CHAPTER III.

Functions of bounded variation and the
Lebesgue-Stieltjes integral.

§ 1. Euclidean spaces. In this chapter, the notions of
measure that we consider undergo a further specialization. Accord-
ingly we introduce for Euclidean spaces, a particular class of
outer measures of Carathéodory, determined in a natural way by
non-negative additive functions of an interval. These outer meas-
ures in their turn determine the corresponding classes of meas-
urable sets and measurable functions, and lead to processes of
integration usually known as those of Lebesgue-Stieltjes.

By EHuclidean space of m dimensions R,,, we mean the set of
all systems of m real numbers (3, ..., ©m). The number x, is
termed k-th coordinate of the point (w1, 43, ..., m). The point (0,0, ..., 0)
will be denoted by 0.

By distance ¢(x,y) of two points = (2, 2 ..., z,n) and
Y=(¥1,¥2 ..., Ym) in the space R,, we mean the non-negative number
[(y1—21)2 + (Yo —@2)2 + oo 4 (Y—Zm)2] Distance, thus defined,
evidently fulfills the three conditions of Chap. II, p. 40, and hence
Euclidean spaces may be regarded as metrical spaces. All the defi-
nitions adopted in Chap. II therefore apply in particular to spaces
R,,. In § 2 we supplement them by some definitions more exclusively
restricted to Euclidean spaces.

The space R, is also termed straight line and the space R,,
plane. Accordingly, the setsin £, will often be called linear, and
those in R, plane sets.
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§ 2. Intervals and figures. Suppose given a Tuclidean
space IY,.

The set of the points (X1, T2y ...y L) of R, that fulfill a linear
equation a2+ s+ o+ anoy=b, where b, a, a ..., @, are real
numbers and, of these, the coefficients ai, ay, ..., &m do not all vanish
together, is called hyperplane a1 0,02 Lr+ oo @ Tm=b. For each
fixed k=1, 2, ..., m, the hyperplanes x,=>b are said to be orthogonal
to the axis of xy. The term hyperplane by itself, will be applied ex-
clusively to a hyperplane orthogonal to one of the axes. In I2,,
hyperplanes coincide with points. In R, and I they are respectively
straight lines and planes.

Given two points a=(ai, @z, ..., 4,) and b=(b1, bay ey bu)
such that ap<Cb, for k=1,2,..,m, we term closed interval
[y, by; @2y b2 «..5 @y b} the set of all the points (@, 2y ..vy T) SUCH
that ar<<xp<<by for k=1,2,..,m. The points a and b are called
principal vertices of this interval. If, in the definition of closed in-
‘terval, we replace successively the inequality a,<<r<< b, by the in-
equalities (1°) ap<<w®r< by, (29) ap<wr<br and (3°) Op< 2p< by, W6
obtain the definitions (19) of open interval (@i, bi; @y b2; o5 @my bar),s
(29) of interval half open to the right [ai, bi; @, ba; ..5 Gm b.) and (3°) of
interval half open to the left (ay, bij @, b2; o5 Gy bl If ar=2b, for
at least one index k, all these intervals are said to be degenerate.
In what follows, an interval, by itself, always means either a closed
non-degenerate interval or an empty set, unless another meaning
is obvious from the context.

We call face of the closed interval I=[ui, bi; a2 b2} ..; Gmy bu)
the common part of I and any one of the 2m hyperplanes x,=a;
and @p=by, where k=1,2,...,m. If J is an open or half open in-
terval we call faces of J those of its closure J. We see at once that
the faces of any non-empty interval I are degenerate intervals and
that their sum is the boundary of the interval I.

Tt by—ay=by—ao—..=b,—apn > 0, the interval [a1,bi; @, b25...; A, bl
is termed cube (square in R,). We define similarly open cubes and
half open cubes (half open to the right or to the left).

We call net of closed intervals in R, any system of closed non-
overlapping intervals that together cover the space R,,. Similarly,
by net of half open intervals, we mean a system of intervals half
opan on the same side, no two of which have common points, and
whose sum covers R,.. A sequence of nets {R:) (of closed or of half
open intervals) is regular, if each interval of Rey is contained in
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an interval of RN, and if the characteristic numbers 4(N,) (cf.
Chap. II, p. 40) tend to 0 as k—>co. Given a net of half open inter-
vals, we clearly change it into a net of closed intervals by replacing
the half open intervals by their closures. The same operation changes
any regular sequence of nets of half open intervals into a regular
sequence of nets of closed intervals.

(2.1) Theorem. Given an enumerable system of hyperplanes z,=a;,
where k=1,2,...,m, and j=1,2,.. we can always construct a
reqular sequence {Ny; of mets of cubes (closed or half open) none of
which has a face on the given hyperplanes.

To see this, let b denote a positive number not of the form
ga;/p where p and ¢ are integers and j=1, 2, .... Such a number b
certainly exists, since the set of the numbers of the form ga;/p is
at most enumerable. This being so, for each positive integer k let.
us denote by 9N, the net consisting of all the cubes half open to the
left (pib/2% (p1+1)b/2% pob/2% (py+-1)b/2k5 5 pub[2%, (Pu--1)bj24],
where pi, P2, ..., pn are arbitrary integers. The sequence of nets
{M:} evidently fulfills the required conditions.

Let us observe that, given a regular sequence N} of nets of
half open [closed] intervals, every open set G is expressible as the
sum of an enumerable system of intervals (N;) without common points
[non-overlapping]. To see this, let I, be the set of intervals of N, that
lie in G, and let M., for each k=1, be the set of intervals (N ;)
that lie in @ but not in any of the intervals (IM;). Since 4 (N,) >0
as k-»>oo, the enumerable system of intervals > 9, covers the set G,

k

and the other conditions required are evidently satisfied also.

On account of Theorem 2.1, we derive at once the following
proposition which. will often be useful to us in the course of this
Chapter:

(2.2) Theorem. Given a sequence of hyperplanes (Hy, every open
set G s expressible as the sum of a sequence of half open cubes
without common points [or of closed non-overlapping cubes] whose
faces do not lie on any of the hyperplanes H;.

A set expressible as the sum of a finite number of intervals
will be termed elementary figure, or simply, figure. Every sum of
a finite number of figures is itself a figure, but this is not in general
the case for the common part, or for the difference, of two figures.
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We shall therefore define two operations similar to those of multi-
plication and subtraction of sets, but which differ from the latter
in that, when we perform them on figures, the result is again a figure.
These operations will be denoted by © and © and are defined by
the relations

AG®B=(A-B) and A O B=(A—B)".

The relation A®OB—=0 means that the figures A and B do not
overlap (cf. Chap.Il, p.40).

Given an interval I=[ai, bi; @y, by} ...; @y bim), the number
(b—a1)-(b—a.) .- (bn—au) will be called volume of I (length for
m=1, area for m=2), and denoted by L(I) or by |I|. If I=0, by
L(I)=|I| we mean 0 also. When several spaces R, are considered
simultaneously, we shall, to prevent any ambiguity, denote the
volume of an interval I in R, by Ln(I). We see at once that every
figure I can be subdivided into a finite number of non-overlapping
intervals. The sum of the volumes of these intervals is independent
of the way in which we make this subdivision; it is termed volume
(length, area) of R and denoted, just as in the case of intervals,
by L(R) or by |R!.

§ 8. Funections of an interval. We shall say that I'(I) is a
function of an interval on a tigure R [or in an open set G}, if F(I) is a
tinite real number uniquely defined for each interval I contained
in R [or in G). To simplify the wording, we shall usually suppose
that funetions of an interval are defined in the whole space.

A function of an interval F(I) will be said to be continuous
on a figure R, if to each >0 there corresponds an n>0 such that
|I|<n implies |F(I)|<<e for every interval IC R. A function of
an interval will be said to be continuous in an open set G, if it is
continuous on every figure R G. Finally, functions continuous in
the whole space will simply be said to be continuous.

The reader will have noticed that we use the terms “on” (or
“over’’) and “in”’ in slightly different senses. We may express the
distinction as follows. Suppose that a certain property (P) of func-
tions of a point, of an interval, or of a set has been defined on fig-
ures. We then say that a function has this property in
an open set @, if it has the property on every figure R(_ G.
Further, if a function has the property (P) in the whole space, we
say simply that it has the property (P). Thus, for instance, a funetion
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of a set @(X) is additive (B) (cf. Chap. I, §5 and Chap. II, § 2)
in an open set @, if it is additive (B) on every figure RC G
if ¢ is a measure (B) (cf. Chap. 1, § 9), a function of a point, de-
fined in the whole space, is said to be integrable (B, n), if it is
integrable (B, u) on every figure, and so on.

We shall call oscillation O(F; E) of a function of an interval F
on a set K, the upper bound of the values |F(I)| for intervals I( E.
If D is an arbitrary set and R a figure, we shall denote by or(F; D)
the lower bound of the numbers O(F; R-G), where G is any open
set containing D; the number ox(F;D) will be termed oscillation
of ¥ on R at the set D. Finally we shall say simply oscillation of F
at D, and use the notation o(F; D), for the upper bound of the
numbers or(F; D) where R denotes any figure (or, what amounts
to the same, interval or cube).

In the sequel, D will usually be a hyperplane (a point in R,
a straight line in R,) or else the boundary of a figure. In these cases
we shall say that the function F is continuous, or discontinuous,
at D on R, according as o0x(F;D)=0 or ox(F;D)>0. Similarly,
we shall say that F is continuous, or discontinuous, at D, according
as o(F; D)=0 or o(F;D)>0.

(3.1)  Theorem. In order that a function F of an interval be con-
tinuous on a figure R [or in the whole space], it is necessary and suf-
ficient that or(F;D)=0 [or that o(F;D)=0] for every hyper-
plane D.

Proof. Since the condition is clearly necessary, let us suppose
that the function F is not continuous on K. There is then a number
€>0 and a sequence of intervals (/" —[a{",5{"; ...; al, b®
contained in R and such that for n=1, 2, ..., 'F(I")| >¢,, and that

1"/ —>0. By the second of these conditions, we can extract from

( I("’f)\

the sequence {I"), a subsequence }, in such a manner that

lim (bi-"") —a§"k)):0 for a positive integer i=i;<(m. The sequences
k

(ny,)
{aiol }11:;:1,2,...
and, denoting by D the hyperplane x;=a, we see that every

" . . .
and  (p{"#) o then have a common limit point a
P STh=1,2, .. ’

open set G DD contains an infinity of intervals I, so that
Or(l'; D)= 6> 0,
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§ 4. Funections of an interval that are additive and
of bounded variation. A function of an interval F(I) is said to
be additive on a figure F, [or in an open set G, if F(I;+1;)==
=F(I,)+F(I,) whenever I, I, and I,+I, are intervals contained
in R, [or in G] and I, I, are non-overlapping. A function additive
in the whole space, is for instance the volume L(I)=|I|. Just as
in the case of the function L(I) (cf. §2, p. 59), every additive
function of an interval F(I) on a figure R, [or in an open set (]
can be continued on all figures in R, [or in G] in such a manner
that F(R,+R,)=F(R,)+F (R,) for every pair of figures R, R, and
R, R, that do not overlap. In the sequel, we shall always sup-
pose every additive function of an interval continued in this way
on the figures.

If F is an additive function of an interval on a figure R, we
shall term respectively upper and lower (relative) variations of F
on R, the upper and lower bounds of F(R) for figures R R, We
denote these variations by W(F; R,) and W (F; R,) respectively.
Since every additive function vanishes on the empty set, wo have
W (F; Ry)=0=>W (F;R,). The number W (F; Ry)+ W (F; Ry)|, clearly
non-negative, will be called absolute variation of F on I, and de-
noted by W(F; R,). If W(F; Rg)<<+oo, the function F is said
to be of bounded variation on Ry In accordance with the convention
of § 3, p. 59, an additive function of an interval in the whole space
is of bounded variation, if it is of bounded variation on every figure.

1t is obvious that a function of bounded variation on a figure I,
is equally so on every figure contained in I, and also that the sum,
the difference, and, more generally, any linear combination of two
additive functions of an interval that are of bounded variation on
a figure, is itself of bounded variation on the same figure.

An additive function whose values are of constant sign is
termed monotone. A non-negative monotone additive function is
also termed non-decreasing (for the same reason as in the case of
non-negative additive functions of a set, cf. Chap. I, p. 8). Similarly,
non-positive additive functions are also termed mnon-increasing.
Every monotone additive function F of an interval on a figure R,
is clearly of bounded variation on R,.

1f a function is of bounded variation on a figure R, its relative
variations on R, are evidently finite. Conversely, if for an additive
function ¥ of an interval on a figure R, one or other of the two
relative variations is finite, then both are finite, and therefore the
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absolute variation is finite. For, if W(F; Bj)<+oco say, then as
W(F; R,) is the lower bound of the numbers F(R)=F(R o) —F (B,2R),
where K is any figure contained in R,, we find W(F; Ry =
=F (R, )—W(F Ry)>—oco. Moreover, this last inequality may also be
written in the form F(R, )<VV(F Ry)+W(F;R,). Here we replace ¥
by —F to derive the opposite inequality and then finally the equality
F(R)=W (F; Ro)+W(F; R,). Hence any additive function of bounded
variation is the sum of its two relative variations on any figure for
which it is defined. This decomposition is termed the Jordan de-
composition of an additive funetion of bounded variation, and is
similar to the Jordan decomposition of an additive function of
a set (Chap. I, §6).

