CHAPTER 1V.

Derivation of additive functions of a set
and of an interval.

§ 1. Introduction. In this chapter we shall study Lebesgue’s
theory of derivation of additive functions in a Euclidean space of
any number of dimensions. When other spaces are considered, or
when we specialize our space (to be, say, the straight line I, or
the plane R,), we shall say so explicitly.

In what follows, an essential part is played by Vitali’s Covering
Theorem (vide, below, § 3) which is restricted to the case of Lebes-
gue measure. For this reason, the theorems of the present chapter
have not in general any complete or direct extension to other meas-
ures, not even when the latter are determined by additive functions
of an interval. In accordance with the conventions of § 5, Chap. III,
the terms measure, integral, almost everywhere, ete. will
be understood in the Lebesgue sense whenever we do not explicitly
assign another meaning to them. Similarly, by additive functions
of a set we shall always mean functions of a set (B) (some of which
may of course be continued on to wider classes of sets, cf. Chap.I1I,§5).

We have already remarked in § 1, Chap. I, that any additive
function of a set @ in a space I2,,, may beregarded asa distribution
of mass. It is then natural to consider the limit of the ratio @(8)/|8]
where S denotes a cube, or a sphere, with a fixed centre ¢ and with
diameter tending to 0, as the density of the mass at the point a.
By the fundamental theorem of Lebesgue (vide, below, Theorem 5.4)
this limit exists almost everywhere. Moreover Lebesgue has shown
that in the above ratio, S may be taken to denote much more gene-
ral sets than cubes or spheres. Of these, further details will be
given in the next §.
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§ 2. Derivates of functions of a set and of an interval.
Suppose given a Euclidean space R,,. By parameter of regularity v (E)
of a set K lying in this space, we shall mean the lower bound of
the numbers |E|/|J| where J denotes any cube containing E. Thus
when E is an interval, I"/L"<{r(E)<Cl/L, where 1 denotes the
smallest and L the largest of the edges of Ej; in particular, the
parameter of regularity of a cube is equal to 1.

A sequence of sets {E,} will be termed reguler, if there exists
a positive number « such that r(E,)>e for n=1,2,...

We shall say that a sequence of sets {E,) tends to a point a,if J(E,)—0
as n—>oo, and the point a belongs to all the sets of the sequence.

Given a function of a set @ (not necessarily additive) we call
general wupper derivate of @ at a point « the upper bound of the
numbers ! such that there exists a regular sequence of closed sets om
tending to «, for which lim G(E,)/|E,)=!. We shall denote this

n

derivate by D®(a). Similarly, merely replacing the closed sets
by intervals, we define the ordinary upper derivate of @ at a
point @, and we denote it by @(a). If we remove the condition
of regularity of the sequences of intervals considered, we obtain
the definition of strong upper derivate. In other words the
strong upper derivate of @ at a point « iy the upper limit of the
ratio @(I)/|1], where I is any interval containing @, whose diameter
tends to zero. This derivate will be denoted by @(a).

The three lower derivates at a point a, general D® (a), ordinary
@(a), and strong Ds(a), have corresponding definitions, and if at
a point ¢ the numbers D®(a) and D®(a) are equal, their common
value is termed general derivative of @ at the point @ and will be
denoted by D®(a). If further D®(a)=+ oo, the function @ is said .
to be derivable in the general sense at the point a. Similarly we define
the ordinary derivative @'(a) and the strong derivative i(a), as well
as derwability in the ordinary sense, and in the strong sense, of the
function @ at the point a. Sometimes the derivatives D®(a), @'(a)
and Ps(a) are termed wunique derivates, while the upper and lower
derivates (general, ordinary and strong) are termed extreme derivates.
At any point a, we clearly have D®(a) << P(a)<< D (a)<<DD(a)
and similarly @,(a) < D(a) << P(a) << P.(a); so that the existence
either of a general derivative, or of a strong derivative, always
implies that of an ordinary derivative. On the other hand, no such
relation holds between the general and the strong extreme derivates.

[ ES!
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It may be noted that in order that it be possible to determine
the general derivates of a function of a set @, the latter must be
defined at any rate for all closed sets; whereas in order to determine
the extreme ordinary derivates, or the extreme strong derivates,
we need only have the function @ defined for the intervals. This
is why the process of general derivation is most frequently applied
to additive functions of a set, and that of ordinary, or of strong,
derivation to functions of an interval. We shall often omit the terms
“ordinary”’, “in the ordinary sense’’, in expressions such as ‘“‘ordinary
derivate’”, “derivability in the ordinary sense’.

We have seen (Chap.III, §5) that an additive function of
an interval F of bounded variation determines an additive function
of a set F*. Let us mention, in the case in which the function F
is non-negative, an almost evident relation between ordinary deri-
vates of F and general derivates of F™*:

(2.1) Theorem. IfF is an additive non-negative function of an inter-
val, then, at any point x, which belongs to no hyperplane of discontinuity
of F, we have Qb’*(m)gﬁ‘(x)gﬁ(w)<ﬁlﬂ*(x).

In particular therefore, the ordinary derivative F'(x)=DF*(x)
exists at almost every point x at which F* has a general derivative.

Proof. Since F(I)<F*(I) for any interval I, the inequality
F(m)gﬁlf‘*(m) is obvious. On the other hand, let | denote any number
exceeding F (x). Then there exists a regular sequence of intervals {7,}
tending to the point « and such that lim F (In)/| L <<1. Since x does

not belong to any plane of discontinuity of F, we may asssume
that it is an internal point of all the intervals I,. Hence we can
make correspond to each interval I, an intferval J.C I, such
that ®edy,, |Jo=(1—1/n)|l,] and r(J,)=r(l,). We then have
Lim sup F*(J,,)/ | <Um F(I,)/|I)<<l. Now since {J,} is a regular

sequence of intervals tending to a, it follows that DF*(x)<(l, and
therefore that DF*(x)<F(x).
Let us note also the following result:

(2.2) Theorem, If f is a summable function and @ is the indefinite
integral of f, then DP(z)<f(z) and D (x) <f(x) at any point x at which
the function f is upper semi-continuous, ard similarly DO (x)=f(x) and
O (x)=f () at any point x at whick the function f is lower semi-continuous.

In particular therefore, @'(x)= @(xr)=D®P(x)= f(x) at any
point x at which the function f is continuous.
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In R, there is no difference between ordinary and strong deri-
vation. If F(x) is a finite function of a real variable, we understand
by its extreme derivates F (x) and F (x), and by its derivative, or unique
derivate, F’(x), the corresponding derivates of the function of an
interval that F(r) determines (cf. Chap. ITI, § 13). Besides these
derivates, which we shall often term bilateral, we also define, for
functions of a real variable, unilateral derivatives and derivates.
Thus, if F(z)is a finite function of a real variable defined in the neigh-
bourhood of a point x,, the upper limit of [F(x)—F (x)]/(x—)
as ¢ tends to x, by values of x>, is called right-hand upper derivate
of the function F at the point x, and is denoted by F+(wo). Similarly
we define at the point x, the right-hand lower derivaie E+(w0) and
the two left-hand, upper and lower, derivates, F (x,) and F ().
These four derivates are called unilateral extreme, or Dini, derivates.
If the two derivates on one side (right or left) are equal, their
common value is called unilateral (right-hand or left-hand) derivative
of the function F at the point in question. Finally, we shall call inter-
mediate derivate of F(x) at the point x, any number ! such that
there exists a sequence {x,} of points distinet from a, for which
limx,=x, and lUm[F (x,)—F (xy)]/(xn—1,) =1.

Let E be a linear set, x, a point of accumulation of E, and
F(x) a finite function defined on E and at the point z,. The upper
and lower limit of the ratio [F(x)—F (xy)]/(x—x,) as x tends to xz,
by values belonging to the set E, are called respectively the wupper
and lower derivate of F at x,, relative to the set E. We shall denote them
respectively by Fg(x,) and Fg(x,). When they are equal, their
common value is termed derivative of F at x, relative to the set E,
and is denoted by Fg(x,).

Besides this derivation relative to a set, we define also
derivation relative to a funetion. Suppose given two finite
functions F(x) and U(x), and let x, be a point such that the func-
tion U is not identically constant in any interval containing .
We then call upper derivate Fy(x,) and lower derivate Fy(x,) of the
function F with respect to the function U at the point x, the upper
limit and the lower limit of the ratio [F(z)—F (2,)]/[U (x)— U (x,)]
as ¢ tends to x, by values other than those for which F(x)—F (x,)=
=U(x)—U(xy)=0. Similarly, considering unilateral limits of the
same ratio, we define four Dini derivates of F with respect to U:
Ii_’;]r(x), E;(x), 17’;(90) and £, (x).
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When all these extreme derivates are equal, their common
value is denoted by Fy(z,) and called derivative of F with respect
to the function U at the point z,. The most usual case in which this
method of derivation is applied, is when U is a monotone increasing
function; and it is then easy, by change of variable, to reduce deri-
vation with respect to U to ordinary derivation.

§ 3. Vitali’s Covering Theorem. We shall say that a family €
of sets covers a set A in the sense of Vitali, if for every point « of 4
there exists a regular sequence of sets (€) tending to « (cf. p. 106).

(3.1) Vitali’s Covering Theorem. If in the space R, a family
of closed sets € covers in the sense of Vitali a set A, then there exists
tn € a finite or enumerable sequence {Ey} of sets no two of which have
common points, such that

(3.2) |4A—2 Eu|=0.

Proof. a) We first prove the theorem in the special case in
which (i) the parameters of regularity of all the sets (€) exceed
a fixed number >0 and (ii) the set 4 is bounded i. e. contained
in an open sphere S. We may clearly assume that, in addition, all
the sets (€) are also contained in 8.

This being so, we shall define the required sequence {E.} by
induction in the following manner.

For E, we choose an arbitrary set (€), and when the first p
sets Ky, Ky, ..., E, no two of which have common points, have
been defined, we denote by d, the upper bound of the diameters

P
of all the sets (€) which have no points in common with Z E;, and

i=1

by E,i. any one of these sets with diameter exceeding d,/2. Such
a set must exist, unless the sets Fy, B, ..., E, already cover the
whole of the set 4, in which case they constitute the sequence whose
existence was to be established. We may therefore suppose that
this induction can be continued indefinitely.

To show that the infinite sequence {E.} thus defined covers 4
almost entirely, let us write

(3'3) B:A—'ZEH
n

and suppose, if possible, that |[B|>0. On account of condition (i), we
can associate with each set H. a cube J, such that E.(_J. and
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| B> a:|Jn]. Let Jn denote the cube with the same centre as Jx
and with diameter (4m--1)d(Jn). The series

(3.4) n2|7n| =(4m—+1)" - 2 | < (4m4-1)" 2 2 | Bl < (4mm4-1)"- 0

converges; therefore we can find an integer N such that Y |J/<|B|.
n="N-+1

It follows that there exists a point x,eB not belonging to any Jn
for n>>N; and since by (3.3) the point x, does not belong to '
n

and the sets E, are supposed closed, there must exist in € a set F
containing xz, and such that

(3.5) E-En=0  jor n=1,2,..,N.

