular, in I, i.e. on the straight line, the outer measure A,
coincides with the Lebesgue measure, and, on this account, we call
the number A,(X), in general, outer length of X, and when X is
a set measurable (£.1,), simply, length of X. For short, we often write A
instead of 4,.

We have mentioned only the more elementary properties of the measures
Ag, those, namely, that we shall have some further occasion to use. For a deeper
study, the reader should consult F. Hausdorff [1]. Among the researches de-
voted to the notion of length of sets in Euclidean spaces, special mention must

be made of the important memoir of A. 8. Besicoviteh [1]; of. also W. Sier-
pinski [1] and J. Gillis [1].

§ 9. Complete space. A metrical space is termed complete,
if a sequence {a,) of its points converges whenever lim ¢ (&, @.)=0.

m,n—>»co
In any metrical space, this is evidently a necessary condition for
convergence of the sequence {a,}, but, as a rule, not a sufficient
one. The following theorem concerns a characteristic property of
complete spaces:

(9.1) Theorem. In a complete space, when |F,) is a descending
sequence of closed and non-empty sets whose diameters tend to zero, the
common part IIF, is not empty.

Proof. Let a, be an arbitrarily chosen point of F,. For n>=m,

we have ¢(au, a,) <<O(F.,), and hence lim ¢(@m, @,)==0. The sequence
m,n—»oo

{a,} is thus convergent. Now the limit point of this sequence clearly
belongs to all the sets F,, since a,eF,C F, whenever n >>m, and
since the sets F,, are closed by hypothesis.

(9.2) Baire’s theorem. In a complete space M, every non-empty
set (®s) is of the second category on itself, i.e. if H is a set (®s)
in M and H=Z H,, one at least of the sets H, is everywhere dense

m a portion of H.
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Proof. Suppose, accordingly, that H = [] G, where G, are
n—=1

open sets, and further that

(9'3) H= Z Hn

n=1
where H, are non-dense in H. The partial sums of the series
(9.3) are then also non-dense in H (cf. § 2, p. 41), and it is easy to
define inductively a deseendmg sequence of portions S, of H

such that (i) 8, G, (ii) S. ZH,_O (iii) 6(S,)<<1/n. On account

n\__
j=1

of Theorem 9.1 and of (iii), the sets S, have a common point, which
by (i), belongs to all the sets G,, and so to H, while at the same
time, by (ii) it belongs to none of the H,. This contradicts (9.3)
and proves the theorem.

The case of Theorem 9.2 that occurs most frequently, is that in which
is a closed set. For closed sets in Euclidean spaces the theorem was established
in 1899 by R. Baire [1]. To Baire, we owe also the fundamental applications
of the theorem, which have brought out the fruitfulness and the importance
of the result for modern real function theory. As regards the theorem by itself
however, it was found, almost at the same time and independently by W. F.
Osgood [1] in connection with some problems concerning functions of a complex
variable (cf. in this connection, the interesting article by W. H. Young [T7]).
The general form of Theorem 9.2 is due to F. Hausdorff [T, pp. 326 —328; 11,
pp. 138—145].

If @ is a non-isolated point (cf. § 2, p. 40) of a set M, the set (a)
consisting of the single point a is clearly non-dense in M. It there-
fore follows from Theorem 9.2 that

(9.4) Theorem. In a complete metrical space, every non-emply
set (®s) without isolated points, and in particular every perfect set,
18 non-enumerable.

More precisely, by a theorem of W. H. Young [1], every set that fulfills
the condition of Theorem 9.4 has the power of the continuum; cf. also F. Haus-
dorff [II, p. 136].