If F is an additive funetion of bounded variation of an inter-
val ona figure R, the three monotone functions defined for every
figure RC B, by the relations

W(R)=W(F; B), Wy(R)=W(F;R) and WyR)=W(F;R),

are likewise additive on R, and are termed, respectively, absolute,
upper, and lower variations of F. The first two are non-negative
and the third non-positive. It therefore follows from the Jordan
decomposition that every additive function of bounded variation
on a figure is, on this figure, the difference of two non-decreasing
functions. The converse is obvious.

We shall now prove some elementary theorems concerning
continuity properties of functions of bounded variation.

(4.1)  Theorem. If F is an additive function of an interval,
of bounded variation on a figure Ry, (i) the series ¥ oz (F;D,) con-

verges for every sequence (D} of hyperplanes distinct from ome amother,
and (ii) there is at most an enwmerable infinity of hyperplanes D such
that OR(,(F§ D) > 0.

Proof. In the proof of (i) we may clearly suppose that the
hyperplanes D, are orthogonal to the same axis. Consider now the
first k of these D,. We can associate with them, % non-overlapping
intervals I, Io, ..., I;, contained in R and such that og,(F; D,)<<

<|F (L) +1/k? for n=1,2,...,k. Hence Vo,; (F; D)< [F w1/
<W(F- Ry)+1/k, and, since %k is an arbltmry poutlve integer,
y ORO(F D) S W(F; Ry) <+ oo,

n::
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To establish (i), suppose that there is a non-enumerable in-
finity of hyperplanes D such that - o (#;D)>0. There would then
be a positive number &, such that og(F;D)>¢ for an infinity,
(which would even be non-enumerable) of hyperplanes. But this
clearly contradiets part (i) which has just been proved.

We obtain at once from Theorem 4.1 the following

(4.2) Theorem. For each additive function of an interval of
bounded variation, there is at most an enumerable infinity of hyper-
planes of discontinuity.

(4.3)  Theorem. If F is an additive function of an interval of
bounded variation on a figure R, and we write W(I)=W(F; I),
the relations og (F; D)=0 and ox(W; D)=0 are equivalent for
every hyperplane D.

Proof. Suppose, if possible, that
(4.4) o (F; D)=0 and (4.5) or(W; D)>¢

for a hyperplane D and a number &>0. We shall show that it is
then possible to define a sequence of figures {Rnjn-1,2, .., NON-0ver-
lapping, contained in K, and such that

(4.6) R, D=0 and  (4.7) |F(R.)|> ¢/2.

To see this, suppose defined k non-overlapping figures Ry, Ky, ..., B
contained in R, and let (4.6) and (4.7) hold for n=1,2, .., k.
On account of (4.5) there is then an interval I C R, such that I-R,=0
for n=1, 2, ..., k, and such that W(F; I)=W (I)>¢. Hence, there
exists a figure R I such that |F(R)|>W(F; I)/2> ¢/2. Moreover
since (4.4) asserts that F is continuous on R, at D, we may sup-
pose that R-D=0. But if we now choose Ry =R, we see that
the figure R, does not overlap any of the figures F, for
1<n<k, and that (4.6) and (4.7) continue to hold for n=Fk+ 1.

Having obtained our sequence {R,}, we conclude from (4.7)
that W (F; Ry) = Y |F(R,)|=o0, and this contradicts our hypotheses.

The conditions (411.4) and (4.5) are thus incompatible, i. e. (4.4)
implies 0Og (W;D)=0. And since the converse is obvious, thig
completes the proof.

From Theorems 4.3 and 3.1, we obtain at once the following

(4.8)  Theorem. In order that an additive function of bounded
variation on a figure R, be continuous on Ry, it is necessary and suf-
ficient that its three variations be so.
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§ 5. Lebesgue-Stieltjes integral. Lebesgue integral
and measure. We need hardly point out the analogy between
additive functions of bounded variation of an interval and additive
functions of sets. This analogy will be made clearer and deeper in
the present §, by associating a function U* of a set with each addi-
tive function U of bounded variation of an interval. In order to
simplify the wording, we shall suppose that the functions of an
interval are defined in the whole space.

Suppose given in the first place, 4 non-negative additive
function U of an interval; we then denote for any set E, by U*(E)
the lower bound of the sums > U([;), where {I,} is an arbitrary

k
sequence of intervals such that E( Y I;. For an arbitrary additive
k

function U of bounded variation, with the upper and lower varia-
tions W, and W, we denote by Wi and (—W,)* the functions
of a set that correspond to the non-negative functions W, and —W,,
and we write, by definition, U*=W7{-—(—W,)*. The function U*
is thus defined for all sets and is finite for bounded sets.

When U is non-negative, U* is an outer measure in the sense
of Carathéodory, i. e. fulfills the three conditions (C,), (C,) and (C,)
of Chap. II, §4. Condition (C,) is the only one requiring proof, the
other two are obvious. Let therefore A and B be any two sets whose
distance does not vanish, and let £ be a positive number. There
is then a sequence {I,} of intervals such that A+4-B(C Y I; and

MSU(I,)<<U*(A-+B)4-¢e. We may clearly suppose that the intervals

el
n

of the sequence have diameters less than ¢ (4, B), i. e. that none
of them contains both points of A and points of B. We then
have U*A)+UXB)< D U(I,)<U*(A+B)+e This gives the in-

equality U*(A)4+U*(B)<LU*(A+B) and establishes condition (Cy).

The function U*, determined by a non-negative function of
an interval, itself determines, since it is an outer Carathéodory
measure (cf. Chap. 11, § 4, p. 46), the class Ly« of the sets measurable
with respect to U* and the process of integration (U*). To simplify
the notation, we shall omit the asterisk and write simply £y for
L+, integral (U) for integral (U*), measure (U) of a set in-
stead of measure (U¥), /.de instead of /‘de*, and so on.

E I5
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This slight change of notation cannot cause any confusion, since
the measure U* is uniquely determined by the function of an in-
terval U. '

When U is a general additive function of an interval, of bounded
variation, we shall understand by ¥y the common part of the classes
Lw, and £_w, where W, and W, denote respectively the upper and
lower variations of U. A function of a point f(x) will be termed
integrable (U) on a set K, if f(x) is integrable (W,) and (—W,) si-
multaneously; by its integral (U) over E we shall mean the number

[faw,— [fa(—W,), and we write it [fdU as in the case of

a non-negative function U. This integration with respect to an
additive function of bounded variation of an interval
is called Lebesgue-Stieltjes integration. In the case of the integra-
b N
tion over an interval I=[a, b] in I;,, we frequently write / fau
o

for _/.fd U.
I

When the funetion U is continuous, every indefinite integral (U)
vanishes, together with the function U*, on the boundary of any
figure. Consequently, an indefinite integral with respect to &
continuous function U of bounded variation of an interval is
additive not only as function of a set (¥y) but also as function
of an interval.

The most important case is that in which the given funection
of an interval IV is the special function L (cf. § 2, p. 59) that denotes
the volume of an interval. The outer measure (L) is also termed
outer Lebesque measure, and the integral (L), Lebesgue integral,
while functions integrable (L) are often called, as originally, by
Lebesgue, summable. The class of sets %1 will be denoted simply
by &. The outer measure (L) of an arbitrary set F is written meas.F,
and meas F without the suffix when E is measurable (£). We shall
also denote this outer measure by |E| or by L(E) (or sometimes
by L,(E) in R,), thus extending to arbitrary sets the notation
adopted for all figures R, since for the latter, as we shall see
(cf. Th. 6.2), the measure (L) coincides with the values I.(R)=|R]|.
Finally, owing to the special part played by Lebesgue measure
in the theory of integration and derivation, the terms ‘‘measure
of a set”, “measurable set”, “measurable function”, and
S. Saks. Theory of the Integral. 5
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so on, will, in the sequel, be understood in the Lebesgue sense,
whenever another sense has not been explicitly assigned to them.
We also modify slightly the integral notation for a Lebesgue

integral; and instead of /‘f(:v)dL(w) we write f f(x)dx, or else

/‘/.../‘f(ml, L2y +ory Tm) dxy doy ... d2,,, When we wish to indicate the

number of dimensions of the space I, under consideration. This
brings us back to the classical notation.

A special part, similar to that of Lebesgue measure in the
theory of the integral, is played by Borel sets in the theory of ad-
ditive classes of sets. In the first place, it follows from Theorem 7.4,
Chap. II, that every class ¥y, where U is an additive function of
bounded variation of an interval, contains all the sets (B). In the
sequel, we shall agree that additive funetions of a set wil
always mean functions additive (B), unless there is explicit reference
to another additive class of sets. Similarly, additive functions of
2 set that are absolutely continuous (B, Li) or singular (B, I.), will
simply be called absolutely continuous or singular. In point of fact,
Theorem 6.6 below, which asserts that every set measurable (£)
is the sum of a set (B) and a set of zero measure (1), will show that
every additive function of a set, absolutely continuous (B, L), can
be extended in a unique manner to all sets (8) so as to remain ab-
solutely continuous (2, L).

The special role of the measure (I.) and of the sets (B) showed itself already
during the growth of the theory. L.ebesgue measure was the starting point for
further extensions of the notions of measure and integral, whereas the Borel
sets were the origin of general theories of additive classes and functions. The
sets (B) were introduced, with measure (L) defined for them, by E. Borel [I,
p. 46—50] in 1898. But it was not until some years later that H. Lebesgue [1; I],
by simplifying and extending the definition of measure (L) to all sets (€), made
clear the importance of this measure for the theory of integration and especially
for that of derivation of functions. Vide E. Borel [1] and H. Lebesgue [6].

We have already seen in § 1 of this book, how, by an apparently very slight
modification of the classical definition of Riemann, we obtain the Lebesgue in-
tegral. A similar remark may be made with regard to the relationship of Le-
besgue measure to the earlier measure of Peano-Jordan. The outer measure

of Peano-Jordan for a bounded set E is the lower bound of the numbers > n|
n
where {In} is any finite system of intervals covering . Lebesgue’s happy idea

was to replace in this definition, the finite systems of intervals by enumer-
able ones.
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We have given in the text a more general form to Lebesgue’s definition,
relative to an arbitrary non-negative function of an interval. This relativizing
of Lebesgue measure is due to J. Radon [1] and to Ch. J. de la Vallée-Poussin
[1; I]. The parallel extension of the Lebesgue integral is also due to J. Radon.
In the text we have termed it Lebesgue-Stieltjes integral; it is sometimes also
termed Lebesgue-Radon integral or Radon integral. For a systematic
exposition of the properties of this integral, vide H. Lebesgue [II, Chap. XI].
. A particularly interesting generalization of the Lebesgue integral, of the Stieltjes
type, has been given by N. Bary and D. Menchoff {1]; it differs considerably
from the other generalizations of this type. Finally, for an account of the
Riemann-Stieltjes integral (which we shall not discuss in this volume) wvide
W. H. Young [2], 8. Pollard {1], R. C. Young [1], M. Fréchet [5] and
G. Fichtenholz [2].

It was again J. Radon [I, p. 1] who pointed out the importance of the
Lebesgue-Stieltjes integral for certain classical parts of Analysis, particularly
for potential theory. The modern progress of this theory, which is bound up with
the theory of subharmonic functions, has shown up still further the fruitfulness
of the Lebesgue-Stieltjes integral in this branch of Analysis (cf. the memoirs
of F. Riesz [4] and G. C. Evans [1]).

§ 6. Measure defined by a non-negative additive
function of an interval. In this §, U will denote a fixed non-
negative additive function of an interval. In the preceding § we
made correspond to any such a function U, an outer Carathéo-
dory measure U*. Besides the properties established in Chap. 1L
for all Carathéodory measures, the function of a set U* possesses a
number of elementary properties of a more special kind which we
shall investigate in this §.

(6.1) Lemma. If D denotes a hyperplane or a degenerate interval,
the relation o(U; D)=0 implies U*(D)=0.

Proof. Since every hyperplane is the sum of a sequence of
degenerate intervals (cf. § 2, p. 57), it is enough to prove the lemma
in the case in which D is a degenerate interval [ai, b; a2, b2; ...} Gmy b

Let R be a cube containing D in its interior, G an arbitrary
open set such that DG, and let

D.=[a—2¢, bi-+¢&; ar—e, bat&; 0y Ap—¢, but£],

where & is any positive number, sufficiently small to ensure
that D, R-G. Since D, is then an ordinary closed interval con-
taining D in its interior, we find UX(D)<<U(D.)<<O(U; R-G),
whence U*(D)<<or(U; D)=0.

5*
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(6.2) Theorem, For every figure R we have

(6.3) UNR°) S U(R) < U¥(R),

and, if the oscillation of U at the boundary of R vanishes,
(6.4) U*(R°)=U(R)=U*R).

In particular therefore, if U is a continuous function, the equal-
ity (6.4) holds for every figure R.