Hence the set I has common points with at least one of the sets En

for n>N; for otherwise we should have 0 <<d(E)<C 6, <<20(Eny) <<

< 20(Jny1) for every positive integer n, and this is clearly impossible

since by (3.4) we have lim d(J.)=0. Let n, be the smallest of the
n

values of n for which E-E,=30. Then on the one hand, E:-E,=0
for n=1,2,...,n,—1, so that

(3.6) O(B) < On,1;

and on the other hand, by (3.5), n,>>N, which implies, by definition
of x,, that x, does not belong to <7~,.U. Thus we find that there are
both some points outside j\r;u and some points belonging to the set
En,_Jn, which are contained in the set E; this set must therefore
have diameter exceeding 24 (J,)>=>20(En)>0n_1, in contradiction
to (3.6). The assumption that |B|> 0 thus leads to a contradiction
and this proves the theorem, subject to the additional hypotheses
(i) and (ii).

b) Now let € be any family of closed sets covering the set 4
in the sense of Vitali; and let us denote, for any positive integer n,
by 8. the sphere S(0;n) and by A. the set of the points xe 4 - S
for which there exists a sequence of sets tending to x and consisting
of sets (€) whose parameters of regularity exceed 1/n. The sets A
constitute an ascending sequence and A=1lim 4,.

We can now define by induection a sequence of families of
sets {Tn; subject to the following conditions: 1° each family %,
consists of a finite number of sets (€) no two of which have common
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points and none of which, for n>>1, have points in common with
the sets of preceding families %, F,, ..., Tpy; 20 denoting by Th
the sum of the sets which belong to ¥,

(3.7) 14, f:ZiTil <1/n.

To see this, suppose that for n<{p we ha,ve determined families »
subject to 1° and 20. Write A, Pl = A,,+1— Z T; and cons1der the
family of all the sets (€) which are contained in the open set C Z T; and

whose parameters of regularity exceed 1/(p+1). This fa,mlly evid-
ently covers the set Ap—HCAp—I—IC Sp41 in the sense of Vitali, and
by what we have already proved we can extract from it a sequence \E}
of: sets, no two of which have common points, so as to cover A,,+1
almost entirely. Therefore, for a sufficiently large index i,

|41 ——;I'Ti—%]E,-l-——]A,,H —,;;Eil <1/(p+1),

and, denoting by €, the family consisting of the sets ﬁl, 1472, ey E’m,-(,,
we find that conditions 1° and 2° hold when n— p+1.
Let us now write $=)'%,. The family € consists of a finite

number, or of an enumerable infinity, of sets (€) no two of which
have common points. Denoting the sum of these sets by 7T, we find,
by (3.7), [A—T|=0 and this completes the proof.

The proof given above is due to S. Banach [3] (for other proofs cf. C. Ca-
rathéodory [II, pp. 2909——307] and T. Radé [3]).

Theorem 3.1 was proved by G. Vitali [3] in a slightly less
general form; he assumed the family ¢ to consist of cubes. H. Le-
besgue [5] while retaining the line of argument of Vitali, showed
that the conclusion drawn by Vitali could be generalized as follows:

(3.8) Theorem. Given a set A and a family G of closed sets, suppose
that with each point xe A we can associate a number a>>0, a sequence
{Xu} of sets (€) and a sequence {J.) of cubes such that

xEJn, XnCJn, |Xn|>a'JJnl fOT %=1,2,..., a/ﬂd ]imd(Jn):O.
n

Then € contains a sequence of sets no two of which have common
points, that covers the set A almost entirely.
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This statement, although apparently more general than
that of Theorem 3.1, easily reduces to the latter. For let us denote
by €° the family of all the sets of the form E4-(x), where K is any
set of € and x any point of the set A. The family €O clearly covers
the set A in the Vitali sense, and by Theorem 3.1 we can therefore
extract from it a sequence {En} of sets no two of which have common
points and which covers the set A almost entirely. Now each set En
either already belongs to €, or becomes a set (€) as soon as we
remove from it a suitably chosen point. Therefore, removing where
necessary a point from each En, we obtain a sequence of sets (€) no
two of which have common points and whose sum, since it differs from
JE» by an at most enumerable set, covers A almost entirely.

n
For further generalizations of Vitali’s theorem (which, again, can be proved

without introducing fresh methods), see B. Jessen, J. Marcinkiewicz and
A. Zygmund [1, p. 224].

It is easy to see that the hypothesis that the family € covers the set A
in the Vitali sense (and not merely in the ordinary sense) is essential for the
validity of Theorem 3.1. But, as has been shown by 8. Banach [1] and H. Bohr
(vide C. Carathéodory [1I, p. 689]), this hypothesis cannot be dispensed with
in the theorem even in the case where € is a family of intervals such that to each
point % of the set A there corresponds a sequence {I,,} of intervals belonging to €,
of centre x and diameter d(I,) tending to zero as n—»oo.

For covering theorems similar to that of Vitali and which correspond to
linear measure (length, ef. Chap.II, §9) of sets, vide W. Sierpinski [7],
A. 8. Besicovitch [1] and J. Gillis [1].

§ 4. Theorems on measurability of derivates. Of the
two theorems which we shall establish in this §, the first is due to
S. Banach [4, p.174] (cf. also A. J. Ward [2, p. 177]) and concerns
the extreme derivates of any function of an interval (not necessarily
additive). We begin by proving the following lemma:

(4.1) Lemma. Amwy set expressible as the sum of a family of intervals
is measurable.

Proof. Let § be any family of intervals and let S be the sum
of the intervals of 3. Let ¢ denote the family of cubes each of which
is contained in one at least of the intervals (3). The set § is clearly
covered by € in the Vitali sense and by Theorem 3.1, § is therefore
expressible as the sum of a sequence of cubes (€) and of a set of
measure zero. Therefore the set S is measurable, as asserted.

(4.2) Theorem. IfF is afunction of am interval, its two extreme ordinary
derivates F and F and its extreme strong derivates F's and Fs are measurable.
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Proof. Let us take first the strong derivates of F, say F..
Let a be a finite number and P the set of the points x for which
F.(x)>a. For any pair of positive integers h and k, let us denote
by P, the sum of all the intervals I for which J(I)<C1/k and
F(I)/I|ZZa+1/h. We see at once that P:IZUPM. Now the sets

P, are measurable on account of Lemma 4.1 and so is the set P.
This proves F.(x) to be a measurable function.

Consider next the ordinary upper derivate F. As before let a
be any finite number, and ¢ the set of the points « at which F(z)>a.
In order that a point x should belong to @, it is clearly neces-
sary and sufficient that there should exist a positive number @
and a sequence {I, of intervals tending to z such that r(l.)>=a
and F(I,)/|I.l==ae+a for n=1,2,.... Hence denoting for any pair
of positive integers h,k by Q. the sum of the intervals I such that
r(I)>=1/h, (1) <<1/k and FI)/|I|==a+1/h, we find easily that
ngth,k. Thus, since each set @, is measurable by Lemma 4.1,

so is also the set ¢). The derivate F(x) is therefore measurable.

It follows in particular from Theorem 4.2 that the bilateral
extreme derivates of any function of a real variable are measurable.
The same is not true of unilateral extreme derivates. Neverthe-
less, as shown by S. Banach [2] (ef. also H. Auerbach [1]), these
derivates are measurable whenever the given function is so. Similarly
by a theorem of W. Sierpinski [8], the Dini derivates of a function
measurable (B) are themselves measurable (B). These two results
are included in the following proposition, from which they are
obtained by choosing the class ¥ to be either ¥ or B.

(4.3) Theorem. If X is an additive class of sets in L2y, which includes the
sets measurable (B), the Dini derivates of any function of a real variable
which is finite and measurable (X), are themselves measurable (X).

Proof. If F is any finite function of a real wvariable, x any
point and h, k any pair of positive integers subject to k> h, let us
write D, x(F; x) for the upper bound of the ratio [F(t)—F (x)}/(l—=x)
when z+1/k<t<x-+1/h. At any point & we clearly have

(4.4) F+(x) =lim lim Dy ,(F; x).
h k

Now let ¢ be any finite number and consider the set
(4.5) E[Dyr(F;x) > al.

S, Saks. Theory of the Integral. 8
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We see at once that if the function F is constant on a set E, the
set of the points # of E at which Dj,(l;x)>a is open in ¥ (cf.
Chap. IT, p.41). Thus the set (4.5), and consequently the expression
Dy i (F;x) as function of x, is measurable () whenever the function
ig finite, measurable (X) and assumes at most an enumerable infinity
of distinet values.

This being so, let F be any finite function measurable ().
We can represent it as the limit of a uniformly convergent sequence
{Fa} of functions measurable (%) each of which assumes at most
an enumerable infinity of distinet values: for instance we may write
Fu(x)=1i/n, when im<<F(xr)<(¢+1)n for i¢=..—2,—1,0,1,2,....
We then have Dy, (F;x)=lm D,,(Fn;x), and since by the above

the functions Djx(Fn;#) are measurable (X) in x, so is Dyx(F; ).
It follows at once from (4.4) that the derivate F*(x) is also meas-
urable (¥%), and this completes the proof.

§ 5. Lebesgue’s Theorem. We shall establish in this § the
fundamental theorem of Lebesgue on derivation of additive functions
of a set and of additive functions of bounded variation of an interval.

(5.1) Lemma. If for a non-negative additive function of a set @ the
inequality DO(x)Z=a holds at every point x of a set A, then

(5.2) P(X)=a-|A
holds for every set X ) A, bounded and measurable (B).

Proof. Let ¢ be any positive number and b any number less
than a. By Theorems 6.5 and 6.10 of Chap. I1I, there exists a bounded
open set (¢ such that

(6.3) XC@q and D(X) = D(G)—e.

Let us denote by ¢ the family of closed sets E( G for each
of which @ (E)=>b-|E|. Since by hypothesis, D@ (x)=>a>b at any
point ze A, the family € covers the set A in the Vitali sense, and
by Theorem 3.1, we can extract from it a sequence {E.} of sets no
two of which have common points, so as to cover almost entirely
the set A. Therefore, on account of (5.3),

O(X)=D(G)—e=) OB, —ez=b-D | By —e=b-|A| —e.

In this we make ¢— 0 and b— a, and (5.2) then follows at once.
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(5.4) Lebesgue’s Theorem. An additive function of a set is almost
everywhere derivable in the general sense. An additive function of
bounded variation of an interval is almost everywhere derivable in
the ordinary sense.

Proof. On account of Theorem 2.1 we may restrict ourselves
to non-negative additive functions of a set.

Let @ be such a function and suppose that DP(x)>DD(x)
bolds at each point = of a set A of positive measure. For any pair
of positive integers h and % let us denote by A, the set of the points
2 of 4 for which D® () > (h+1)/k>h/k>D®(x). We have A:}%Ah,k,

and therefore there exists a pair of integers h, and k, such that
|Ap.n)>>0. Let us denote by B any bounded subset of Ap, of
positive outer measure. Let & be any positive number and @
a bounded open set such that

(5.5) BCG and |G| << |B| + e

Consider the family of all closed sets E( G for which @(E)g%’-lE[.
[

This family covers the set B in the Vitali sense, and therefore con-
tains a sequence {E,) of sets no two of which have common points,
which covers the set B almost entirely. Writing @ = D B, we find, on

>

account of (3.5),

5.6) Q=3 BE)< L. 31| <016] < 2 (Bl+e).
n 0o n 0 0

On the other hand, D®(x)>>(hy+1)/k, at each point x e B. Therefore,
since all but a subset of measure zero of the set B is contained in the
set @, it follows from Lemma 5.1 that (15(Q)2h"I;|~ 1

-|B|, and therefore,

on account of (5.6) that (hy+1)-|B|<hy-(|B|+¢). But this is clearly
a contradiction since |B|>>0 and & is an arbitrary positive number.
Thus the function @ has almost everywhere a general derivative
D®. It remains to prove that the latter is almost everywhere finite.
Suppose the contrary: there would then exist a sphere S such that
DO (x)=+4oc0 at any point x of a subset of S of positive measure.
We should then have, by Lemma 5.1, &(8)=-+ oo, which is impos-
sible and completes the proof.
8*
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The preceding theorem was proved by 1. Lebesgue [I, p. 128] first
for continuous functions of a real variable and later [5, p. 408—425] for additive
functions of a set in R,. Among the many memoirs devoted to simplifying the
proof we may mention: G. Faber [1], W. H. and G. C. Young [1]. H. Stein-
haus [1], Ch. J. de la Vallée Poussin [I, 1; p. 103], A. Rajchman and
8. Saks [1], J. Ridder [3] (ef. also the direct proof of Lebesgue’s theorem for
additive functions of bounded variation of an interval in the first edition of this
book). More recently F. Riesz [6; 7] has given an elegant proof of Lebesgue’s
theorem for functions of a real variable. Finally 8. Banach 4, p. 177] has exten-
ded the theorem in question to a class of functions of an interval which is slightly
wider than that of additive functions of bounded variation. The proof given
here applies also without any essential modification to the theorem of Banach.

Tor an extension of the theorem to certain abstract spaces, see J. A, Clark-
son [17 (c¢f. also S. Bochner [3]).

Another application of Lemma 5.1 is the proof of the fol-
lowing theorem on term by term derivation of monotone sequences
of additive functions:

(5.7) Theorem. If an additive function of a set @ is the limit of a mono-
tone sequence { Dy} of additive functions of a set, then almost everywhere
n

In the same way, if an additive function of bounded variation
of an interval, F, is the limit of a monotone sequence {(Fn} of additive
functions of bounded variation of an interval, then almost everywhere
I (2) ==1lim Fa(x).

n

Proof. Suppose, to fix the ideas, that the sequence {®@.} is
non-decreasing and write 0,=® — @,. To establish the first part
of the theorem, we need only show that

(5.8) lim DO, (x) =0

almost everywhere.

For this purpose, let 4 denote the set of the points x at which
(5.8) is not satisfied and suppose that |4|> 0. For any positive inte-
ger k we write A, for the set of the points « at which lim DO (x) =1k,

Since A=_2'A;, there is an index k=Fk, such that [4;|> 0. Let B de-
k

note any bounded subset of Az, of positive measure and I an interval
containing B. Since the sequence {6,) is non-increasing, so is the
sequence {D®,) and therefore we must have DOu(x)=>1/k, for
n=1,2,.. at any point xe BC A,. Hence by Lemma 5.1, we find
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6.(I) > |B|/k, for every positive integer n, and this is clearly a con-
tradiction since |B|>0 and lim 6,(I)= O (I)—1lim P.(I) = 0.

We might prove similarly the second part of the theorem,
but actually the latter can be reduced at once to the first part.
In fact if we suppose the given sequence {F.} non-decreasing and
write 1,=F—F,, then the functions of an interval, T, are non-
negative and the sequence {T»(I)} converges to 0 in & non-increasing
manner for every interval I. The sequence {I7} of additive and
non-negative functions of a set is then also non-increasing and con-
verges to 0 (cf. Chap. III, Theorem 6.2). Hence, by the first part of
our theorem and by Theorem 2.1, we have lim T»(@)=lmDTx(x)=0,
and therefore lm F,(x)=F'(x), for almost all x, which completes

n

the proof.

For functions of a real variable, Theorem 5.7 may be stated in the fol-
lowing form (vide G. Fubini [2]; cf. also L. Tonelli [3] and F. Riesz [6; 7]):

If F(x):ZFn(w) is a convergent series of monotone non-decreasing functions,
n

then the relation F'(x)= ZF;(W) holds almost everywhere.
n

§ 6. Derivation of the indefinite integral. Given a set A4,
let us write La(X)=|4-X| for every measurable set X. The function
L4 of a measurable set, thus defined, is termed measure-function
for the set, 4. Considered as function of a measurable set, or as
function of an interval, L, is additive and absolutely continuous;
and, if further the set A is measurable, we have L.(X )=.‘£0A (x)dw

for every measurable set X, i.e. the function L, is the indefinite
integral of the characteristic function of the set 4.

(6.1) Theorem. For any set A we have
(6.2) DLa4(x) = cal)

at almost all x of A; and if further, the set A is measurable, then (6.2)
holds almost everywhere in the whole space.

Proof. By Theorem 6.7 of Chap.III the set A can be enclosed
in a set He®, for which the measure-function is the same as for
the set A. Let us write H=[]G., where {G.} is a descending
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sequence of open sets. We clearly have DLg (#)=1 at any point e G,

and so a fortiori at any point xe AC H(C Gn». Hence, remembering
that the sequence {Lgn} of functions of a set is non-increasing and

converges to the function L,=Lpy, it follows by Theorem 5.7 that
DL4(2) = lim DLGn(m) =1=-ca(x) almost everywhere in 4.

Now suppose the set A measurable. Then L,(X)+ Lea(X)=|X]
for every measurable set X, and consequently DLa(x) -+ DLca(x)=1
at any point # at which the two derivatives DLy4(x) and DLca(x)
exist, i. e. almost everywhere by Lebesgue’s Theorem 5.4. Now, by
what has been proved already, DLca(x)=1 almost everywhere
in CA. Therefore DLy(x)= 0=ca(x) at almost all x of CA4 and
this shows that (6.2) holds almost everywhere in the whole space.

(6.3) Theovem. If © is the indefinite integral of a summable
function f, then

(6.4) DO (x)={(x)
at almost all points x of the space.

Proof. We may clearly assume that f is a non-negative function.
If f is the characteristic function of a measurable set, the relation (6.4)
holds almost everywhere by the second part of Theorem 6.1. The rela-
tion therefore remains valid when f is a finite simple function, i.e.
the linear combination of a finite number of characteristic functions.
Finally, in the general case, any non-negative summable function f
is the limit of a non-decreasing sequence {f.) of finite simple measur-
able functions; therefore, denoting by @, the indefinite integral of f,,
it follows from Theorem 5.7 that D®(x) = lim DP,(x) = lim fu(x)=f(x)

almost everywhere, and this completes the proof.

§ 7. The Lebesgue decomposition. In this § we shall give
for additive functions of a set (B), a more precise form to the
Lebesgue Decomposition Theorem 14.6, Chap. I. We shall prove in
fact that the absolutely continuous function which occurs in this
theorem is the indefinite integral of the general derivative of the
given function. At the same time we shall establish the corresponding
decomposition for additive functions of bounded variation.
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(7.1) Lemma, If @ is a singular additive function of a set, then
DO(x)=0 almost everywhere.

Proof. We may assume (cf. Chap. I, Theorem 13.1 (1°)) that
the function @ is non-negative.

The function @ being singular, there exists a set E, measur-
able (B) and of measure zero, such that

(7.2) O(X-CE,)=0 for every set X bounded and measurable (B).

Suppose that the set of the points # at which D®(x)>0 has
positive measure. Then denoting by Q. the set of the points xeCE,
at which D®(x)>1/n, there exists a positive integer N such that
|Qx|>0. Consequently, there also exists an interval I such that
II-Qx >0, and by Lemma 5.1 we find @(I.CEy)=O(I-Qn)=
> |I-Qa|/N>0, which clearly contradicts (7.2).

(71.3) Theorem. If @ is an additive function of a set, the derivative
D& is summable, and the function D is expressible as the sum of ils
function of singularities and of the indefinite integral of its general
derivative.

Proof. By Theorem 14.6, Chap. I, we have &®=64-& where 6
is a singular additive function of a set and & is the indefinite integral
of a summable function f. Hence, making use of Theorem 6.3 and
of Lemma 7.1 we find almost everywhere D@ (z)=D 6 (2)+D @(2x)=f(x)
and this proves the theorem.

We can extend the theorem to additive functions of bounded
variation of an interval. We have in fact:

(1.4) Theorem. If F is an additive function of bounded variation
of an interval, the derivative F' is summable, and the function F is
the sum of a singular additive function of an interval and of the in-
definite integral of the derivative F'.

Movreover, if the function F is non-negative, we have for every
nterval 1,

(7.5) F(Iy) = [F'(@)dx,
I,

equality holding only in the case in which the function F is absolutely
continuous on L.
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Proof. We may clearly assume the function F to be non-
negative in both parts of the theorem. The corresponding function
of a set I'*, together with its function of singularities, will then also
be non-negative; and on account of Theorems 7.3 and 2.1 we shall have

(7.6) FNX >/DF* dm—fF ydx  for every bounded set X ¢B.

Let us write for any interval I

(7.7) T(I) = F(I) /F

The function of an interval thus defined is clearly non-negative,
since by (7.6)
F)ZFHI°) > [F'(2) de = [F'(a) do
° i

for every interval I. Moreover, if we take the derivative of both
sides of (7.7) in accordance with Theorem 6.3, we find DT*(x)=1"(x)=0
almost everywhere. It therefore follows from Theorem 7.3 that the
function of a set T* — and so by Theorem 12.6, Chap. I1I, the
function of an interval 7' — are singular. The relation (7.7) therefore
provides the required decomposition for the function F.

Finally, since the function 7' is non-negative, it follows from
(7.7) that the inequality (7.5) holds for every interval I,, and re-
duces to an equality if, and only if, 7([)=0 for every interval
I(CI, 1In other words, in order that there be equality in (7.5) it
is necessary and sufficient that the function F be on I, the inde-
finite integral of its derivative, i.e. be absolutely continuous on I,,.