Proof. In virtue of Theorems 2.2 and 4.2 the set R° is ex-
pressible as the sum of a sequence of non-overlapping cubes {I,)
such that the oscillation of U vanishes at all faces of all the I,.

Hence, by the preceding lemma U*(R°)=>U*(I3), and since
k
UR)= Y U= UXI;) for each positive integer n, we get
h=1 k=1

U*(R°) << U(R).
To establish that U(R)<{U*(R), it is enough to show that
U(R)<< D U(I,) for every sequence of intervals {I,} such that R( XI5,
k k

Now, if {I,} is such a sequence, we have, by the well-known coverin
y 1L iy q y 3 D

N
theorem of Borel-Lebesgue, R 2'I; for some sufficiently large
k=1

N N
value of N. Hence U(R)<<) U(ROIN<< Y U(ILy).
k—1 k—1

Finally, denoting by B the boundary of R, let us suppose that
o(U; B)=0. It then follows from Lemma 6.1 that U*(B)=0, so
that U*(R)=U*(R°), and the equality (6.4) follows at once from (6.3).

(6.5) Theorem. Given an arbitrary set E and any positive &, there
is (1) an open set G such that EC G and U*G)<CU*(E)-te, (ii) o set
He¢®s such that EC H and UXH)=U*(E).

Proof. re (i). There exists for each >0, a sequence of inter-
vals {I,} such that EC D'I; and that >'U(I.)<SU*(E)4-¢. Hence,

writing G='I;, we find, on account of condition (C,) of Carathéodory
(Chap. II, p. 43) and Theorem 6.2, that U*(@)< > U*I)<<Y UI,)<<
< UM(E)+e.



[§6] Measure defined by a function of an interval. 69

re (ii). Let us make correspond to FE, for each positive integer n,
an open set ¢, containing E and such that U*(G,)<<U*(E)+1/n;
this is always possible by (i). The set H=][[@G, clearly fulfills our

requirements and this completes the proof.

Every set (®;) is of course measurable (). Hence it follows
at once from Theorem 6.5 that every set is regular (cf. Chap. I1, § 6)
with respect to the outer measure U*, and therefore that this
measure is itself regular.

(6.6) Theorem. Hach of the following conditions 1is mecessary
and sufficient for a set E to be measurable (2y):

(i) for every &>0 there is an open set G DE such thai
UHG—E)<¢g

(ii) there 1s a set (®s) containing E and differing from E at most
by a set of measure (U) zero;

(iii) for every e€>0 there is a closed set F(CFE such that
UH(E—F)<e;

(iv) there is a set (§s) contained in E and differing from E
at most by a set of measure (U) zero.

Proof. We shall first prove all these conditions necessary.
Let E be a set measurable (£y) and ¢ a positive number. We begin
by representing E as the sum of a sequence {E,},—1,»,... of sets measur-
able (£y) of finite measure; we may write for instance, E,=H-S(0;n).
This being so, we associate with each set E,, in accordance with The-
orem 6.5, an open set G, )E, such that U*G,)<CU*E,)+¢/2m
Hence, the sets E, being measurable (%), we have U*(G,—E,)<¢&/2"
for every n, and if we write G=)'@,, wefind EC G and U*G—U)<

< D U*G,—E,) <<e and this proves condition (i) necessary.

To prove the necessity of condition (ii), we attach to the given
set K measurable (%) a sequence (@Q,) of open sets such that ECQ,
and U*Q.—E)<1/n for each n. Writing H—[[Q,, we see that
He®,, ECH and U*H—E)=0.

Finally, we observe that for any set A, the relation ADCE
implies CACFE and E—CA=A—CH; further, if 4 is a set (®)
or (®,), the set CA is a set (§) or (Fs) respectively. Hence every
set F measurable (£y) fulfills conditions (iii) and (iv), since, by the
results just proved, its complement CE fulfills conditions (i) and (ii).
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The sufficiency of conditions (ii) and (iv) is evident, since
sets of measure (U) zero, and sets (®;) or (Fo), are always measur-
able (£v).

To establish the sufficiency of conditions (i) and (iii), we
need only observe that they imply respectively conditions (ii)
and (iv). Thus, for instance, if (iii) holds, there is for each positive
integer n a closed set F,CE such that U *E—F,)<<1/n. The seot
P=)'F, is therefore a set (. contained in K and such that

U*(E—P)=0.

From Theorem 6.6 it follows in particular that the general
form of @ set measurable (8y) is B+N, where B is a set measurable
(B) and N a set of measure (U) zero. In other words, £y is the
smallest additive class containing the Borel sets and the sets of
measure (U) zero. It follows that Ly D2 whenever the function of
an interval U is absolutely continuous (vide §12).

(6.7)  Theorem. For any set E there is a set He®; containing E
and such that

(6.8) U*H-X)=U*E-X) for every set X measurable (Lp).

Proof. It is enough to show that there is a set H D F measurable
(Yy) for which (6.8) holds. For, by Theorem 6.6 we can always en-
close such a set H in a set (®;) differing from it by a set of measure
(U) zero.

Let us represent E as limit of an ascending sequence (B,
of bounded sets, which are therefore of finite outer measure (U);
and let us associate, as we may by Theorem 6.5, with each E, a set
H,e®s such that E,C H, and U*(H,)=U*(E,). Then, for every
set X measurable (2r),

U*(H, X)=U*(H,) —U*(H - CX)<UME(—UE,CX) UM Ey X);

from which, writing H=Iliminf H,, we deduce by means of The-

n

orem 9.1 of Chap. I, that
U*H-X) <liminf UXH,- X) <<lim UYE.-X) << U*E-X),

n n

and this implies (6.8), since H = liminf H, D lim E,=E.

n

In the theorems of this § we have supposed the function U of
an interval to be non-negative. But, by slight changes in the wording,
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the theorems can easily be extended to arbitrary functions of bounded
variation. As an example we mention the following theorem which
corresponds to Theorem 6.5:

(6.9) Theorem. If F is an additive function of bounded variation
of an interval, then for any bounded set E and any ¢>0 there is an
open set GDE such that |[F*(X)—F*(E)<<e for every bounded set X
satisfying the condition E(C X(G.

Proof. Denoting by W, and W, two functions of an interval
that are respectively the upper and the lower variation of F, we
can, by Theorem 6.5, enclose E in each of two open sets &, and G,
such that WHG,) <WHE)+e¢ and W3(G,) =W3(E)—e¢. Therefore,
writing G=G,-G, we have E( G; and for any bounded set X
such that BC X(C G, we find 0SKW{(X)—W{(E)<<e and
0<SWHE)—W3(X)<e, whence by subtraction |F*(X)—F*(E) <e.

Let us still prove a theorem which allows us to regard all non-
negative additive functions of a set in IZ, as determined by non-
negative additive functions of an interval. We recall that, according
to the conventions of § 3, p. 59 and § 5, p. 66, we always mean by
additive functions of a set, functions of a set that are additive (B)
on every figure.

(6.10) Theorem. Given any non-negative additive function D of
a set, there is always a non-negative additive function F of an interval
such that O(X)=F*X) for every bounded set X measurable (B).

Proof. Let us denote for each interval I==[ay, bi; ...; Gy bml,
by 1 the interval (ai, b; ...; @m, bm] half open to the left, and let
us define the non-negative additive function of an interval by writing
F(1 ):’P(T) for every interval I.

This being so, we observe that any bounded open set G can
be expressed (cf. Theorems 2.2 and 4.2) as the sum of a sequence
{I.) of non-overlapping intervals at whose faces the oscillation of

F vanishes; and therefore by Theorem 6.2, &(G)=Y O(I,)=XF(I,)=
= ZF*(TH):_F*(G). Thus the equation @(X)=F*(X) holds whenever X

is ; bounded open set, and therefore also whenever X is a bounded
set (®s), since the latter is expressible as the limit of a descending
sequence of bounded open sets. It follows further that DX)=
=F*X)=0 for every bounded set X of measure (F) zero, since,
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by Theorem 6.6, such a set X can be enclosed in a bounded set (®s)
of measure (#) zero. This completes the proof, since every bounded
set (‘B) is, by Theorem 6.6, the difference of a bounded set (®;) and
of a set of measure (F) zero.

The proof of Theorem 6.10 could also be attached to the following general
theorem concerning functions additive (B) defined on any metrical space M:

if two such functions coincide for every open set, they are identical for all sets (B).
This theorem is easily proved.

§ 7. Theorems of Lusin and Vitali-Carathéodory. We
shall establish in this § two theorems concerning the approximation
to measurable funetions by econtinuous functions and by semi-
continuous functions. As in the preceding §, U will stand for a non-
negative additive function of an interval, fixed in any manner for
the space I2,.

(7.1) Lusin’s Theorem. In order that a function f(x), finite
on a set B, be measurable (%y) on E, it is necessary and sufficient that
for every £ >0, there exists a closed set F(CE such that U*(E—F)<l¢, and
on which f(x) is continuous.

Proof. To show the condition necessary, we suppose f(x)
finite and measurable (2;) on E, and we deal first with two partic-
ular cases:

(i) f(x) is a simple function on K. The set E is, in this
case, the sum of a finite sequence K, K, ..., B, of sets measurable
(£v) no two of which have common points, such that f(x) is con-
stant on each of these sets. By Theorem 6.6 there exists, for each
set E;, a closed set F;CE; such that U*(E,—F;)<e/n. Writing

F=>F;, we then have F(CFE and U*(E—F)<e, and moreover
i=1
the function f(z) is clearly continuous on F.

(ii) £ is a set of finite measure (U). In this case, by
Theorem 7.4, Chap. I, (applied separately to the non-negative and
to the non-positive parts of f(x)), there is a sequence {f,(®)\n=1,2. ..
of simple funetions, finite and measurable (£y), that converges on E
to f(w). By Egoroff’s Theorem (Chap. I, Th. 9.6), this sequence
converges uniformly on a set P F, measurable (2y) and such that
U*(E—P)<¢/2. This set P may further be supposed to be closed,
on account of Theorem 6.6. Finally, by (i) we can attach to each
function f,(x), a closed set P, F such that UYE—P,)<g/2ntl,
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and on which f.,(z) is continuous. Hence, writing F=P-[|P,,
we get U*(E—F)<CU*(E—P)+ 2_, U*(E—P,)< e; and moreover, all

the f.(x), and therefore also the functlon f(x) = lim f,(x), are con-

tinuous on F, a set which is evidently closed.

We now come to the general case where F is any set measur-
able (8y). Let E,=FE-(8,~—~8,—1), where 8,=0 and §,=S(0;n)
for n>=1. By (ii), there exists, for each nz>1, a closed set @, ¥,
such that U*( —@n)<e/2", and on which f(x) is continuous.

Writing F= )Q,,, the set F is closed, we have U*H—F)<C

n-=1

< Y U*E,—Q,) <& and f(z) is continuous on F.

The proof of the necessity of the condition is thus complete.
Let us now suppose, conversely, that the condition is satisfied.
The set F is then expressible as the sum of a set N of measure (U)
zero and of a sequence {(F,} of closed sets on each of which f(x) is
continuous. The function f is thus measurable (2;) on N and on
each of the sets I, (ef. Chap. 11, Th. 7.6), and therefore on the whole
set L.

For the various proofs of Lusin’s theorem, vide N. Lusin [1], W. Sier-
pinski [6] and L. W. Cohen [1].

(7.2) Lemma. Given a function f(x), measurable (2y) and non-
negative in the space R, there exists, for each €>0, a lower semi-
continuous function h(x) such that

(7.3) h(xz) Z= f(x) at each point x,
and
(7.4) [t )14 (2) <

1{"1

(where, in accordance with the convention of Chap. I, p. 6, the
difference h(r)—f(x) is to be understood to vanish at any point z
for which A(x)=f(x)=-+o0).

Proof. (i) First suppose that f(x) is bounded and vanishes
outside a bounded set K measurable (2y). Let n=¢/[1+ U*(E)].
We write Ey=E[xe E; (k—1)y<<f(x)<ky] for k=1,2,.. and we

associate with each set F, an open set Gy ) E, such that
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(7.5) UXGr— E) < 1/k-2%.
Further, denoting by ex(z) the characteristic function of G, we
write h(x qu -cx{x). Since each funetion cy(x) is evidently lower

semi-contlnuous, the funection h(x) is so too. We also observe that
h(x) fulfills condition (7 .3). On the other hand

[ Wz)aU(a an/ck 2)dU(x anU*Gk
1{ k=1

II

= B+ S UHED +2kn U*(Gi—E),
k=1

k=1 k=1

whence, by (7.5), we obtain

/h )aU(x </f )AU(z)+ - UHE)+1 < [f@)dUla)+e.
R

From this, remembering that f(x) is integrable on I,, (7.4) follows
at once.

(i) We now pass to the general case and represent firstly f(x)

in the form f(x)=) f.(x), where the f,(z) are bounded non-negative
n=1

functions measurable (£y), each of which vanishes outside a bounded
set. We may do this, for instance, by writing f,(x)= s,(x)—s,—_i(x) where

f(®) for ¢(0,2)<<n and f(r)<<mn,
sp(@) =1 m  for o(0,x)<<n and f(x)>mn, n=0,1,2, ...
0 for o(0,2)=mn

By what has been proved in (i), there exists for each function f,,(m)

a lower semi-continuous function ho(x) such that h,(x)Z=f.(z

every point x, and that / [Bn(2) —ful2)] AU (x) < g/2". The functlon
lilﬂ

Z ) is then evidently lower semi-continuous and fulfills con-

n=1

dition (7.3). Finally /'[h(m)_f(w)]dU(x)gz' [ Thal)—fal)] AU (@)<
jim n=1 1(1"111
and this completes the proof.
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(1.6) Theorem of Vitali-Carathéodory. Given a function f(x)
measurable (%y) in the spoce Rm, there exist two monotone sequences
of functions {l.(x)} and {u,(x)} for which the following conditions are
satisfied:

(i) the functions l, are lower semi-continuous and the functions
U, are upper Semi-conlinuous,

(ii) each of the fumctions 1, is bounded below and each of the
functions wu, 18 bounded above,

(iii) the sequence {l,) is mon-increasing and the sequence {u,) 18
non- decreasmg,

(iv) lao(®) =F(x) = un(x) for every x,

(v) liml,(x ):f( )_hm un(x) almost everywhere (U),

(vi) on every set B O;L which f(x) is integrable (U), so are the
functions U,(x) and u.(x) and we have

lim [ 1 (x) dU() )=lim [ un(x) AU (w /f ydU(z

"E 7
Proof. By expressing the function f(x) as the sum of its
non-negative and non-positive parts ;(w) and f(x) (Chap.I, §7),
we may suppose that f(x) is of constant sigfi, say non-negative.
By the preceding lemma, we can associate with f(x) a sequence

of lower semi-continuous functions {&,(x)},—1.s,.. such that ha(x)Zf(r)
for every x and

(7.7) tim [ [hy () — f (@)] AU (
llR

Writing I(z) = min [hy(®), ha(®), ..., k()] Wwe therefore obtain a non-
increasing sequence of lower semi-continuous functions a(2))
that evidently fulfills conditions (i), (ii), (ili) and (iv); moreover,
it follows from (7.7) that lim [ [L(@)—f(x)]dU(2)=0, and hence
n Rnl

that the functions I,(x) fulfill also conditions (v) and (vi).

In order now to define the sequence {u,(x)}, we attach to the
function 1/f(2) a non-increasing sequence of lower semi-continuous
functions {g,(x)} such that hm gn(x)=1/f(®) almost everywhere (U).

Such a sequence certainly ex1sts by what has just been proved.
The functions 1/g,(x) then form a non-decreasing sequence of upper
semi-continuous funetions, that converges almost everywhere (U)
to f(x). If we now write u,(z)=1/g.(x) when 1/g.(z)<n, and



CHAPTER III. Functions of bounded variation.

-1
[ax]

Uq(x)=n when 1/g,(x)>n, we obtain a sequence {u,(x)} of bounded

functions with the same properties, which therefore satisfies con-

ditions (i~—v). Finally, since the functions w,(x) are non-negative,

we can apply Lebesgue’s Theorem (Chap. I, Th. 12.6) to derive

from (iii) and (v) that lim [w(@)dU(x)=[f(@)dU(x) on every
n i i

set F measurable (¥,), and this implies (vi).

Conditions (i) and (v) of Theorem 7.6 imply that every function measur-
able (8p) is almost everywhere (U) the limit of a convergent sequence (with
finite or infinite limit) of semi-continuous funetions, and thus coincides almost
everywhere (U) with a function of the second class of Baire. This result, due
to G. Vitali [2] (cf. also W. Sierpinski [6]) was completed by C. Carathéodory
[I, p. 406], who established for every measurable function f(x) the existence
of two sequences of functions fulfilling conditions (i}—(v). Condition (vi), which
includes, as we shall see later, the theorem of de la Vallée Poussin and Perron
on the existence, for summable functions, of majorant and minorant
functions, has been added here because its proof is naturally related to those
of conditions (i—v).

There is an obvious analogy between the property of measurable functions
expressed by the theorem of Vitali-Carathéodory, and the properties of meas-
urable sets stated in conditions (i) and (iii) of Theorem 6.6. By taking into ac-
count the geometrical definition of the integral (c¢f. below §10), we might even
base the proof of Theorem 7.6 directly on Theoremn 6.6 (vide the first ed. of this
book, pp. 88—91).

§ 8. Theorem of Fubini. Given two Euclidean spaces R,
and Iy, if x=(ai, @, ..., a,) and y=(a,i1, Gpi2, ..., Ap1q) are two
points situated respectively in these two spaces, we shall denote
by («, y) the point (ay, ay, ..., apr,) in the space I, ,. If X and Y
are two sets situated respectively in the spaces I, and I?,, we shall
denote by X X Y the set of all points (%, y) in I,y, such that xeX
and yeY. In particular, if X and Y are two intervals — closed, open,
or half open on the same side — X' X Y also is an interval in I,
which is closed, open, or half open on the same side as X and Y.
Every interval I=[ay, by; ...; @ptq, bprq] can evidently be expressed —
and in a unique manner — in the form I,xI, where I, and I,
are intervals in I, and I?, respectively; we mercly have to write
Li=[ay, bi; o5 ap, bp] and  Io=[api1, bpi1; -5 Apiqy bpigl:

Given two additive functions of an interval, U and V, in the
spaces It, and IR, respectively, we determine a function of an inter-
val T in By, by writing T(I,x1,)=U(l)-V(I,) for each pair of
intervals I, C 2, and I, IR, The function 7' thus defined, clearly
additive when U and V are, will be denoted by UV. In particular,
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we see easily that L, ,=L,L,, where L,, L, and L,., denote
the volume in the spaces I, I, and IX,,, respectively (c¢f. § 2, p. 59).

It is known since Cauchy that, if I, and I, are respectively
two intervals in the spaces I?, and I?,, integration of any continuous
function over the interval I xI,(CI,;, may be reduced to two
successive integrations over the intervals I, and I,. By repeating
the process, any integral of a4 continuous function on an m-dimensional
interval may be reduced to m successive integrations on linear
intervals in I2,. This classical theorem was extended by H. Lebes-
gue [1] to functions measurable (2) that are bounded, and then by
G.Fubini[1] (ef. also L. Tonelli[2]) to all functions integrable (L},
whether bounded or not. We shall state this result in the follow-
ing form:

(8.1)  Fubini’s Theorem. Suppose given two non-negative ad-
ditive functions U and V of an interval in the spaces R, and I,
respectively, and let f(x,y) be a non-negative function measurable (Luv)
" 1')174'0' Then

(i) f(x,y) s @ function of ®, measurable (8y) in I, for every
yeld,, except at most a set of measure (V) zero,

(i) f(x, y) is a function of y, measurable (8v) in I, for every
xve R, except at most a set of measure (U) zero,

(i) [f,y) dUV(z,9) = [ | 1@, y) dU@) |aV(y) =
R, , Ry Ry

=/ Uf v, y) AV (y) | AU ().

1:
q

Proof. Let us write for short, 7=UV. By symmetry, it is
enough to show that every non-negative function f(x, y) measurable
(&) in R, fulfills condition (i) and also the relation

(8.2) [fa,y) dlw, )= | [ iz, y)dU)] dV(y).

By, Ry Iip

For brevity, we shall say that a function f(x,y) in IZ,., has the
property (F), if it is non-negative and measurable (£7) in 2, ,, and
if it fulfills condition (i;) and the relation (8.2). For the sake of
clearness, the reasoning that follows is divided into a several
auxiliary propositions.
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(8.3) The sum of two functions with the property (F), and the
limit of any non-decreasing sequence of such functions, have the prop-
erty (F). Also, the difference of two functions with the property (F),
has the property (I'), provided that it is non-negative and that one at
least of the given functions is finite and integrable (T) on the space
13,,_;_,,.

For the sum, and for the difference, of two functions, the
statement is obvious. Let therefore {(h,(z,¥)} be a non-decreasing
sequence of functions in I, , having the property (F), and let

h(x, y) = lm h,(z, y). The definite integrals / hn(x, y)dU(z) exist,
" R

and constitute a non-decreasing sequence, for every ye I2, except

at most those of a set of measure (V) zero. Consequently, by

Lebesgue’s theorem on integration of monotone sequences of functions:

/hx yydT(x,y) hm/h z, ¥y dT(z, y) hm/ l /h,,w y) AU (x )]dV(y):

k Yo-tg RP+¢I

= [ [tim [ Bz, y) dU(2) | aV(y) = [ [/ (J?,y ) dU () | av (y),
R, "R, kR,
and this establishes the property (F) for the function h(z, y).

(8.4) The characteristic function of any set E(C R, ., measurable (Lr)
has the property (F).

We shall establish this, first for very special sets E and then,
by successive stages, for general measurable sets. Suppose in the
first place that

19 E=A xB, where A and B are intervals half open
to the left, situated respectively in K, and L2, and such
that the oscillations of U and of V vanish at the bound-
aries of 4 and B respectively (cf. § 3, p. 60). The oscillation
of the function T=UV therefore vanishes at the boundary of the
interval E=A4 x B, and we find by Theorem 6.2

(8.5) THE)=T(E)=U(A)-V(B)=U*A)-V*B).

On the other hand, for every yel?, the funection cg(z,y)
is in x the characteristic function either of the half open inter-
val 4, or of the empty set, according as ye¢B or ye R,—B. This
function is therefore measurable (2y), and indeed measurable (B),
for every yel?,, and, by (8.5)
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[ex(@,y) dT(@, y)=THE)=U*A)-V*(B)= [ | [ estw, ) Q@) |V (y)-

Rp+q I {q k P

20 F is an open set. We shall begin by showing that, in
this case, K is the sum of a sequence of half open intervals . no
two of which have common points, these intervals I, being of the
form A,xB, where (a) 4, and B, are intervals, half open to the
left, situated in R, and I, respectively, and (b) the oscillations of U
and V vanish at the boundaries of 4, and B, respectively.

To see this, let {u“*)}. be a regular sequence of nets in £, formed
of intervals half open to the left and such that the oscillation of U
vanishes at the boundary of each of these intervals; by Theorems
4.2 and 2.1, such a sequence certainly exists. And let {SB(k)} he
a sequence of nets similarly constructed for the space I, and for

the function V. We denote, for each k, by g™ the system of all

half open intervals in R, , which are of the form A X B where Aeu®

and BeBY. The systems of intervals S(k), thus defined, form a reg-
ular sequence of nets of half open intervals in the space I2,,. The
set E being open, we can therefore express it (cf. § 2, p. 58) as the
sum of a sequence of half open intervals {I,} taken from the nets
¢® and without points in common to any two. We see at once that
each interval I, of this sequence is of the form 4,xB, where A,
and B, satisfy conditions (a) and (b).

This being so, we have cg(x, y)=2 ¢, (,y), where on account

of the result established for the case 1°, each of the characteristic
functions ¢, (x, y) has the property (¥). Therefore, to verify that

the function cy(x,y) also has this property, we need only apply (8.3).

3% F is a set (®;). First suppose that, besides, the set E is
bounded. E is then the limit of a descending sequence of bounded
open sets {G,}. The functions cg (%, y)—ces,(x,y) constitute a non-
decreasing sequence of non-negative functions which have, by 2°
and (8.3), the property (). Consequently, again on account of (8.3),
the limit function of this sequence h(x,¥y)=—cg (©,y)—cg(®,y) itself
has the property (F) and the same is therefore true of the function
cg(®, y):CGl(xy y)—h(w, Y).

Now if B is an arbitrary set (®s), we can express it as the limit
of an ascending sequence {H,} of bounded sets (®s;). Py what has
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just been proved, the characteristic functions of the sets H, have the
property (F) and, consequently, the function cg(x,y)=limey (x,y)
itself has the property (F). "

40 F is a set of measure (7) zero. There is then, by
Theorem 6.5, a set He®; containing F and of measure (7) zero.
By the result established for sets (®;), the function cg(z,y) has

the property (F), and therefore / l/ cn (@, ¥) dU(w)] av(y) =
‘ l{q l{p
::/cH(x, y)dT(z,y)=T"(H)=0. Hence, for every ye¢R,, except at
Bpiq
most a set ¥ of measure (V) zero, /ch'(w,y)dU(w):O, i. e. ey(x,y),
lfp

as function of #, vanishes almost everywhere (U) in R,. Hence,

a fortiori, cgp(x,y)<<cm(r,y) as function of x, vanishes almost every-

where (U), and is consequently measurable (8y), for all ye R,, except

at most for those of the set Y of measure (V) zero. Finally, we

clearly have [ [ex(z,y)dU (x)|dV(y)=0=T*B)= [ex(x, y)dT (x,y).
E B, I,

The function cg(x,y) thus has the property (F).

On account of Theorem 6.6 every set E measurable (27) is
expressible in the form FK=H-—@, where H is a set (®;) and @
is a set of measure (7') zero contained in H. We thus have cg(x,y)=
=cp{x,y)—co(x,y), and by (8.3) the proposition (8.4) reduces to
the special cases 3° and 4° already treated.