Theorem 7.4 provides a decomposition of an additive function
of bounded variation of an interval into two additive functions
one of which is absolutely continuous and the other singular. Just
as for functions of a set, this decomposition is termed Lebesgue
decomposition and is uniquely determined for any additive function
of bounded variation. For suppose that G,+7,=G,+T, where G,
and G, are absolutely continuous functions and 7, and T, are sin-
gular functions; then G,—@,=T;—7T, and by Theorem 12.1 (29, 6°),
Chap. I1I, this requires G;=G, and T,=7, The absolutely con-
tinuous function and the singular function occurring in the Lebesgue
decomposition of a function of bounded variation F are called,
respectively, the absolutely continuous part and the function of sin-
gularities of the function F.
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Al

As a special case of Theorems 7.3 and 7.4, let us mention the
following result, in which part 2° includes Lemma 7.1 and its
converse.

(7.8) Theorem. 19 An additive function of a set, or an additive function
of an interval of bounded variation, is absolutely continuous, if, and
only if, it is the indefinite integral of its derivative.

20 An additive function of a set, or an additive function of an
interval of bounded variation, is singular if, and only if, its derivative
vanishes almost everywhere.

Finally, let us mention also an almost immediate consequence
of Theorems 7.3 and 7.4:

(7.9) Theorem. The derivative of the absolute variation of en ad-
ditive function of a set, or of an additive function of an interval of
bounded variation, is almost everywhere equal to the absolute value
of the derivative of the given function.

Proof. Consider to fix the ideas, an additive function of bound-
ed variation of an interval, F. Let T be the function of singular-
ities of ¥, and let W and V be the absolute variations of the func-
tions F and T respectively. In virtue of Theorem 7.4 the relation

F(I)= / F'(x)dx+T(I) holds for every interval I, and hence also
i
(7.10) WD) < [|F'(@)| dow + V(D).
1

Now the function V is singular together with T', so that its deriva-
tive vanishes almost everywhere by Lemma 7.1. Hence taking the
derivative of (7.10), we find on account of Theorem 6.3 that
W' (x)<<|F'(x)] almost everywhere, and this completes the proof
since the opposite inequality is obvious.

§ 8. Rectifiable curves. By a curve in a space I, we shall
mean any system C of m equations #;= X,(t) where ¢=1,2,...,m and
the X(t) are arbitrary finite functions defined on a linear interval
or on the whole straight line R,. The variable ¢ will be termed para-
meter of the curve. The point (X,(t), Xa(t), ..., Xm(?)) Will be called
point of the curve corresponding to the value ¢ of the parameter,
and denoted by p(C;t). If E is a set in R, the set of the points
p(C;t) for te E will be called graph of the curve ¢ on E and de-
noted by B(C; E) (cf. the similar notation for graphs of functions,
Chap. III, p. 88).
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For simplicity of wording we consider in the rest of this §,
only curves in the plane R,; we shall suppose also that the functions
determining these curves are defined in the whole straight line R,.
But needless to say, these restrictions are not essential for the
validity of the proofs that follow.

Let therefore ' be a curve in the plane, defined by the equa-
tions z=X(t), y=Y(t). Given any two points a and b>a, a finite
sequence 7={{jj;—0,1,..,» of points such that ¢=1t<t,<<...<t.=b
will be called chain between the points ¢ and b, and the number

x

20 (pi—1, pi), where 7=p(C; 1),
=1

will be denoted by o¢(C;7). (We may regard this number as the
length of the polygon inseribed in the curve ¢ and whose vertices
correspond to the values a=ty,¢,...,t.=b of the parameter.)
The wupper bound of the numbers o(C;t) when 7 is any chain
between two fixed points ¢ and b, will be called length of arc of the
curve O on the interval I=[a, b], and will be denoted by S(C;I)’
or S(C; a,b). If S(C;I)3=00 the curve O is said to be rectifiable on
the interval I; and if this is the case on every interval we say sim-
ply that the curve C is rectifiable.

(8.1) For any curve C we have S(C;a,b)+S(C;b,e)=8S(C;a,c)
whenever a<b<ec.

It is enough to prove that S(Cj;a,b)+S(C;b, ¢)==8(C; a, ¢),
since the opposite inequality is obvious. Let ©={a=t,, t,, ..., ta=0}
be any chain between a and ¢, and let % be the index for which
t1,71<b <tp. Writing Ty= {a::to, tl’ sery th-—l, b} and @2={b, th, ceey th= G},
we have ¢(C;7)<<o(C; 11) 4 0(0; 7,) <<S(C; @, b)+S(C; b, ¢), and so
8(0; a, ¢) <S(C; a, b) + S(C; b, ¢).

It follows from (8.1) that if a curve (' is rectifiable, the length
of are S(C;I) is an additive function of the interval I. We shall
call this function length of the curve C. Any function of a real vari-
able that corresponds to this function of an interval, i.e. any
function 8(t) such that 8(b)—S8(a)=S(C;a,b) for every interval
[a, b], will also be termed length of the curve C.
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(8.2) Jordan’s Theorem. If C is a curve given by the equations
x=X(t), y=Y (t), we have

WX 1) <S8 (05 1), W(Y; I)<<S(C5 1),

(8.3) )
W(X; )+W(Y; I)2=8(C; I)

for any interval I; and therefore, in order that the curve C be vectifiable
on an interval Iy, it is necessary and sufficient that the functions X
and Y be of bounded variation on I,

Proof. Given an interval I=[a,b], we easily find that for
any chain t={a={,, t;, ..., t»=>0} Dbetween the points a and b,

) —x- D <o(G 0,  SI¥0) =¥ <o(0;9)
i= =
(65 1) < $130) — X (0] + 31 Y6) — V)| S WE; D+Ws D,

from which the inequalities (8.3) follow at once.

(8.4) Theorem. If C is a rectifiable curve given by the equations
z=X(t), y=Y (1), and the function S(t) is its length, then

(i) in order that S(t) be continuous at & point [absolutely contin-
wous on an interval] it is necessary and sufficient that the two func-
tions X (t) and Y (1) should both be so;

(ii) we have A{B(C; E),<<|S[E] for any linear set E (i.e. on
any set E the length of the graph of the curve C' does not exceed the
measure of the set of values taken by the function S(t) for te E);

(iii) [S"(O)RP=[X'(t)P+[X'(t)} for almost every t;

b
(iv) 8(C;a,b) }/V[X’(t)?—}—[l”(tﬁz dt  for every interval {a, b),

and the sign of equality holds if, and only if, both the functions X (i)
and Y (t) are absolutely continuous on [a, b].

Proof. re(i): This part of the theorem is an immediate con-
sequence of the relations (8.3), since by Theorems 4.8 and 12.1 (1°)
of Chap. ITI, a function of bounded variation is continuous at a point
[absolutely continuous on an interval] if, and only if, its absolute
variation is so,
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re(ii): Let ¢ be any positive number and let {I,} be a sequence
of intervals such that

(8.5) S[E]C%’L, and (8.6) ;[L,]<[S[E]|—I—e.

We may clearly assume that no interval I, has a diameter exceeding e,

This being so, we write E=B (C; E) and we denote by B,
the set of the points p(C;t) of the curve O for each of which S(¢) ¢ In.
It is easy to see, on account of (8.5), that ﬁC Z .. On the other

hand 0(E,)<< L,)_[L,{<e for any =, and it follows from (8.6)
(cf. Chap. IT, §8) that A“) E)<|S[E]+¢, and hence by making &
tend to zero, that A(E |S[E]!, as asserted.

re (iii): Let 10_[%, be] be any interval. We shall show suec-
cessively that both the relations

(8.7) S'OP2[X'OP+[Y' (O] and (8.8) [8'()P<[X'(O)P+[Y' ()]

hold almost everywhere in I,; here the derivatives &8'(t), X'(¢)
and Y'(#) exist almost everywhere on account of Theorem 8.2 and
of Lebesgue’s Theorem 5.4.

We have S (t-+h)—8 (1) = [ X (4 k)= O +[ Y ¢+ h)—Y )]}
for any point t and any h > 0, and if we divide both sides by h and
make h — 0, this implies the relation (8.7) at any point ¢ for which all
three functions are derivable at the same time, i. e. almost everywhere.

Now let A denote the set of the points te I, at which the three
derivatives X'(t), Y'(t) and 8'(t) exist without satisfying the inequal-
ity (8.8); and for any positive integer n, let A, denote the set of
the points te A for each of which the inequality

DI = (XM + YO+ 1n

holds for all the intervals I containing #, whose diameters are less
than 1/n. Clearly A=2>'A4,.

Keeping » fixed for the moment, let € be any positive number.
There exists a chain v={a,=1y, 1, ...,{,=>0, such that t—t,—1<1/n
for k=1, 2, ..., p, and such that S(C;I,) < o(C; 1)+ ¢ Consequently,
writing for brevity J,=[t, ,, 1], p,=p(C;t,), 0,=0(p, ,,P,), We have

(8.9) S(Jr)=o0rt+|Jin for k=1,2,...,p, whenever J; An3=0,

and on the other hand
p

p
(8.10) 28(T)<Dorte.
*=1

k=1
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Therefore if j(") stands for a summation over all the indices £
k&

for which J4-A, = 0, we find on account of (8.9) and (8.10) that

»

4, < X < IS ) < ST, — e, <

Now since € is an arbitrary positive number, it follows that
|4,/=0 for any =, and therefore also that |[4|=0. Thus the in-
equality (8.8) holds almost everywhere, as well as the inequality (8.7),
and this completes the proof of part (iii) of the theorem.

Finally, since S(C;a, b)=S(b)—=S8(a), part (iv) reduces o1
account of (i) and (iii) to an immediate consequence ot Theorem 7.4.

Theorem 8.4 (in particular its parts (iii) and (iv)) is due to L. Tonelli
[1; 4]; cf. also F. Riesz [6; 7].

As regards part (i) of the theorem, it may be observed that in the case
in which the curve € has no multiple points (i. e. when every point of the curve
corresponds to a single value of the parameter) the inequality \{B(C; E)} 2 |S[E]|
can easily be shown to reduce to an equality.

As proved by T. Wazewski [1], any bounded continuum P of finite
length may be regarded as the set of the points of a curve C on the in-
terval [0, 1], such that $(C;0,1)- 2- A(P).

§ 9. De la Vallée Poussin’s theorem. With the help of
the results established in the preceding § we can complete further,
for continuous functions of bounded variation of a real variable,
the decomposition formula of Lebesgue.

We shall begin with the following theorem, which itselt com-
pletes, in part at any rate, the second half of Lebesgue’s Theorem 5.4.

(9.1) Theorem. If F(x) is a function of bounded variation and W (x)
denotes its absolute variation, then for the set N of the points at which
the function F(x) is continuous but has no derivative finite or infinile,
we have

(9.2)  |F*N)|=W*N)==|N|=0 and (9.3) AB(F; N))=0.

Proof. Consider the curve (: x=uwx, y=F(x). Let S(x) be
the length of this curve and let E be the set of the values assumed
by the function §(x). For any se E, denote by X(s) the value of »
for which S(z)==s and write Y (s)=F (X (s)). Since (cf. Theorem 3.2)
| X (59) —X (81)|<lsp—sy| and | Y (s9)—Y (5))|<<|sy—sy|  for any pair
of points s,, s, of E, the functions X(s) and Y (s) are continuous
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on the set B, and moreover may be continued on to the closure E
of this set by continuity. If now [a, b] is an interval contiguous
to E, the function X(s) assumes equal values at the ends of this
interval, and the point =X (a)=X(b) is a point of discontinuity
of the function ¥ (x). We shall complete further the definition of
the functions X (s) and Y (s) on the whole straight line I, so as
to make the former constant and the second linear, on each interval
contiguous to E.

This being so, consider the curve C, given by the equations
rx=X(8), y=Y (s). We verify easily that the parameter s of this
curve is its length. (Actually we see easily that the graph of the
curve (), is derived from that of the curve C by adding to the latter
at most an enumerable infinity of segments situated on the lines
x=¢; where ¢; are the points of discontinuity of the function F.)
By Theorem 8.4 (iii), we therefore have [X'(s)[-F[Y'(s)=1 for
almost all s, and therefore the set H of the points s for which either
one of the derivatives X'(s) and Y'(s) does not exist, or both exist
and vanish, is of measure zero.

Now we see at once that if se F—H, then at the point z=X(s),
the derivative F'(x) exists (with the value Y'(s)/X’(s) if X'(s)5-0,
or with the value +oo if X'(s)=0 and Y'(s)20). Therefore
NCX[E-H}], or what amounts to the same, S[N]C E-H, and
hence [S[N]<|H|=0.

From this we derive at once with the help of Theorem 8.4 (ii)
the relation (9.3), since B(F; N)=B((; N). Finally, the funection
S(x) is continuous (cf. Theorem 8.4 (i)) at any point at which the
function F'(x) is continuous, and so at any point of the set N, and
therefore it follows from Theorem 13.3, Chap. III, and from Theo-
rem 8.2, that |F*(N)<<W*N)<<S*(N)=|S[N]=0; this completes
the proof.

(9.4) Lemma, If F(x) is o function of bounded variation, then

(i) FXA)Z=k-|A| for any bounded set A and any finite number k
whenever the inequality F'(x)Z=k holds at every point x of A (and
the assertion obtained by changing the direction of both inequalities
is then evidently also true),

(ii) F¥(B)=0 for any bounded set B of measure zero throughout
which the derivative F'(x) exists and is finite.
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Proof. re(i). Let &€ be any positive number. Denote, for any
positive integer n, by A™ the set of the points zeA such that
F(I)>2(k—e¢)-]I|] holds whenever I is an interval containing # and
of diameter less than 1/n. Clearly A = lim A™,

Keeping the index # fixed for the moment, let us denote by G
a bounded open set containing A("), such that (cf. Theorem 6.9,
Chap. ITI)

(9.5) |F*(X)—F*A™)|<<¢ whenever APCXCG™,

and let us represent G as the sum of a sequence {Iy"},— .. of non-
overlapping intervals. We may clearly suppose that all the inter-
vals I” are of diameter less than 1/n and that their extremities

are not points of discontinuity of F(x). So that if Z(n) stands for

, p
summation over the indices p for which I9.4™Z0, and X
denotes the sum of the intervals IfU") corresponding to these indices,
we find  FHX®)=Y"FI") > (k—e)- X U > (k—e)-|A™], and
I3 p

hence on account of (9.5), F*(A(")) |A(")| &. Making e—>0
and n— oo, we obtain in the limit F*(A)>Ic Al

re(ii). Let B™ denote the set of the points xeB for which
F'(#)>=>—mn. By (i) we have F*(B™)=—n-|B”|=0 for any positive
integer n, and so F*(B)>>0. By symmetry we must have also
F*(B)<<0, and therefore F*(B)=0.

(9.6) De la Vallée Poussin’s Decomposition Theorem. If F(x)
is a function of bounded variation with W (x) for its absolute varia-
tion, and if B . and E_.. denote the sets in whwh F(x) has a deriv-
ative equal to -+ oo and to — oo respectively, then

(i) for any bounded set X measurable (B) at each point of which
the function F(x) is continuous, we have the relations:

(9.7) FHX)=F*X-B ) +F*X-B o)+ [ F'(2) d,
X

(9.8) WHX)=F"X B o) HFX B )| + [ |[F(2)| dacs
X

(i) the two derivatives F'(x) and W'(x) exist and fulfil the rela-
tion W'(z)=|F'(z)] at any point x of continuity of F, except at
most at the points of a set N such that W*(N)=|N|=0 (i.e. a set
which is at the same time of measure (L) zero and of measure (W) zero ).
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Proof. re(i). On account of Theorem 7.3 there exists a set 4
of measure zero such that for any set X bounded and measurable (B)

(9.9) FHX)=FXX-A)+ [ F'(2) dr.
X

Supposing further that the function £ is continuous at every
point of X, we may assume, in virtue of Theorem 9.1, that the function
F(x) has everywhere in A4, a derivative, finite or infinite. Moreover
since by Lemma 9.4 (ii) the function F*(X) vanishes for any bounded
subset of A—(F.iwt F ), we may assume that A Eiot+FE o
Finally, we obtain directly from (9.9) that F*(.X) vanishes when
A (C04 and |X|=0. We may therefore choose simply A=F,+F o
and formula (9.9) hecomes (9.7).

Formula (9.8) is, by Theorem 13.2, Chap. III, an immediate
consequence of (9.7), since Lemma 9.4 (i) shows that F*(X-E;x)>=0
and F*X-E »)<<0 for every set X bounded and measurable (B).

re(ii). Let N be the set of the points « at which the function
F(x) is continuous and either one at least of the derivatives F'(w)
and W'(z) does not exist, or both exist but do not satisfy the re-
lation W'(x)=/F'(x). We then have N.-E o=N-E =0, since
evidently W'(z)=-foo=|F’'(x)] at any point where F'(z)=+oo.
Therefore, since the set N is further, by Theorem 7.9, of measure (L)
zero, it follows from formula (9.8) that W*(N)=0 and this com-
pletes the proof.

Let us mention an immediate consequence of Theorem 9.6. In order that
a continuous function of bounded variation F(x) be absolutely continuous, il is neces-
sary and sufficient that the function of a set F*(X) should vanish identically on the
set of the points at which F(x) has an infinite derivative. In particular therefore,

any continuous function of bounded wvariation which is not absolulely continuous
has an infinite derivative on a non-enwmerable set.

Let us remark further that the theorems of this § cannot be extended directly
to additive functions of an interval in the plane. Thus if F'(I) denotes the con-
tinuous singular funetion of an interval in R,, which for any interval I equals
the length of the segment of the line x=y contained in I, we have F(x)=0
for every point z, so that F'(r)=co does not hold at any point.

§ 10. Points of density for a set. Given a set ¥ in a space
12, the strong upper and lower derivates of the measure-function of ¥
(cf. § 6, p. 117) at a point « will be called respectively the outer upper
and outer lower density of E at x. The points at which these two den-
sities are equal to 1 are termed points of outer density, and the points
at which they are equal to 0, points of dispersion, for the set E.
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If the set E is measurable we suppress the word “outer” inthese
expressions. We see further, that if the set E is measurable, any
point of density for E is a point of dispersion for CE, and vice-versa.

We shall show in this § (cf. below Theorem 10.2) that almost all points
of any set K are points of outer density for £, or what amounts to the same that

(10.1) For almost all points x of E, if {I,} is any sequence of intervals tending

to = (in the sense of § 2, p. 106), we have |E-I |/|I,|—1.

This proposition presents an obvious analogy to Theorem 6.1 and it is
in the form (6.1) that the “‘density theorem’ is often stated and proved either
with the help of Vitali’s Covering Theorem or by more or less equivalent means
(vide, for instance, I.. W. Hobson [I], Ch. J. de la Vallée Poussin [I, p. 71]
and W. Sierpifnski [10]). Theorem 10.2 will be however, so to speak, independent
of Vitali’s theorem, because the sequences of intervals ocecurring in (10.1) are
not supposed regular.

Also, Theorem 10.2 will be more precise than Theorem 6.1, because at
any point x of outer density for a set £ we have a fortiori DL(x)=1, and in-
deed, at any x the relations L/E(w):l and DLg(x)=1 are equivalent. To sece
this it is enough to show that the former of these relations implies the latter,
the converse being obvious from Theorem 2.1. We may assume moreover, on
account of Theorem 6.7, Chap. III, that the set I is measurable.

Let therefore x, be a point such that L’E(wo):l and let {X,} be a regular
sequence of measurable sets tending to x,. Then there exists a sequence {J,} of
cubes such that X, (CJ, and |X,|/|J,|>e¢, where n=1,2,.. and « is a fixed
positive number. Since by hypothesis, |E-J,|/|J,|—1, and so |CE.J,|/|J,|—>0,
it follows that |CE-X, |/|X,,|—> 0, or what amounts to the same that |F. X, |/|.X, | —>1.
Therefore DI (x,)=1.

It is, of course, only for spaces R, of dimension number m = 2 that Theo-
rem 10.2 will differ from Theorem 6.1. The two statements are equivalent for Iv;.

For the various proofs of Theorem 10.2 vide F. Riesz [8] and H. Buse-
mann and W. Feller [1]. In the second of these memoirs will be found a
general discussion of the different forms of ‘“density theorems”.

It is of interest to observe that the proposition (10.1) ceases to be true
even for closed sets E, if the intervals I,, are replaced by arbitrary rectangles
with sides not necessarily parallel to the axes of coordinates. This remarkable
fact has been established by O. Nikodym and A. Zygmund (vide O. Nikodym
[1, p. 167]) and by H. Busemann and W. Feller [1, p. 243].

(10.2) Density Theorem. Almost all the points of an arbitrary set B
are points of outer density for E; and if further the set E is measurable,
almost all the points of CE are points of dispersion for K.

Proof. For simplicity of notation, we shall state the proof
for sets which lie in the plane; the corresponding discussion in any
space It, is however essentially the same (except that in R, as
already remarked, the theorem reduces to Theorem 6.1).

S. Saks, Theory of the Integral. 9
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By Theorem 6.7, Chap. 111, any set can be enclosed in a meas-
urable set having the same measure-function. On the other hand
any measurable set is the sum of a set of zero measure and of a
sequence of bounded closed sets. We may therefore suppose that
the set considered is bounded and closed.