The proposition (8.4) being thus established, let f(x, y) be
any non-negative function measurable (£7) in the space I,.,. By
Theorem 7.4, Chap. I, the function f is the limit of a non-decreasing
sequence of simple functions, finite, non-negative, and measurable (27).
Now each of these simple functions is a linear combination, with
positive coefficients, of a finite number of characteristic functions
of sets measurable (¥7), and therefore has the property (F) on ac-
count of (8.4). Thus the function f is the limit of a non-decreasing
sequence of functions with the property (#'), and so, by (8.3), f itself
has the property (F). This completes the proof of Theorem 8.1.

Let us make special mention of the particular case of the
theorem in which f(x, ) is the characteristic function of a meas-
urable set:
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(8.6) Theorem. If U and V are two non-negative additive
functions of an interval in the spaces R, and IL, respectively, and if ()
is a set measurable (8yv) in the space R, ., then

(i) the set E[(x,y)e@Q] is measurable (Ly) for every ye R,,
except at most a sgt of measure (V) zero,

(i) the set E[(x, y)eQ] is measurable (Lyv) for every wxe i,
except at most a %l]t of measure (U) zero, and

(ii) the measure (UV) of Q is equal to

[ USE (2, y) Q1 aV(y)= [ VB [(x, y) e Q1) dU ().
E, ¥ I.‘),, y

Fubini’s theorem is frequently stated in the following form:

(8.7) Theorenm. Let U and V be two additive functions of bounded
variation of an interval in the spaces IR, and IR, respectively. Then
for every fumction f(x,y) integrable (UV) on R, 4, the relation (ii) of
theorem 8.1 holds good and the function f(x,y) is integrable (U)
in & on B, for every ye I, except at most a set of measure (V) zero,
and integrable (V) in y on I, for every xe R, except at most a set
of measure (U) zero.

We reduce this statement at once to that of Theorem 8.1 by
expressing the function f as the sum of its non-negative and non-
positive parts, and by applying to the functions of an interval U
and V the Jordan decomposition (§ 4, p. 62).

Further generalizations of Fubini’s theorem for the Lebesgue-Stieltjes
integration (in particular including the theorems analogous to Theorem 15.1 of
Chap. I) were studied by L. C. Young in his Fellowship Dissertation (Cam-
bridge 1931, unpublished). An account of these researches will be given in the book
The theory of Stieltjes integrals and distribution-functions by 1..C. Young (Oxford,
Clarendon Press).

It follows in particular from Theorem 8.6 that for any set ¢ measurable
in the sense of Lebesgue in the space Rptq, its measure (Lptg) is given by the
definite integrals [Ilp {E {(x.y) eQ1}d Lg{y)= / Lg{E[(z,y)e@]} dLip(x). It is never-
theless to be rema?rked that the existence gf these two integrals does not in
general enable us to draw any conclusion as to measurability (€) of the set ¢.
W.Sierpinski [5] has in fact constructed in the plane a set non-measurable (£)
having exactly one point in common with every parallel to the axes. This con-
struction depends, needless to say, on the axiom of selection of Zermelo.

For an interesting discussion of Fubini’s theorem for Lebesgue integration
of funetions of variable sign, vide G. Fichtenholz [1].

S. Saks. Theory of the [ntegral. 6
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We complete the theorems of this § by the following

(8.8) Theorein. If @ is a set measurable (B) in the space R, ,,
the set E[(x, y)eQ] s measurable (B) in the space R, for every ye By,

and the set E[(x, y)eQ] ts measurable (B) in I, for every xe IX,.
y

Similarly, if a function f(x,y) is measurable (B) in the space R, ,
then in R, the function f(x,y) is measurable (B) in = for every ye Iy,
and in R, the function f(x,y) is measurable (B) in y for every xe R,

Proof. It will be enough to prove the first half of the theorem,
since the second half obviously follows from the first. Let us denote
by B, the class of all sets @ in R, , such that the sets E[(x, y)cQ],

for every yelR,, and the sets K[(x, y)eQ], for every xc¢R,, are

y
measurable (B) in the spaces I2, and I, respectively. If a set Q CHy,
is closed, so are the sets E[(z, y)e@] and E[(x, y)e@Q]. The class B,

thus contains all closed sets of the spa,cey]i‘/,,ﬂ, and on the other
hand we see at once that B, is additive. 1t follows that B, includes
all Borel sets in the space I8, , (cf. the definition, Chap. 1I, p. 41),
and this completes the proof.

* § 9. Fubini’s theorem in abstract spaces. We shall
return in this § to the abstract considerations of Chap. I and show
that for abstract spaces, theorems similar to those of the preceding §
hold good.

Given any two sets X and Y, we shall denote by X x Y the
set of all pairs of elements (x,y) for which ¢ X and wyeY. The
get X <Y is often called combinatory product or Cartesian product
(¢f. C. Kuratowski [I, p. 7]) of the sets X and Y. The following
identities are obvious

(9'1) (X1>< Yl)'(XZX 172):(X1'4Y2)><(Y1'Y2)7
(9.2) (XX YVo)— (X X V)= [(Xy—2X,) X Vo] 4+ [(XpXq) X (Yo— Y1),

the sets X,, X,, Y,, Y, being quite arbitrary.

If % and 9 are additive classes of sets in the spaces X and VYV
respectively, %9 will denote the smallest additive class of sets
in the space X X Y, containing all product-sets of the form X xY,
where Xe®X and Ye9)
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For auxiliary purposes, we shall make use in this § of
the following definition: a class 9t of sets will be termed normal,
if (i) the sum of every sequence of sets (9) no two of which have
common points is itself a set (M) and (ii) the limit of every
descending sequence of sets (Jt) is a set (N).

We shall begin by proving the following analogue of Theorem8.8:

(9.3) Theorem. Let X and Y be two additive classes of sets in
the spaces X and X respectively. Then, if @ is a set measurable (X))
n the space XX Y, the set E[(x, y)e Q] is measurable (X) for every

yeY, and the set E[(x,y)eQ] is measurable () for every xelX.
y

In the same way a function f(x,y) which is measurable (X9))
 the space X X Y, is measurable (X) in @ for every yeX¥ and meas-
urable () in y for every weX.

Proof. It is enough to prove only the first part concerning
sets. To do this, we denote by I the class of all sets ¢ in XX Y
such that the set E[(x, y)e@] is measurable (¥X) for every yeY,

and that the set E[(x,y)e@)] is measurable (Y) for every xe¢X. We see
Yy

at once that the class M is additive in the space X x ¥ and that,
besides, it includes all sets X x Y for which X ¥ and Y ¢9). Hence
XPC M, and this completes the proof.

Before proceeding further we shall establish the following
lemma:

(9.4) Lemma. If X and Y are two additive classes of sets in
the spaces X and Y respectively, the class X3 coincides with the smal-
lest normal class that includes the sets X X Y for which X ¢%X and Y ¢9).

Proof. For brevity let us term elementary any set X XY
for which XeX and Ye9), and let N, denote the smallest normal
class which includes all elementary sets (i. e. the common part
of all the normal classes that include these sets). Clearly ,(C X9
since ¥X9) is also a normal class. In order to establish the opposite
inclusion, it is enough to prove that the class N, is additive, and this
will be an immediate consequence of the following two properties of
the class N,:

6%
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(9.5) The common part of any sequence of sets (Ny) is itself a set (Ny).

(9.6) The complement (with respect to the space XX Y ) of any set (Ny)
is again a set (N,).

To prove (9.5), it is enough, since the class 9N, is normal, to
show that the common part of two sets (N, is a set (N,).

For this purpose, let N; be the class of all the sets (N,) whose
common parts with every elementary set belong to 9,
From the identity (9.1), it follows that the common part of two
elementary sets is an elementary set, and hence that 9, includes
all the elementary sets. On the other hand, we verify at once that
N, is a normal class. This gives N, N, and since by definition
N C Ny we obtain RN, =N,.

Let now N, be the class of all the sets (9,) whose common
parts with every set (9, belong to 9N, Since IN,=N,, the class
N, includes all elementary sets. Furthermore, N, is clearly a normal
clags. We therefore have M,=MN,;, and this proves (9.5).

To establish (9.6), let N, be the class of all the sets (I,) whose
complements are also sets (N,). On account of the identity (9.2)
the complement of any elementary set is the sum of two elementary
sets without common points, and so, a set (N,). Therefore the class I,
includes all elementary sets and, to conclude that RN=N,, it suffices
to show that the class It; is normal.

Let therefore {X,} be any sequence of sets (I3;) without com-
mon points to any two of them, and let X be the sum of the se-
quence. The set X clearly belongs to the class 9,. On the other
hand, the sets CX, are, by hypothesis, sets (9R,); so that, by (9.5),
the same is true of their product CX=][CX,. Thus we have at

the same time, X N, and CX eI, and therefore X e¢R,.

Again, let {¥,}u—1, .. be a descending sequence of sets (),
and Y its limit. The set Y clearly belongs to the class 3, On the
other hand, consider the identity

Y = ZICY,, =C0Y,+ 211 -CY i,
and observe that no two of the gets CY; and Y,-CY,, for n=1,2, ...
have common points. Since these sets belong, by (9.5), to the class N,
5o does the set CY. Thus we have both Y ¢R, and CY ¢, whence
YeN,. The class N, is therefore normal, and this establishes (9.6)
and completes the proof of Lemma 9.4.
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We can restate Lemma 9.4 in the following more general form:

(9.7)  Given in an abstract space T a class Q of sets additive in the weak
sense, then the smallest class that is additive (in the complete sense) and eontains Q.
coincides with the smallest normal class containing Q.

The proof is the same as for Lemma 9.4.

If ¥ and Q) are additive classes in the spaces .X and } respectively, the
finite sums of the sets Xx ¥ for which X¢% and Ye9), constitute, according to
formulae (9.1) and (9.2), a class that is additive in the weak sense (vide Chap. T,
p- 7) in the space X X }. Another example of a class of sets additive in the
weak sense consists of the class of all the sets of an arbitrary metrical space M,
that are both sets (®s) and (Fs). The smallest class that is additive (in the com-
plete sense) and contains these sets is clearly the class of Borel sets in M.

The assertion of (9.7) enables us to prove easily the following theorem
due to H. Hahn [2, p. 437] and in some respect analogous to Theorem 6.6:

Let Q be a class of sets, additive in the weak sense in a space T, and let T be
the smallest class of sets that is additive in the complete sense and contains Q. Sup-
pose further that t is a measure (T) suck that the space T either has finite measure (v),
or, more generally, is expressible as the sum of a sequence of sels of finite measure (z).
Then (i) for every set B measurable (T) and for every &0, there exists a set FeQy,
and a set GeQ, such that F(CCECG and that t(E—F)<e and (G —B)- &;
(ii) for every sel E measurable (T) there exist a set (Qas) contained in E, and a set
(Qos) containing K, which differ from E at most by sels of measure (z) zero.

(9.8)  Theorem. Let X and Y be additive classes of sets in the
spaces X and Y respectively, and let u and v be measures defined
respectively for these classes. Suppose that u(X)<<oco and »(Y)<<oo,
or, more generally, that

X=2'x,, Y=Y,
where X, eX, Y, e, n(X,)<co and v(Y,)<oco for mn=1,2, ...
Then, for every set Q C X X Y measurable (X9), (i) 1!E[(x,y)eQ]},

(9.9)

as function of y, is measurable () in the space Y and v!E[(x,y)eQ]),

y
as function of wx, is measurable (X) in the space X; furthermore

(ii) () [ B[, 9) eQ1 dv (y) = (%) [ VB ((w,y) € Q1) du(a).
Yy X !

Proof. We may clearly suppose that no two sets X,, and
also no two sets Y,, have common points. The same will then be
true of the sets X,x Y, in the space X x Y. ,

Let us denote by 9 the class of all the sets P measurable (%9)
in the space X x ¥, such that conditions (i) and (ii) of the theorem
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hold good for every set Q=P-(X,x Y,) where n and m are arbitrary
positive integers. Since Q=2'Q-(X,x Y,) for every set QXX Y,

and since no two of the sets X, x Y,, have common points, it follows
eagily from ILebesgue’s Theorem 12.3, Chap. I, that every set ¢
belonging to the class 3t fulfills conditions (i) and (ii). We have to
prove that this class includes all sets measurable (%X9).

To do this, we observe that it follows at once from the identity
(9.1) that every set X X Y for which X e¥X and Ye9, belongs to N.
On the other hand, since by hypothesis s(X,)<lco and #»(Y,)<loco
for every n, we easily deduce from Lebesgue’s Theorems 12.3 and 12.11
Chap. I, that the sum of any sequence of sets () no two of which
have common points, and the limit of any descending sequence
of sets (M), are themselves sets (N). The class N is therefore normal,
and by Lemmsa 9.4, contains all sets (X9). This proves the theorem.

It we suppose the hypotheses of Theorem 9.8 satisfied, a meas-
ure can be defined for the class X9 so as to correspond naturally
to the measures p and » that are given for the classes ¥ and 9.
We do this by calling measure (uv) of a set ¢ measurable (X9) the
common value of the integrals (ii) of Theorem 9.8. It is immediate
that we then have ur(X X Y)=p(X)-»(Y) for every pair of sets
AeX and Ye9.

This definition enables us to state Theorem 9.8 in a manner
analogous to Theorem 8.6. But the analogy would be incomplete
if we neglected to extend at the same time the class %9. Thus,
for instance if X and 9 denote respectively the classes of sets meas-
urable in the Lebesgue sense in Euclidean spaces I?, and I, the
clags X9) does not coincide with that of the sets measurable (¥)
in B4, although it is evidently included in the latter. The extension
of the class X9, that we require in the general case, will be defined
as follows.

Given an additive class of sets § and a measure 7 associated
with this class, we ghall call the class T complete with respect to the
measure 7 if it includes all subsets of sets (¥) of measure (7) zero.
Thus for instance, if I' denotes any measure of Carathéodory, the
clags ¥r is complete with respect to I' (ef. Chap. 11, p. 44), and in
particular, the class £ in a Euclidean space is complete with respect
to Lebesgue measure; whereas the class of sets measurable (B) is
not complete with respect to that measure.
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Every additive class of sets ¥ may be completed with respect
to any measure t defined for the class, i. e. there is always an ad-
ditive class & )X such that the function of a set ¢ can be continued
a8 a measure on all sets (&) and such that & is complete with respect
to the measure 7 thus continued. Among the classes G of this kind,
there is a smallest one that we shall denote by . As is seen di-
rectly, this class consists of all sets of the form 7—N,4N,, where
Te¥ and N, N, are arbitrary subsets of sets (¥) of measure (7)
zero. The extension of the measure z to all sets of this form is evident.

We can now state the following theorem which corresponds
to Fubini’s Theorem 8.1:

(9.10) Theorem. Under the hypotheses of Theorem 9.8, if f(x, y)
is a mon-negative function measurable (X9"") in the space X x Y,

(i) f(x,y) as function of x is measurable (X") in X for every
yeY, except at most a set of measure (v) zero;

(i) f(x,y) as function of y is measurable (") in Y for every
. xeX, except at most a sel of measure (u) zero;

@) [f,y) dor(e,y)= [ | [fx,y)du(z) | dviy) = [ | [f2,y) dv(y) laua).

XxY Y X X 1 '

Proof. In the special case in which f is the characteristic
function of a set measurable (X9), the theorem is an immediate
consequence of Theorem 9.8. The same is true when f is the cha-
racteristic function of a set measurable (X¥9"") of measure (uv) zero,
and in consequence Theorem 9.8 remains true when f is the cha-
racteristic function of any set (X9").

This being so, we pass as usual to the case in which f is a finite
funection, simple and measurable (¥9"") and finally, with the help

of Theorems 7.4 and 12.6, Chap. I, to the general case in which f
is any non-negative function measurable (X9“").

Condition (9.9) is essential to the validity of Theorems 9.8 and 9.10. To
see this, let us consider some examples for which the condition is not fulfilled.
Put X=Y=~R,, and let =9 be the class of all sets in f; that are measurable
in the sense of Lebesgue. We choose for ¢ the ordinary Lebesgue measure, and
we define the measure » by making »(Y) equal to the number of elements of ¥ (so
that »(¥)=oco if ¥ is an infinite set). Finally, let ¢ be the set of all the points
(x, ) in R,=Xx Y such that 0 <2 << 1. The integrals occuring in condition
(ii) of Theorem 9.8 are then rcspectively 0 and 1 so that condition (ii) does not
hold. (We could also, by a suitable modification of the set ¢, choose ¥V = IZ,
and take as measure » the length Ay; cf. Chap. II, § 8.)
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Another example showing the importance of condition (9.9) is due to
A. Lindenbaum. Put X=Y=1=R,, let X=3) be the class of all Borel gets in R,, and
let «(X)=v»(X) denote for every set X the number of its elements. By a theorem
of the theory of analytic sets (cf., for instance, C. Kuratowski [I, p. 261]) there
exists in the plane I,=Xx Y a Borel set ¢ such that the set of xe B, for which
E{(x, y)e@] reduces to a single point, i3 not measurable in the sense of Borel.
y

In other words, the set of x¢ X for which »{E[(x, y¥)e@Q]}=1 is not measurable (¥).
y

Thus condition (i) of Theorem 9.8 does not hold.

For the results of this §, vide H. Hahn [2]; ¢f. also S. Ulam [2], Z. L.om-
nicki and 8. Ulam [1], and W. Feller [1]. For a discussion of Fubini’s theorem
applied to functions whose values belong to an abstract vector space, vide also
3. Bochner [2]. Finally we observe that certain theorems, analogous to those
established in this § for measurable sets and sets of measure zero, can be stated
for the property of Baire and the Baire categories. Cf. on this point C. Ku-
ratowski and 8. Ulam [1)].

§10. Geometrical definition of the Lebesgue-Stieltjes
integral. The geometrical definition of an integral is inspired by
the older and more natural idea of regarding the integral as the
measure of an “area”, or of a “volume”, attached to the function
in a certain way that is well known.

Let us begin by fixing our notation. Given a function f(x)
defined on a set Q@ (L2, we call graph of f(x) on @, and we denote
by B(f; @), the set of all points (x, y) of I, for which x<Q and
y==f(x)Foo. If f(x) is non-negative on @, the set of all the points
(2, y) of B,y such that we@ and 0<Cy<{f(2) is termed, according
to C. Carathéodory, ordinate-set of f on @ and will be denoted by
A(f; Q).

Ag in §§ 3—7 we shall suppose the space I, fixed and a non-
negative additive funetion U of an interval given in R,. And in
accordance with § 2, p. 59 and §5, p. 65, I, denotes the Lebesgue
measure in R,

(10.1) Lemma. If QCR, is a set measurable (), the set

ElxeQ; a<y<<b] in B,y1 i, for every pair of real numbers a and
(%)
b== a, measurable (Ly1,), and tts measure (UL,) is (b—a)-U*(Q).

Proof. Let us write for short, @Q,.,=E[ze@; a<{y<b] and

(x, )
T-=UL;. We shall begin by showing that if ¢ has measure (U)
zero, the set ¢,, is of measure (7) zerc, and so is certainly meas-

urable (¥y).
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To see this, observe that there is then, for any >0, a sequence
of intervals {I,} in R, such that Q ZI and ZU (I,)<Ce. Writing

Jy=I,x[a—e, b+¢&], we obtain a sequence of mtervals (T in Ry,
such that Q,,C>\J5 and D'T(J ZU n)- (b—a+-26)<(b— a+2¢)-¢

Thus T*(Q,. ,)=0.

Let now @ be any set measurable (¥y). By Theorem 6.6, ¢ is
the sum of a sequence of closed sets and a set of measure (U)
zero. Therefore, by the above, the set §,, is also the sum of a se-
quence of closed sets and of a set of measure (7') zero, and is thus
measurable (¥r). Finally, for every real number y, we have
El(z, ¥)eQqs=@ if a<ly<<h, and E[(x,y)eQ.»]=0 if y is outside the

b

interval [a,b]. Hence, by Theorem 8.6, we have T*(Q,,)= /'U*(Q)dy:

a

= (b—a)- U*(§)), which eompletes the proof.

(10.2) Theorem. If f(x) is a function measurable (&y) on a set
QC R, its graph on Q is of measure (ULy) zero.

Proof. Sinece any set measurable (¥y) can be expressed as
the sum of & sequence of bounded measurable sets, we can restrict
ourselves to the case in which ¢ is bounded.

Let us fix an £>0 and write Q,,ﬁE [xe@Q; ne<lf(x)<(n+1)¢]

for every integer n. By Lemma 10.1 the measure (U1,) of the graph
of f(x) on ¢, does not exceed ¢ U*(Q,); therefore, on the whole set @,
it does not exceed & U*(Q), and so vanishes.

We can now prove the following theorem which includes the
geometrical definition of the Lebesgue integral:

(10.3) Theorem. In order that a function f(x) defined and non-
negative on a set Q R, measurable (2y) be measurable (y) on Q, it
is necessary and sufficient that its ordinate-set A{f; Q) on @ be meas-
urable (Lu1.). When this condition is fulfilled, the definite integra:c (U)
of f on Q is equal to the measure (UL,) of the set A(f; Q).

Proof. Write, for short, T=UL, and suppose first that f(x)
is a simple function, finite, non-negative. and measurable (2y) on @,
i.e. that f={v,Q; v, Q23 ...; vay @) Where ; are sets measurable (L)
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no two of which have common points. By Lemma 10.1, all the
sets  A(f; @;) are measurable (¥7) and T*[A(f; Q)] =v:-U*(Q:)
for i=1,2,...,n. Hence, the set A(f; Q):ZA(}‘; Q,) is itself meas-

urable (27), and its measure (7) is equal to ZT*[A(f; Q)] =
=X U*(Q -~«/f dU(x

Let now f be any non-negative function measurable (£7) on Q.
There is a non-decreasing sequence {h,(x)} of simple functions,
finite, non-negative, and measurable (£y) on @ such that f(x)=limh,(x).

We then have
(10.4) Alf; Q) = h,I,n A(ha; @)+B(f; Q).

Now, by the above, all the sets A(h,; @) are measurable (¥r) and
T*[A(ha;@))= [hadU for m=1,2,... On the other hand, by

Q
Theorem 10.2, the set B(f; @) has measure (1) zero. It therefore
follows at once from (10.4) that the set A(f; @) is itself measur-
able () and that

THA(f; @)] = lim /'h,,dU: /.de.
n Q Q
1t remains to prove that, if the set A(f; @) is measurable (¥r),
the function f is measurable (). To do this, write for short

A=A(f; @), and observe that, for every non-negative number y,
the set E[reQ; f(x)>=y] coincides with the set KE[(x, y)eAd].

Thus, by Theorem 8.6, if 4 is measurable (L7), the set E[xeQ; f(x)=y]

is measurable (£y) for all numbers y except at most those of a set
of measure (L;) zero. But this suffices for the measurability of f
on @ (cf. Chap. I, (7.2)) and so completes the proof.

* § 11. Translations of sets. As an application of Theorem
8.6, we shall prove in this § a theorem on parallel translations
of sets. As a matter of course, in what follows, translations could
be replaced by rotations, or by certain other transformations consti-
tuting continuous groups and preserving Lebesgue measure.
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Given two points @=(, @3, ..., ») and Y= (Y1, ¥2, -..y Ym) i the
space I, we shall denote by w—f—y the point (x —H/n, $g—’—?/g, oy B Y m)
and by |x| the number (am +w2—i— +J0,,,) . We bhall write
#—>0 when |x]|—>0. If Q is a set in the space R, and a any
point of this space, Q" will denote the set of all points x+4a where
zeQ. The set Q( “ is termed translation of Q@ by the vector a. I D is
an additive function of a set in &, and aeR,, we shall write
P X)= O (XY for every set X bounded and measurable (B).

(11.1) Theorem. If Q is a bounded set (B) of measure (L) zero in the
space I, and D is an additive function of a set (B) in R, the func-
tion @ vanishes for almost all translations of Q, i. e. B(Q")=d“(Q)=0
for almost all points a of R,.

Proof. We may clearly assume @ to be a non-negative function,
and ¢ to be a bounded set (®;). Hence, by Theorem 6.10, there is
a non-negative additive function U of an interval, such that
O(X)=U*X) for every set X bounded and measurable (B).

Denote by ]l7 for any set M R,, the set of all points (x, y)
of the space IR, which are such that xe R, ye R, and x+ye M.
The set M is clearly open whenever the set M is open. It follows
at once that if M is a set (®;), so is the set M. Finally, observe that
for every point ze IR, we have B[(z,2)eM]=EB[(z, y)el]=M" .

Since the given set  is, by Ahypotheqis, ybet (Q’)a) $o is the
set @, and by Theorem 8.6, /U* QUL (2 /L,,, “NAU(z)=0,
Ry B
because all translations @2 of the set () are of measure (Lsy) zero.
Hence @(Q)=U*Q"2)=0 for every ze IR,, except at most a set
of measure (L,) zero. Replacing —z by a, we obtain the required
statement.

(11.2) Theorem. Given an additive function of a set @, each of
the following three conditions is both necessary amd sufficient for the
function @ to be absolutely continuous:

10 lim @(Q“) = lim @“(Q)=D(Q) for every bounded set ¢ meas-
a-»0 a—>0 .

urable (B) and of measure (L) zero;
20 lim O(Q“) = lim & (Q) = ®(Q) jor every bounded set ¢
a—>0 a->0
measurable (B);

30 Hm W[O — &; I|=0 for every interval 1.
a—>)
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Proof. It is evidently sufficient to establish the necessity
of condition 3° and the sufficiency of condition 1°.

Suppose first that @ is an absolutely continuous additive
function of a set. In virtue of Theorem 14.11, Chap. I, ¢ is thus
the indefinite integral of a function f measurable (B). Let
I=[ay, bi; ...; am, by] be an interval in the space considered and let J
be an interval containing I in its interior, for instance the interval
[ar—1, by+15 .5 an—1, bp+1].

Let ¢ be any positive number. Since the function f(x) is in-
tegrable over J, there exists a number >0 such that /.|f(w)1 dax < &/3

X

for every set X (CJ measurable (B) and of measure (L) less than #.
Therefore

[f@)de<e/3 and | |[fotu)de= [ |f(z) dv<e/3
(11.3) & X )
if Xe®B, XCI, [X|<n and ju/<l.