Let ¢ be any positive number. We shall begin by defining
a positive number ¢ and a closed subset A of E such that |[E—A|<e
and that, for any point (&%) in the plane,

0 Elx,n)e By a<<ao<<bl|=(1—¢&)(b—a)
1 X
whenever (E,m)ed, a<<E<<b and b—a<o.
To do this, let us write for brevity, when ¢ is any set in the
plane, szE[(x, n)eQ], and let us denote, for any positive

integer n, byx A, the set of the points (&%) of E such that
|E™.1| > (1—¢)-]I| whenever I is a linear interval containing §
and of diameter less than 1/n. The sequence {4, is evidently
ascending. Let us write

(10.3) N—E—1lim 4,.

For any 7, if £ is a point of the set N, there will then exist,
for each positive integer #, a linear interval I such that §el,
6(I)<<1/n and |[N".I|<T/E™.I7|<(1—¢)-]I|. Therefore the lower
derivate of the measure-function for the linear set N cannot
exceed 1—¢ at any point of this set, whence by Theorem 6.1,

(10.4) IN|=|B[(z, 1) e N]|=0 for every real number 1.

Let us now remark that the sets A4, are closed. For, keeping
for a moment an index n fixed, let (&, 7,) be the limit of a sequence
{(Es M) jr,», .. Of points of A,. Let I, be a linear interval such
that £ el, and d(I,) <<1/n, and let I be any linear interval con-
taining I, in its interior, whose diameter is less than 1/n. Then for any
sufficiently large k, §,¢1 and therefore 1E["'k]-I{>(1——-.s)-|1]. On the
other hand, the set FE being closed, we easily see that
E[""]Dlimksup E[nk]; so that 5E[77°]-I \Zlimksup 1E['7"]-I\>(1—e)-11 ly

and therefore also |[E".I,)>>(1—¢)-|I,|. Hence (&%) edn, i.e.
each set A4, is closed.
It follows, according to (10.3), that the set N is measurable.
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Therefore, applying Fubini’s theorem in the form (8.6), Chap. III,
we conclude, on account of (10.4), that the plane set N is of meas-
ure zero. Consequently |E—A4,|< e for a sufficiently large index n,
and writing 6=1/ny and A=A, we find that the inequality |[E—A4|< e
and condition (i) are both satisfied.

In exactly the same way, but replacing the set E by 4 and
interchanging the rdle of the coordinates x and y, we determine
now a positive number oy < ¢ and a closed subset B of A such that
|A—B|<{& and that, for any point (£ %) in the plane

(i) B(§y)ed; e <y <) = (1—¢) (b—a)
ii v

whenever (§,n)eB, a<<n<<b and b—a<<o,.
This being so, let (§y, 7,) be any point of B. Let J =[e,, 8;; a,, 85]
denote any interval such that (&, n,)eJ and 6(J)< o, <<o. By Fubini’s
theorem (in the form (8.6), Chap. IIT) we have

8
(10.5) B-J = [[E[(@,9) ¢ B; 0, <o <fy] dy.

Since (&, 7,) e B and @, <1, << f,, it follows from (ii) that the
set of the y such that (§,y)ed and o, <Cy<< P, is of measure at
least equal to (1—¢) (f,—a,). On the other hand, since a, <&, <f,,
it follows from (i) that |E[(x,y)e E; oy <o < f] = (1—¢) (B;—ay)

whenever (&§,y)eA. Hence, formula (10.5) gives
B-J| 2 (1—e) (b— @) (B—ap)=(1—¢)* J|,

i. e. the lower density of F is at least equal to (1—é)? at any
point (&g, 1) of B. Therefore, since E— B|<{|E— A|+|4A — B|<2¢
and since ¢ is an arbitrary positive number, the lower density of E
is exactly equal to 1 at almost all the points of the set E, i.e.
almost all points of this set are points of density for it.

The second part of the theorem is an immediate consequence
of the first part. In fact, if the set E is measurable, so is the set CE,
and almost all points of CE, since they are points of density for CE,
are points of dispersion for H.

In connection with the definition of points of density, Denjoy
introduced the important notion of approximate continuity of
a function. We call a function of a point f(x) (in any space I.),

g%
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approximately continuous at a point x,, if f(xy) 4 oo and f(x) — f(xo)
as ¢ tends to @, on a measurable set E for which @, is a point of
density.

(10.6) Theorem. If f is a measurable function almost everywhere
finite on a set E, then the function f is approximately continuous at
almost all points of E.

Proof. On account of Lusin’s theorem (Chap. ITI, §7), given
any >0, we can represent the set E as the sum of a closed set F'
on which the funection f is continuous and of a set of measure less
than . The function f is clearly approximately continuous at any
point of density for the set F, and so, by Theorem 10.2, at almost
all points of F. This implies, as ¢ is an arbitrary positive number,
that the function fis aproximately continuous at almost all points
of the set F itself.

Theorem 10.6 is due to A. Denjoy [5] (cf. also W. Sierpinski [6; 97).
It is easy to see that the converse holds also, i.e. that every function which is
approvimalely continuous al almost all the points of « measurable set I is measurable
on E (vide W. Stepanoff [2] and E. Kamke [1]).

Let us mention also the following theorem, an almost im-
mediate consequence of Theorem 10.6, which completes, in part,
Theorem 2.2 on derivation of an indefinite integral:

(10.7) Theorem. If © is the indefinile integral of a bounded meas-
wrable function f, then O@Yw)=f(x) ot almost all points x, and in
fact, at any point @ at which the function f is approvimately continuous.

Proof. Let z, be a point at which the function f is approx-
imately continuous and let E be a measurable set for which , is
a point of density, while f(x)—> f(x,) as « tends to x, on the set E.
We may suppose (by subtracting, if necessary, a constant from
f(x)) that f(z,)=0. Therefore, given any positive number &, we
have for any interval I of sufficiently small diameter con-
taining @, (i) [I-CE|<<e/I| and (i) |f(x) <<e¢ for every wel-E.
Denoting by M the upper bound of [f(x)|, conditions (i) and (ii)
inply |0(D)] < |B(I-CE)|-+|0(I-B)| < Me-|[I|+&I| < e (M+1):|T],
whence O;(z,)=0=f(x,).

If @ is the indefinite integral of a function f which is summable but un-
bounded, it may happen that the relation @s(x)==f(») is not fulfilled at any point.
In virtue of Theorem 6.3, this relation clearly holds at almost all points at
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which the strong derivative @ (x) exists; but if the function f is unbounded, its
indefinite integral @ may have no finite strong derivative at any point (cf. on
this point Busemann and Feller [1, p. 256]; the result of Banach and Bohr
mentioned above, p. 112, follows as a particular case).

Nevertheless, the result contained in Theorem 10.7 may be generalized
considerably. In fact, according to a theorem of B. Jessen, J. Marcinkie-
wiez and A. Zygmund [1] (see below § 13) the indefinite inlegral of a function f
in a space Ry, is almost everywhere derivable in the strong sense whenever the function
If-(logT[fy™ ! is summable (in a less general form, for functions f of which the
power p>>1 is summable, this theorem was established a little earlier by
A. Zygmund [1]). On the other hand however, given an arbitrary function o(t)
positive for t>>0 and such that lim _:nf a(t)=0, there always exists a function f(x)

t>-}+oo
in Rm such that the function o([f))-|f|-(QogT|f)™ ! is summable and such that the
indefinite integral of | is notl derivable in the strong sense (has the strong upper
derivate -+co) at any point of Rm.

*§11. Ward’s theorems on derivation of additive func-
tions of an interval. In the preceding §§ of this Chapter, we
have treated the Lebesgue theory of derivation of additive fune-
tions of an interval of bounded variation. As regards functions
of a real variable, this theory has been extended to arbitrary func-
tions by Montel, Lusin and especially by Denjoy. Recently Denjoy’s
theorems, which already belong to the classical results of the theory,
have been generalized still further. On the one hand they have been
given a geometrical form by which they become theorems on certain
metrical properties of sets, and in this form an account will be given
of them in Chapter IX. On the other hand, recent researches of
Besicovitch and Ward have made it possible to extend an essential
part of the Denjoy results, particularly the relations between the
extreme bilateral derivates, to additive functions of an interval
in a space R, of any number of dimensions. These researches will
form the subject of the present §.

It was A. 8. Besicoviteh [5] who started these researches, by establishing
between the extreme strong and ordinary derivates of absolutely continuous
functions of an interval, relations amalogous to those proved by Denjoy for
derivates of functions of a single variable. A.J. Ward [2; 5] has extended this
result to quite arbitrary additive functions of an interval. Of the two theorems
of Ward (vide, below, Theorems 11.15 and 11.21) one concerns only ordinary
derivates, while the other applies also to strong derivates. It is the latter that
generalizes the result of Besicovitch; this second theorem is one which can be

proved fairly simply for functions of an interval in the plane; it is rather curious
that it requires much more delicate methods in an arbitrary space Rm.
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We shall make use in this § of some auxiliary notations. If ¥
is an additive function of an interval and e<{1 is a positive number,
F(x) and F(x) will denote at any point a the upper and lower
limit of the ratio F(I)/|I| where I is any interval containing z,
which is subject to the condition r(I)Z> «, and which has diameter
tending to zero. We see at once that at any point «, Fu(®) and Fuy(e)
tend to F(x) and F(x) respectively as a—»>0.

We shall suppose fixed a Euclidean space IR, and in it we
define a regular sequence of nets of cubes {Qgp—1.2, .., denoting by
{Qs the family of all the cubes of the form

[P, 27 (127 P27 (A1) 2755 p,2 N (0, +1) 27
where p, p,, ..., p,, are arbitrary integers.

(11.1) Lenmuna. Given an additive function of an interval G, and
positive numbers a <2~ " and a, suppose that the inequalities 0<Gw(2)<a
hold at every point x of a set E having positive outer measure; then
there exists for each ¢ >0, a cube @ which belongs to one of the nets Q,
and for which we have

(11.2)  d@Q)<e |E-Q>(1—e)|Q and GQ)<<8"-a ™-a-Q|.

Proof. By replacing, if necessary, the set E by a suitable
subset of F having positive outer measure, we may suppose that
there exists a positive number o such that for every interval I,

(11.3) GI)>0 whenever I-E0, r(I)=Ze and o) <<o.
We may further clearly assume that o is less than both ¢ and «™/8™.

This being so, let x,¢ E be a point of outer density for the
gset E (cf. § 10). Since G4(x,) << a, we can determine an interval
J=[a, bi; ...; ay, b,] containing x, and such that

(11.4) W) <o, r(J)=ea, |EJ|>Q—02)|J| and GJ)<a-lJ|
It follows in particular that
(11.5) |E-I|>(1—o0).'I| for any interval ICJ suchthat |I|>0-|J]|.