On the other hand, by Lusin’s Theorem 7.1, there exists a closed
sett F(I° such that the function f is continuous on F and such
that |I—F|<n/2. Let o<1 be a positive number such that

FYC I whenever |u/<<¢, and such that
&

(11.4) \f(x+u)—f(m)|<3.|1' whenever xe¢F, x+uel, and |u|<o.

Let now a be any point of R, such that |a|<o. By (11.4)
(11.5) [ f{a+a)—f(@)| do<|T)-(¢/3 1])=¢/3.
Fop-@)
On the other hand, [I—F-F"™ < |[I—F! | [—F" <2 [I—F| <7,
and therefore, by (11.3),
| flet-a)y— )] de < 2¢/3.
[—FFa)

If we add this inequality to (11.5) we obtain /Alf(x—k a)—f(x) dr<e,
i

i. o. the variation VV[(D(")—(D; IJ:/'\f(x+a)—f(m)|dw tends to 0

with |a|. The function @ therefore f]ulﬁlls condition 3°.

It remains to prove the sufficiency of condition 1°. Now, if
the function @ fulfills this condition, @ vanishes by Theorem 11.1 for
every bounded set measurable (B) of measure (I.) zero, and so is
absolutely continuous.
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It was long known that every absolutely continuous function @ fultills
conditions 19, 2° and 3° of Theorem 11.2. The converse, however, (i. e. the suf-
ficiency of these conditions, in order that the function @ of a set be absolutely
continuous) was established more recently. The sufficiency of condition 3° was
first proved by A. Plessner [1] (with the help of trigonometric series and for
functions of a real variable). As regards the other conditions (1° and 2°), and
as regards Theorem 11.1, vide H. Milicer-Gruzewska [1], and N. Wiener
and R. C. Young [1]. In the text we have followed the method used by the
latter authors.

§ 12. Absolutely continuous functions of an interval.
An additive function F of an interval will be termed absolutely con-
tinuous on a figure R,, if to each ¢>0 there corresponds a number
17>0 such that for every figure R(C R, the inequality |R|<(n implies
|F(R) <_¢. In conformity with § 3, p. 59, we shall understand by
absolute continuity in an open set G, absolute continuity on every
figure R{_ @G, and by absolute continuity, absolute continuity in the
whole space.

FEvery additive function of an interval, absolutely continuous on
a figure Ry, is of bounded variation on R, For, if F is a function
that is absolutely continuous on R, there exists a number 5>>0
such that, for every figure R(_ R, the inequality |R|<# implies
|F(R)|<1. Therefore, if we subdivide R, into a finite number of
intervals Iy, I., ..., I, of measure less than 7, we obtain W (F; ;) <C

<D W(F; 1) < 2n.
k=1

An additive function of an interval F, of bounded variation
on a figure Ry, will be termed singular on R, if for each ¢>0 there
exists a figure R(C R, such that |R| <& and W(F; Ry — R) <e.

The reader will observe the analogy between the above definitions and
the criteria given in Theorems 13.2 and 13.3, Chap. I, in order that an additive
function of a set should be absolutely continuous or singular. This analogy could
be pushed further by introducing the notions of absolutely continuous function,
and of singular function, with respect to a non-negative additive funec-
tion of an interval. But this “relativization”, although useful in certain
cases, would not play an essential part in the remainder of this book.

The following theorem is, almost word for word, a duplicate
of Theorem 13.1 of Chapter I.
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(12.1) Theorem. 1° In order that an additive function of an
interval be absolutely continuous [singular] on o figure Ry, it is neces-
sary and sufficient that its two variations, the upper and the lower,
should both be so. 2° Every linear combination, with constant coefficients,
of two additive functions of an interval which are absolutely continuous
[stngular] on a figure R, is ilself absolutely continuous [singular]
on Ry. 3° The limit of a bounded monotone sequence of additive functions
of an interval that are absolutely continuous [singular] on a figure R,
is also absolutely continuous [singular] on R,. 4° If an additive function
of an interval is absolutely continuous [singular] on a figure Ry, the
function is so on every figure R{ Ry 5° If an additive function of
an interval is absolutely continuous [singular] on each of the figures
R, and R,, the function is so on the figure R+ R,. 6° An additive function
of an interval cannot be both absolutely continuous and singular on
a figure Iy, without vanishing identically on R,.

Part 3% at most, perhaps requires a proof. (It differs slightly
from the corresponding part of Theorem 13.1, Chap. 1.} Let therefore
I be the limit of a bounded monotone sequence |F,} of additive
functions of an interval on a figure R,. Let ¢ be any positive number.
Since the functions F—F, are monotone on R, there exists a pos-
itive integer n, such that

(12.2) |[F(R)—F.(R)|<<|F (Ry)—F.(Ry)|<e&/2 for every figure R(CR,.

This being so, let us suppose that the functions F, are ab-
solutely continuous on R, There is then an %>0 such that, for
every figure R(C R, |R|<<% implies the inequality |F, (R) <e&/2
and therefore, by (12.2), the inequality |[F(R)|<e. The function F
is thus absolutely continuous on R,.

Suppose next that the functions #, are singular on R, There
is then a figure R, (CR, such that |R,|<e and W[F,; Ry— Rl < ¢/2.
Hence, by (12.2), W[F; R,©R,]<¢, which shows that the function
I is singular. This completes the proof.

We shall now establish two simple theorems that show ex-
plicitly the connection between the absolutely continuous or sing-
ular functions of an interval and those of a set. To avoid misunder-
standing, we draw the reader’s attention to the abbreviations
adopted in § 5, p. 66, in the terminology of functions of a set.
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(12.3) Theorem. In order that a non-negative additive function F
of an interval be absolutely continuous, it is necessary and sufficient
that the corresponding function of a set I'* should be so.

Proof. Suppose that the function F is absolutely continuous.
In order to prove that the function F* is so too, it is enough to
show that F'* vanishes on every bounded set of measure (L) zero.
Let therefore E be such a set, and let J be an interval that contains
E in its interior. For any &> 0, let n be a positive number such that

(12.4) |R| <<n implies |F(R) <<e for every figure R dJ.
Since [E|=0, there exists a sequence of intervals {I,} in J such that
(12.5) ECDTI; and 2L <.

Denote by R, the sum of the k first intervals of this sequence.
By Theorem 4.6 (or 6.1) of Chap. II, and Theorem 6.2, the relations
(12.4) and {(12.5) give FXE)<Clim F*Rp)<<lim F(R,)<e, from
which it follows that F*(E)=0. ‘ g

Conversely, if F* is an absolutely continuous function of a set,
the absolute continuity of F follows at once from the inequality
F(R)<F*(R) which holds by Theorem 6.2 for every figure R.

(12.6) Theorem. In order that & non-negative additive function
of an interval F be singular, it is necessary and sufficient that the
corresponding function of a set F* should be so.

Proof. Suppose that the function of an interval F is singular,
and let J be any interval. Given any number &>0, there is then
a figure R(J such that [R|<le and F(JOR)<e. Consequently,
by Theorem 6.2, we have F*(J"—R)gF(J@R)<£, which shows
on account of Theorem 13.3, Chap. I, that the non-negative function
of a set F* is singular in the interior of every interval J, and there-
fore in the whole space.

Suppose, conversely, that the function of a set F* is singular,
and let ¢ be any positive number. Given any interval I there is then
a set H(CI° such that [E|=0 and F*I°—E)=0. Consequently,
there is a sequence of intervals {I,) in I such that

(12.7) I°—E(C )1, and (12.8) X F(I,) <e.

Denote by R, the sum of the k first intervals of this sequence. Since
|E|=0, we obtain from (12.7) that |[R,|> |I|—e¢ for a sufficiently
large ko, and writing P=IOR,, this gives |P|<+¢. Again, by (12.8)
F(I©P)<e, which proves that the function F is singular.

’
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§ 13. Functions of a real variable. The most important
of the notions and theorems of this chapter were originally given
a rather different form: they were made to refer, not to additive
functions of an interval, but to functions of a real variable. It is,
however, easy to establish between functions of a real variable and
additive functions of a linear interval, a correspondence rendering
it immaterial which of these two kinds of functions is considered.

To do this, let f(x) be an arbitrary finite function of a real
variable on an interval I,. Let us term increment of f(x) over any
interval I—=|a, b] contained in I, the difference f(b)—f(a). Thus
defined the increment is an additive function of a linear interval
ICI,, and corresponds in a unique manner to the function f(z).
Conversely, if we are given any additive function F(I) of a linear
interval I, this in itself defines, except for an additive constant,
a finite function of a real variable f(x) whose increments on the
intervals I coincide with the corresponding values of the function F (I).

We shall understand by wupper, lower and absolute, variations
of a function of a real variable f(x) on an interval I, the upper,
lower, and absolute, variations of the increment of f(x) over I.
To denote these numbers, we shall use symbols similar, to those
adopted for additive functions of an interval, i. e.: W (f; I), W(f; I),
and W(f; I).

A finite function will be termed of bounded variation on an
interval I, if its increment is a function of an interval of bounded
variation on I,. Similarly the function is absolutely continuous, or
singular, if its increment is absolutely continuous, or singular. As we
see immediately, in order that a funetion f(x) be of bounded vari-
ation on an interval I, it is necessary and sufficient that there
exists a finite number M such that > f(b)—f (a)|<<M for every

i

sequence of non-overlapping intervals {[a;, b;]] contained in I,.
Similarly, in order that f(x) be absolutely continuous, it is necessary
and sufficient that to each &¢>0 there corresponds an n>0 such

that > |f(b)—F(a;)|<<e for every sequence of non-overlapping inter-

vals {[a;, b;]} contained in I, and for which Zlb,-—ai| <.
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If f(z) and g¢(x) are two bounded functions on an interval 1,
and M denotes the upper bound of the absolute values of f(x) and
g(x) on I,, we have

F(6) g(8) —f(a) g(a)| < MLIf(b) —f(a)] + |a(b)—g(a)]]

for every interval [a, b]C I,. It follows at once that

(13.1) The product of two functions of bounded variation [absolutely
continuous] on an interval is itself of bounded variation [absolutely
continuous] on this interval.

Finally we see that if a function of an interval ¥ corresponds
to a finite function of a point f (i. e. is the increment of f), we have
0(f; @)=0;(F; a) for any interval I and any point a eI (cf. Chap. I,
§3, p.42, and the present Chapter, § 3, p.60). Thus, in particular,
in order that the function f be continuous at a point a according
to the definition of § 3, Chap. IT, it is necessary and sufficient that
the function of an interval F that corresponds to f should be so
according to the definition of § 3 of the present Chapter.

If at & point a a function of a real variable f has a unique,
limit on the right, this limit will be denoted by f(a-); similarly,
f(a—) will stand for a unique limit on the left. If the function f
is defined in a neighbourhood of a point ¢ and both limits f(a+),
f(a—) exist, then the oscillation o(f; @) (vide Chap. II, p. 42) is
equal to the largest of the three numbers [f(a+)—f(a—),
fla+)—F(a), and |f(a—)—Ff(a)].

If both limits f(a-) and fla—) exist and are finite, and
f(a)=4f(a+)+f(a—)] the function f(x) is termed regular at the
point a. It is regular if it is regular at every point.

Let f be any function of a real variable, of bounded variation,
and {a,; a sequence of points. Let us put s(a)=0 and

| fla+)—f a)+2<“ N (@) —F (@) + F(2)—F (2 —) fJor @>a
- ’ f a‘_ _— a +Z(a7x)[f(all_)—f(all+)]+f(m)—f(w+) f07' w<a,

where the summation Z(”’x) is extended to all indices n such that

a

a<la,<wx, when z>a, and a>a,>x, when z<a. The function s
thus defined is termed the saltus-function of f corresponding to the
sequence {a,); of points. It is continuous everywhere except, perhaps,
S. Saks. Theory of the Integral. 7



98 CHAPTER III. Functions of bounded variation.

at the points a,, and by subtracting it from f we obtain a function
of bounded variation, continuous at all points of continuity of f and,
besides, at all the points a,. If {a,} is the sequence of all points of
discontinuity of f, the corresponding function s is called simply
the saltus-function of f. By varying the fixed point a we get the
various saltus-functions of f which can obviously differ only by
constants. A function of bounded variation which is its own saltus-
function, is called a saltus-function.
, The functions of a real variable whose increments over each
interval I coincide respectively with the variations -VV(f; I), W(f; I)
and W(f; I) of a function f, are also termed (upper, lower, and ab-
solute) variations of f. By applying the Jordan decomposition (§ 4,
p. 62), we can express any function of a real variable f of bounded
variation as the sum of two functions that are respectively its upper
and lower variations. Thus any function of bounded variation is
the difference of two monotone non-decreasing functions, and con-
sequently is measurable () and has at every point the two uni-
lateral limits, on the right and left. Moreover, the set of its points
of discontinuity is at most enumerable, since the sum of its oscil-
lations at the points of discontinuity lying in any finite interval is
always finite (this is actually the special case of Theorem 4.1).
In various cases it is more convenient to operate on functions
of a real variable than on additive functions of an interval in I2;.
The difference is, of course, only formal, and all the definitions
adopted for functions of an interval can be stated, with obvious
modifications, in terms of functions of a real variable. We need
not state them here explicitly. If F is a function of a real variable,
of bounded variation, the meaning of expressions such as Lebes-
gue-Stieltjes integral with respect to F, integral (F),
sets (¢r), and so on, may be regarded as absolutely clear, in view
of the definitions of § 5. If F is a continuous function and g¢

a function integrable (F), the integral / .ng, where I is a variable
i

interval, is an additive continuous function of an interval I (vide
§ 5, p. 65). There is, consequently, a continuous function of a real
variable whose increment on any interval I coincides with the
definite integral (¥) of ¢ over I. This function, which is determined
uniquely except for an additive constant, is also termed indefinite
integral (F') of g.
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When there is no ambiguity, the additive function of an interval
that is determined by a finite function of a real variable F, will
be denoted by the same letter F, i. e. F(I) will stand for the in-
crement of F(x) on an interval I. By means of the corresponding
function of an interval, any funection of a real variable F of bounded
variation determines an additive function of a set which we denote
by F* (cf. § 5). We see at once that F*(X)=F(b+)—F(a—) when
X=[a,b], and that F*(X)=F(a+)—F(a—) when X=(a), i. e.
when X is the set consisting of a single point a.