Let I be the smallest of the edges of J. Since r(J)=a, no edge
of J can exceed l/a, and therefore we have [J|<(1"/e™. Finally
let & be the positive integer given by
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(11.6) 1/2% <1ja<c1j2t

and let Q=[ay, bi;...; @m, b] be a cube which belongs to the net Qs
and which contains the centre of the interval J. By (11.6) we find
that Q(C J and that a;j—a;==1/4, b/—b;=>1/4 and b;—a;=1/2" = 1/8.
It follows easily that the figure J ©¢ can be subdivided into a finite
number of non-overlapping intervals with no edge smaller than /8.

Now any such interval can clearly be further subdivided into
a finite number of non-overlapping subintervals whose edges all lie
between 1/8 and I/4. We thus obtain a subdivision of the figure
J OQ into a finite number of non-overlapping intervals, whose para-
meters of regularity are greater than, or equal to, 2~ " >>«, and whose
volumes are greater than, or equal to, 8 1" =8"" " |J|>a-|J|. It
therefore follows from (11.5) and (11.3) that

(11.7) G ©Q)>0.

Similarly, it follows from (11.6) that |Q=2"""=>87"I1">
=8 " a™.|J|>0-|J|, whence by (11.5) we derive at once the second of the
relations (11.2); at the same time, by the relations (11.7) and (11.4),
G <G(J)<alJ|<<8"a ™a-Q|, and this gives the third of the
relations (11.2) and completes the proof.

(11.8) Lemma.. Let G be an additive function of an interval in R,,
E a set in Ry, Q a cube belonging to one of the nmets Qp, and >0,
e>0 and b arbitrary fixved numbers. Suppose that

i) |E-Q@>(1—¢g)-|¢),

(i) GI)>0 for every interval I such that I Q, I-E=0 and
r()=2",

(iii) Gif®)>b at any point veE;

then G(Q) =~ 12“"’-a"’b-(1—2"’6)-|Q[.

Proof. We may clearly assume that the set E is contained
in the interior of @ and that every point of the set is a point
of density.

This being so, we shall begin by establishing the following
result:

(11.9) Given any n>0, we can associate with any point xek
a cube P, belonging to one of the nets Qu, and a cube J D P, such
that (a) G(P)>a™.127"™.b-|P| and (b) wed, 6(J)<<n and |J|=3"-|P|.
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For this purpose, let us associate with the point « an interval §
such that xe S, 6(8)<<1/4, r(S)=>e and G(S)>b-|S|. Let h denote
the largest edge of 8, and let k; be the positive integer satisfying
the inequality 1/2%>21>>1/2""". Let &, be a cube of the net Qy
having points in common with 8, and let J denote the cube formed
by the 3™ cubes of the same net (including the cube 8, itself) which
have points in common with §;.

The cube J clearly contains the interval 8, and since no edge
of 8 can be less than ah, we find that

(1110) IJ|:3m2 —mA :6n1‘271n(k,+1) < 12111‘ hm < 12"1‘ a_.m' |S’

On the other hand, since 2 " —h>2 ®*Y 5nq ah}a-z“(k‘ﬂ), the
figure J&8 can be subdivided into a finite number of non-over-
lapping intervals with edges greater than, or equal to, ¢-2~ " ang
therefore, as in the proof of Lemma 11.1, into a finite number of
non-overlapping intervals whose edges have lengths between «.2 %12
and a.2” &, Therefore, denoting by I any interval of this sub-
division, we find r(I)>>2"" and I'>e".2 """ =127 o™ |J].
Consequently, by supposing the interval S, and a fortiori the
cube J, sufficiently small, we may assume that &(J)<# and
that each of the intervals of the subdivision in question contains
points of E. It follows, by condition (ii) of our lemma, that
G(J=8)>0, and so, by (11.10), that G(J)>G(8)>b-|8=12"".a"™b-|J]|.
Thus among the 3™ cubes of the net Q, which make up the cube J,
there is one at least, P say, such that G(P)> 12 ".a™.p.|P|,
and the cubes P and J )P, thus defined, clearly satisfy the con-
ditions (a) and (b) of (11.9).

It now follows, on account of (11.9) and condition (i) of the
lemma, that (with the help of Vitali’s theorem in the form (3.8))
we can determine in ¢ a finite system of non-overlapping intervals
P,, P,, ..., P, belonging to the nets Q, such that:

(11.11) G(P) >12"".e"b-P| and P;-E0 for i=1,2,.. n,
(11.12) ;lel>(1—8)-IQI-

Among the cubes of the nets Q. we shall consider specially
two classes of cubes. A cube of a net Q, contained in ¢ will be said
to be of the first class if it is one of the cubes Py, Py, ..., Py;
and of the second class if it contains points of E and if further
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among the 2™ cubes (Qx.1) composing it, there exists at least
one which does not overlap with any cube P; Since the number
of cubes P; is finite, there exists a net Qx such that no cube of this
net contains cubes of the first class. Let A be the set of all the cubes
of the first or second class contained in ¢ and belonging to the nets
Dk for k<K

The set of these cubes covers the whole cube §. For if not,
there would certainly exist in the net Qx a cube I,(C ¢ not con-
tained in any cube (UA). Now, sinee I, contaings no cube of
the first class, I, would not contain any point of the set E; and
since, by hypothesis, I, is not contained in any cube of the first
or second class, we could, starting with I,, form in ¢ a finite as-
cending sequence of cubes without points in common with ¥ and
which belong respectively to the nets Qg, Qx—1,..., Qn, wWhere Qu,
is the net containing the cube ¢). But the last term of this sequence
of cubes is evidently the cube @ itself, and we arrive at a contra-
diction since K ¢.

Let us now remark that sinee all the cubes () belong to the
nets of the regular sequence {Q,}, it follows that, of any two over-
lapping cubes (A), one is always contained in the other. Hence,
we can replace the system of cubes U by another system A, C U
which also covers ¢, and which, this time, consists of non-over-
lapping cubes. Let 4 be the sum of the cubes (;) of the first class.
On account of (11.11) we have

(11.13) G(A)Z=12 "™ b-|4|.

Moreover, since the figure Q= A4 is formed of a finite number
of cubes of the second class which do not overlap, it follows from
condition (ii) of the lemma that
(11.14) GO A)=0.

Finally, in each cube I of the second class, there is always
a cube which is contained in Q' P; and whose volume is 2™ |1].

i—1

r

It therefore follows from (11.12) that |QEA4|<C2™-¢-/Q|, and in virtue
of (11.14) and (11.13) we find

GQ)=G(A)=127".a" b |4 >12 " a"-b-(1—2" ¢)-'Q),
which completes the proof.

(11.15) Theorem. Any additive function of an interval F is derivable
at almost all the points x at which either F(x) > — oo, or F(x)< -+ oo.
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Proof. Consider the set of the points @ at which F(x)> —oo
and suppose, if possible, that the set 4 of the points # at which
F(x)> P(x)>—oo is of positive measure. We could then determine
a number a> 0, and a set B(C A of positive outer measure, such
that Fay(z) F 00 and Fy(x) —Fw(r) > a at every point z of B. We
may clearly assume that e<C2 ™.

Let & be any positive number. Let us denote for any integer p
by B, the set of the points = of B at which pe < Fo(x)<(p-+1)e, and
let p, be an integer such that |B,|> 0. We can determine a number
6>0 and a set K B,, whose measure is not zero, so as to have
F(I)> pgye-I| whenever the interval I is subject to the conditions
6(I)<o, r(I)2a and E-I10.

Now write G(I)=F(I) — p,¢-|I| (where I denotes any interval).
Thus defined, the function @ clearly fulfils the conditions:

10 0< Gio(®) <2¢ and G(z) > at any point ze F,

20 G(I)>0 for any interval I such that 6(I) <o, r(I)=a
and E.-I30.

By Lemma 11.1 we can therefore determine a cube @, belonging
to one of the nets Q. so as to have d(Q) <o, |[E-Q>(1—¢)-|Q|
and G(Q)<<8"a ™.2¢.|Q|. From the first two of these relations and
from conditions 1° and 29, it follows, on account of Lemma 11.8, that
G(Q) > 127" a™ . (1—2"€)|Q. Thus 12 "™ . (1—2" &) 8™ ™. 2¢
for every &>0, and this is clearly impossible. We arrive at a
contradiction and this shows that |A|=0, i.e. that F(x)=F(z) for
almost all # for which F(x)> — oo,

It remains to be shown that the set of the points 2 at which
the derivative F'(x) is infinite, is of measure zero. Suppose then,
if possible, that F’'(x)=-+oco at each point x of a set M of positive
measure. We may clearly assume that there exists a number 5 >0
such that F(I)>0 whenever I is an interval containing points
of M and subject to the conditions 6(I) < #n and r(I)>=2 ™. There-
fore, denoting by R any cube which belongs to one of the nets
Q, and which satisfies the relations |M-R| > (1—2 "").|R| and
d(R) < n, we find easily from Lemma 11.8 that F(R) >27".12 ™..|R)
for every finite number b. We thus again arrive at a contra-
diction and this completes the proof.
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It should be remarked that for the validity of Lemma 11.1 it is enough
to suppose merely that ¢<1 (instead of a <X 2™™). Similarly in condition (ii) of
Lemma !1.8, the inequality r(I)>2"" may be replaced by r(I)>=ea. The proofs
of the lemmas remain essentially the same; we need only observe that if T is an
interval whose parameter of regularity is greater than, or equal to 2~ and if
a<1is a positive number, the interval I can always be subdivided into a finite

number of non-overlapping subintervals I 1" where j=1, 2,..., such that r(Z =

and ij|>ka-§l|, where k, is a constant depending only on «.

We can now easily see that Theorem 11.15 may be stated in a slightly
more general form as follows: any additive function of an interval ¥ is derivable
at almost all the points x at which either f(a)(:c))—oo or F(a)(m)(ﬁ—oo, where «
18 any positive number less than 1. The question whether the condition a<1 is
necessary here, does not seem to have been solved yet completely. It may how-
ever easily be proved (by the method of nets used in the proof of Lemma 11.8)
that jor any additive function F, the set of the points x for which either F(l)(w)= — 00
or E(l)(x):—}—oo 18 of measure zero. For a discussion of these .questions, vide the
memoir of A. J. Ward [5].

We shall now proceed to prove the second theorem of Ward,
in which the ordinary extreme derivates F(z) and F(x) of Theorem11.15
are replaced by the strong derivates Fy(x) and Fyx). It should be
remarked however, that we cannot at the same time replace, in
the assertion of Theorem 11.15, derivability in the ordinary sense
by derivability in the strong sense: in faet, in general, a non-negative
function, even when it is absolutely continuous, may yet have a

strong upper derivate which is everywhere infinite (see p. 133 above).

We shall begin by proving the following lemma which is sim-
ilar to Lemma 11.1.

(11.16) Lemma. If G is an additive function of an interval in R,
and if for some fixed number a we have 0 < Gs(x) < a at every point
of a set E of positive outer measure, then given any & >0 there exists
an interval Q such that

(11.17) Q)<e, n@Q>2"", E-Q+0 and G(Q)<3"-a-|Q.