If W(x) is the absolute variation of a function ¥ (z) of bounded
variation, we clearly have W(F™*; X)<CW*(X) for every set X
bounded and measurable (B). The opposite inequality does not
hold in general. If, for instance, X is a set consisting of one point
only, and F is the characteristic function of X, then W(F*; X)=
=F*(X)=0, while W*(X)=2. We can, however, state the following
theorem:

(13.2) Theorem. If F(x) is a function of a real variable of bounded
vartation, and W (x) is the absolute variation of F(x), then W (F*; X)=
=W*(X) for every set X bounded and measurable (B) at all points
of which F(x) is continuous.

Proof. Suppose first that the set X is contained in an open
interval J, in which the function F (), and consequently the function
W (x) also, is continuous. Let G (J, be an arbitrary open set such
that X @. Then, expressing G as the sum of a sequence of closed

non-overlapping intervals {I,}, we get W*X)<<W*@) =) W*I,)=
n
= D W(I)<Y W(F*; 1,)=W(F*; &); whence W*( X)X W(F*; X), and

since the opposite inequality is obvious, W*(X)=W(F*; X).

Let us pass now to the general case. Let I, be an interval
containing X in its interior, and let ¢>0. Denote by {a,} the se-
quence of points of discontinuity of F(«x) interior to I,, and by Sxy(x)
the saltus-function of F(x) corresponding to the points a, for n>N.
Let us put G(x)=F(r)—Sn~(x), where N is a positive integer suf-
ficiently large in order that W (Sy; I,)<Ce. The points ai, ay, ..., ax,
none of which belongs to X, divide I, into a finite number of sub-
intervals Jg, Jy, ..., Jy in the interior of which the function G(x)
is continuous. Hence, denoting by V(x) the absolute variation of

7%
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G (x), there follows, by what has already been proved, VHX-J )=
—W(G*; X-Jy) for k=0,1,..., N, whence V*X)=W(G*;X). On
the other hand, |[W*(X)—V*(X)| and |[W(F*; X)—W(G*; X) are
both at most equal to W (Sy; Lo)<<e. Thus |[W*X)—W(F*; X)|<<2¢,
and finally W*(X)=W(F*; X).

If F(x) is a finite function of a real variable and E an arbit-
rary set in B,, the set of the values of F'(x) for wek will be denoted
by FLE].

(13.3) Theorem. If F(x) is a function of a real variable of
bounded variation and W (x) is the absolute variation of I (x), then
|[F[E]|<W*E) for every set E in Ry; and if further the function
F(x) is non-decreasing, and continuous at all points of E, then
|PLE)=F*(B).

Proof. Let & be a positive number and {I,} a sequence of
intervals such that EC X2I, and W*(E)+e=2 W(I,). Then, if m, and

M, denote the lower and upper bounds, respectively, of F(x) on I,
the sequence of intervals {{m,, M,]} covers the set F[E]}, and con-

sequently |F[E]| << Y (M—my) <X W (L)< W*(E)+e Hence,

|FIE]| << W*(B).

Suppose now F(x) continuous at the points of E and non-
decreasing. By what has already been proved, [F[E}<<F*(E). To
establish the opposite inequality, let # be an arbitrary positive
number, and {J,} a sequence of intervals subject to the conditions

F[EIC Y J. and |F[E]|+9>>2|J.. Let E, denote the set of the
points xeF such that F(x)e, Then F*(E,)<|J, for each n; and
consequently F*(E)<<)|J.|<<|F[El|+n, whence F*E)<|F[E]|.

The characteristic function of a set consisting of a single point provides
the simplest example of a singular function of a real variable, that does not vanish
identically. This function is however discontinuous. It is easy to give examples
of functions of an interval that are additive, singular, continuous, and not iden-
tically zero, in the spaces R, for m>=2. For simplicity, consider the plane, and
denote, for any interval I, by F(I) the length of the segment of the line y = »
contained in I; the function of an interval F(I) will evidently have the desired
properties. A similar example for R, is less trivial. We shall therefore conclude
this § with a short description of an elementary method for the construction of
continuous singular functions of a real variable.

We shall begin with the following remark which frequently proves useful.
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(13.4) Let E be a linear, bounded, perfect and non-dense set, and ¢ and 8> a
two arbitrary numbers. Then, if @ and b denote the lower and upper bounds of H,
a function F(x) may be defined on the interval Jo=[a, b] so as to satisfy the following
conditions: (i) F(a) = «, F(b) = 8, (ii) F(x) is constant on each inlerval contiguous
to the set B, and (iii) F(x) is continuous and non-decreasing on the interval J, and
strictly increasing on the set E.

To see this, let {I,} be the sequence of intervals contiguous to ¥, and let

us agree to write 1"<I m whenever the interval I, is situated on the left of In.
By induction (cf. e. g. ¥. Hausdorff [II, p. 50]) we can easily establish a one-
to-one correspondence between the intervals I, and the rational numbers of the
open interval («, ) so that, denoting by wu(Iln) the number which corresponds

to the interval In, the relation I, implies w(In)< w(Im). Let us now put
F@x)=u(ln) for xel, where n=1, 2, .., and then extend F(x) by continuity
to the whole of the interval J,. We see at once that the function F(x) thus ob-
tained satisfies all the required conditions (i), (ii) and (iii) of (13.4).

Now let us choose for the set E in (13.4) a set of measure zero. Then if
{I.} is the sequence of the intervals contiguous to K, we have

!l n
WEF; D In)= D W(F; 1) =0
k=1 k=1
i

oy . . \" o
for each positive integer n; and since {J0-2 Ix|—> 0 as n—>co, the tune-
k=1

tion F(x) is evidently singular on the interval J,.
The singular function obtained by the foregoing construetion is continuous
and monotone non-decreasing; the funetion is not constant on the whole interval J,
but is so on certain partial intervals. Now, by the method of condensation
of singularities, it is easy to derive from it a singular continuous function
that increases everywhere.
To do this, suppose in (13.4), |E|=0, a=«=0, b=g=1, and extend the
function F(z) on to the whole axis R, by stipulating F(x + 1) = 1 4 F(x). Write

[}

(13.5) H(x):z'ﬂ”x).

it

b4

n=1

This series is a uniformly convergent series of singular funections, since F(nx) is
clearly singular with F(x). Now the functions F(nx) are monotone non-decreasing.
By Theorem 12.1 (3%), the function H(z) is thus singular. This funection is also con-
tinuous, as the limit of a uniformly convergent series. To prove that H(z) 1s strictly
increasing, let #, and x,-», denote an arbitrary pair of points in [0, 1]. For
n>1/(xg — x,), we have wr,—nx,>1, and consequently F(nx,) . F(nx,);
while for every n, F(nz,)= F(nx,), whence by (13.5), H(z,) - H(x,) as asserted.

Various examples of this kind have been constructed by A. Denjoy [1],
W. Sierpinski [3], H. Hahn [I, p. 538], L. C. Young [1] and G. Vitali [4];
of. also 0. D. Kellog [1], and E. Hille and J. D. Tamarkin [1].
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§ 14. Integration by parts. As in the preceding §, we shall
deal only in this § with functions of a real variable. For the latter,
we shall establish two classical theorems, of importance on account
of their many applications to various branches of Analysis. We shall
first prove them for the Lebesgue-Stieltjes integral and then spe-
cialize them for the ordinary Lebesgue integral.

(14.1) Theorem on integration by parts. If U(x) and V(x)
are two functions of bounded variation, we have for every interval
Iy=/a,b]

b, b
[Ty + [VaU=Ub+)V(b+)— Ula—) Via—),

provided thal at each point of I, either one at least of the functions
U and V is continuous, or both are vegular.

Proof. In order to simplify the notation assume =0 and
b=1, and consider the triangle @Q=E[0<{«<{1; y < z] on the plane I,.
(x, )

The set E[(r,y)¢@] is then the interval [y, 1] or the empty set,

according as y belongs, or does not belong, to the interval [0, 1].
Similarly, I [(x,y)e@] is the interval [0, 2] or the empty set,

according asywe have, or do not have, 0<Cax<{1. Hence, by Fubini’s
theorem in the form (8.6),
/[U L) —Uly—)1 dV(y /U ) =V (0—)1dT (),

i. e.
(14.2) /U ydV(x +/ V(z+)dU (x)=T(14+) V(1 +)—T(0—) V(0—).

Interchanging U and V and adding the corresponding equation
to (14.2), we get, on dividing by 2,

: 1 i
(14.3) [ 3[UG+)+- V=) aVia)+ [ $[V(e+)+ Vie—)] dU@) =

0 0

=U(1+)V(1+)—U(0—)V(0—).
Let M be the set of the points in [,=[0,1] at which the
function U(x) is regular. Then

(14.4) [ 41U@H)+ U= dV (@)= [ U(2) dV(a).
M

M
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On the other hand, the set I,—M is at most enumerable and, by

hypothesis, the function V(z), and consequently both its relative

variations, are continuous at each point of I,—M. Thus, the def-

inite integral (V) of any function over the set I,—M is zero, and
1

it follows from (14.4) that [3[U(x+)+Ule—) / Ulz) aVix
0
Similarly, the second member on the left-hand side of the rela-

tion (14.3) is equal to / V(x)dU(x), and this relation may be written

fUdV 4 _/'le;': U(14) V(1+)—TU(0—) V(0—),
0 0

which proves the theorem.

The theorem may be also proved independently of Fubini’s theorem, but
then the proof is slightly longer. The proof given above was communicated to
the author by L. C. Young.

(14.5) Second Mean Value Theorem. If U(x) and V(x) are
two mnon-decreasing functions and the function V(x) is conlinuous,
then in any interval [a, b) there exists a point § such that

b
(14.6) l/UdV: Ula)-[V(§) —V(&)]+UD)-[V()—V(£)].

Proof. Since the values of U(x) outside the interval [a, b]
do not affect (14.6), we may suppose that U(a—)=U(a) and,
U(b+)=U(b). Therefore, making use of Theorem 14.1 and of the
first mean value theorem (Chap. I, Th. 11.13), we obtain

4 b
(14.7) fU AV=U0)V(b)—Ula)V(a)— [ VaT=

=U(b)V(b)—U(a) V(a)— p-[U(b)— Ula)],

where u is a number lying between the bounds of the function V ()
on [a, b]. But, since this function is by hypothesis continuous, there
exists in [a, b] a point £ such that u=V(§). Substituting this value
for p# in (14.7) we obtain the relation (14.6).
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As a special case of Theorem 14.1 we have the following theorem
on integration by parts for the Lebesgue integral:

(14.8) Theorem. If u(x) and v(x) are two summable functions
on an interval [a,b] and U(x) and V(x) are their indefinite in-
tegrals (L), then

(14.9) /U z)da -+ /V () dw=U(b)-V(b)—TU(a)- V(a).

Proof. Observe first that by writing for instance wu(x)=0
and v(x)=0 outside the interval [a, ], we may suppose that the
functions u(x) and v(x), and their indefinite integrals U (x) and V (z),
are defined on the whole straight line R,. Also, by altering, if neces-
sary, the values of the functions w(x) and v(x) on a set of measure
(Li) zero, which does not affect the values of the integrals in (14.9),
we may suppose that these functions, together with the functions
U(x)v(x) and V(x)u(x), are measurable (B) (cf. Theorem 7.6
of Vitali-Carathéodory or else Lusin’s Theorem 7.1). We may,
therefore write, according to Theorem 15.1, Chap. I,

b b b b
[ U@)yo(z) do= /U(w)dV(w) and ‘/.V(w)u(w)dxz /'V(w)dU(m),

and (14.9) follows at once from Theorem 14.1.

Similarly, we derive at once from Theorem 14.5 the second
mean value theorem for the Lebesque integral:

(14.10) Theorem. If U(x) is a non-decreasing function on an
interval [a, b] and v(x) is a summable function on this interval, then

b
[U@) (@ a)/v )de +T(b) [o(x) de,
£

a

where & is a point of [a, b].