Proof. Let us write for brevity y=1/3". We may suppose
(by replacing, if necessary, the set F by a subset of positive outer
measure) that G(I) > 0 for every interval I containing points of E,
which has diameter less than a positive number o<<e. Let x,¢E be
a point of outer density for E and let J=[ay, b; @y bo; ... ; @ bui]
be an interval containing x, such that
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(11.18) Ty <o, |E-J|>(1—7y)-|I| and G(J)<<a-|J|.

Let us denote by I the smallest edge of J and by n, the positive
integer satisfying the inequality

(11.19) ml << by —ay < (ny+1) 1

Writing d,= (b,— a,)/n,, let us subdivide the interval J into n,
equal non-overlapping subintervals

Ji=[a,+(E—1) dy, a3+ tdy; a9, by5 ey Qury b

where i=1,2, ..., n;. We shall call an interval J; of the first kind
if |E-J|>(1—3y):|J|, and of the second kind in the opposite
case. Denoting by >” a summation over the indices ¢ corresponding

to intervals of the second kind, we see easily, on account of the
second of the relations (11.18), that > 3y.|Ji<<y-|J|=2y- |7|. Hence,
i =1

it p and ¢ are the number of intervals J; of the first and second
kind respectively, we find 3¢ <n,=p+¢. Now let us subdivide the
interval J into a finite number of non-overlapping subintervals, in
such a manner that each of these is the sum of a certain number
of intervals J; among which exactly one is of the first kind. Since
2¢ <p, the intervals of this subdivision include some which coincide
with certain intervals J; of the first kind, and their number is at
least equal to p—¢>n,/3. Thus if we denote their sum by A4,
we find

(11.20) Al > |J]|/3.

On the other hand, the figure J&A consists of a finite number
of non-overlapping intervals each of which contains an interval J;

of the first kind, and therefore points of E. Consequently, G(J&4)>0,
and, on account of (11.18) and (11.20)

H(A) < G(J) <a-lJ|<3a-|4].

It follows that among the intervals J; of the first kind of which
the figure A4 is formed, there exists one at least, J; say, such that
G(J;) <<3a-J;.

Let us write, for brevity, a?=a,+(¢,—1)d,, b)=a,+i,d, and

JV=J,=[a%,0% a,,b,...;a,,b, 1. By the above, J'CJ, G(J")<3a-|J")

1Yy @y Usy e
and, since J  coincides with an interval J; of the first kind,
1BE-JV > (1—3y)-|JV:; finally by (11.19), I<W—a'=d, <2l
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If we now operate on J M just as we formerly did on J (except
that we replace y by 3y, a by 3a and the linear interval [a;, ] by
[a,, b,]), we obtain an interval J(Z)z[a‘l’, b%; al, bS; a,, b3;...;am,bm]CJ(l)
such that G(J?) < 8% a- [P, B-J¥>(1—3%9)|J?| and I<H—a?<<2!
for j=1,2. ' '

Proceeding in this way m times, we obtain after m oper-
ations an interval J"=T[a? 8% a2, bY;...; a2,b°]1(C J such that
G(J™) < 3" a-|J™), [B-J™ > (1—3"p)-[J™| and I<B—al<< 21
for j=1,2,..,m. It follows that r(J™)=27", and if we write
Q=J" and substitute y=23"", we find at once that the interval ¢
fulfils the conditions (11.17).

(11.21) Theorem. If F is an additive function of an interval,
we have F'(x)=F (&) oo [F'(x)=F(z) =4 o] at almost all the points
at which Fy(x)> —oo [F(x) <<+ oo].

Thus, in particular, the function F is derivable in the strony
sense at almost all the points at which both the extreme strony derivates
Fx) and Fox) are finite.

Proof. Since F(z)>=>F.(x) holds for all x, the function F is,
by Theorem 11.15, derivable (in the ordinary sense) at almost all
the points « for which F.x)>—oco, and we have only to show
further that at almost all these points F’'(x)=JF(x). Suppose there-
fore that the set of the points « for which F'(x) > F.(x)>—o0 i3 of
positive measure. We could then determine a number « > 0 and a set
B of positive measure such that F'(z)— F(x)>a at every point e B.

For brevity, write e=a-3~""" and let B, denote the set of
the points @eB for which pe <Fy(x)<<(p+1)-e. Let p, be an
integer such that [B, >0, and write G(I)=F(I)—pe¢- 1|
(where I is any interval). Since G'(x) > Gi(»)+e> @ at every point
weB,, we can determine a positive number o and a set EC B, of
positive measure, such that G(@)> a-|Q whenever @ is an interval
satisfying the conditions

(11.22) 8(Q) <o, 1Q)>2" and E-Q=F0.

But since 0 < Gu(w)<<2¢ at every point we EC B, there
exists by Lemma 11.16, an interval @ subject to the conditions
(11.22) and such that G(Q) < 3"-2¢-|Q| <<a-|Q|. We thus arrive at
a contradiction and this proves the theorem.
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*§12. A theorem of Hardy-Littlewood. The theorem of
Jessen, Marcinkiewicz and Zygmund concerning strong derivation
of indefinite integrals, which was mentioned in § 10, p. 133, is
connected with an important inequality due to G. H. Hardy and
J. B. Littlewood [2]. This inequality, which was established in
connection with certain problems of the theory of trigonometrical
series, thus obtains a new and interesting application.

We reproduce in this § the elegant proof given by F. Riesz [5] (cf. also
A. Zygmund [I, pp. 241—245]) for this inequality. Although simpler than the
other proofs, it requires nevertheless some rather delicate considerations. Certain
parts of the argument have been touched up in accordance with suggestions
communicated to the author by Zygmund,

The reasonings of this § concern functions of a real variable.

(12.1) F. Riesz’s lemwma. Let F(x) be a continuous function on
an interval [a, b] and k a finite number. Let E be the set of the points x,
interior to the interval [a,b], for each of which the tnequality
F(w)—F (u) > k-(x—u) is fulfilled by at least one point u subject to
a<u <.

Then the set E is either empty, or else expressible as the sum of
a sequence \(an, b,)} of open mon-overlapping intervals such that
B(b,) —Fl(a.) = k- (b — a,,).

Proof. By subtracting from F(x) the linear function kz, we
may suppose that £=0. Then E is the set of all the points = of the
open interval (a, b), for each of which there exists a point % such
that F(u) <F(r) and a <wu <. Since the function F is continuous,
the set E is clearly open, — and, unless empty, it is therefore ex-
pressible as the sum of a sequence {(a,, b,)} of non-overlapping
open intervals. We have to prove F(a,)< F(b,) for each .

To see this, let us fix an index » and suppose that F(a,) > F (b,).
Let 2 be any number such that

(12.2) F(a,)> h>F (by),

and let 2, be the lower bound of the points & of the interval [a,, b,]
for which F(x)=h. By (12.2) the point z, belongs to the open
interval (a,, b,), and so to the set E; thus there exists a point Y
such that F(y) <<F(xy)=h <F(a,) and a <y <z, This last relation
implies @ <<y <a,, since, by (12.2) and by the definition of the point
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@y, the inequality F(y)<h cannot hold for any y of the interval
[@n, @o]. Thus F(y)<<F(a,) and a<y<a, and consequently a,e¢ E;
but this is clearly contradictory, since a, is an end-point of one
of the non-overlapping open intervals which constitute the set E.

Besides the results treated in this §, many other applications of Lemma 12.1
are given by F. Riesz [6; 7; 8], particularly in the theory of derivation of fune-
tions of a real variable. Cf. also 8. Izumi [1]. The lemma might also have
been used in the considerations of § 9 (instead of appealing to the theorems of
§ 8 on rectifiable curves).

To shorten our notations we shall restrict ourselves in the rest
of this § to functions defined in the open interval (0,1); and we
shall agree to write E[f > a] for E[f(x) > a; 0 <2 <1]. The symbols

E[fZ=a], E[b>f>a] and so on, will have similar meanings.

Two measurable functions ¢ and h in (0,1) will be called (in
accordance with the terminology of F. Riesz) equi-measurable if
|E[g > a]=|E[h > a]| for every finite number a. We see at once that
we then also have

Blg=all=[E[h=a], E[b>g=a]=E[b>h=>a], ete.

(12.3) If two non-negative measurable functions g and h in the in-
terval (0,1) are equi-measurable, their definite integrals over this in-
terval are equal.

To see this, let us agsociate with the function g a non-decreasing
sequence {g } of simple functions by writing ¢ ()=(k—1)/2" when
(k—1)/2"<g(») <k/2" and k=1,2,...,2"-n, and g (x)=n when g(z)=n.
Similarly with ¢ replaced by h, we define the sequence {h,} con-
verging to the function h. If we calculate directly the integrals
of the functions g, and h, over (0,1) by formula 10.1 of Chap. I,
p- 20, we see at once from the fact that the given functions ¢ and h

are equi-measurable that / g, (x) do= / h (x)dx. Making n->oo,
this gives / gla) de= / h(xydx as asserted.

If f is a continuous function in (0,1) which is not constant
on any set of positive measure, and if m and M denote the lower
and upper bound of f respectively, the function ¢(y)=|E[f>y] is
evidently continuous and decreases from 1 to 0 in the open interval
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{m, M). Its inverse function is therefore continuous and decreasing in
(0,1) and, as we easily verify, equi-measurable with the given funetion.
We shall extend this process with suitable modifications, to
arbitrary measurable functions finite almost everywhere in (0, 1).
With any such a function f(x), we associate the function f“(z) de-
fined for each z of (0,1) as the upper bound of the numbers y for
which |E[f>y]|>>®. The function f“(x) is clearly finite and non-
increasing in (0, 1). To show that this function is equi-measurable
with f(x), let y, be any finite number, and let z, denote the upper
bound of the set L[f“>y,], or else x,=0 if this set is empty. Then
since |B[f* > yol/=u,, it has to be proved that [E[f > y,]=,.

We have, in the first place, [“(wo+¢)<Cy, for every &>0
(provided, of course, that wy+&<1), so that |[E[f > yo+¢c] <<wxy+6
and therefore [E[f > yol|<<x,. On the other hand, f“(x,—¢) >y,
for every ¢>0 (provided that xy—e>0), so that |E[f>y,]|>x,—s¢,
whence [E[f>y,l|=>xy, and finally [E[f> y)=uo=E[f"> .l

We shall further define, in connection with any summable
function f(xz), three functions fﬁ‘(m), @) and f(x). At any point @
of (0,1) we shall denote by f2(@) the upper bound of the mean
values of f on the intervals (u,x) contained in (0, x), i.e. the

upper bound of the numbers w—iﬂ /‘f(t)dt for O0<<u<<a. Simi-

L 1w a

v—x.
for #<<v< 1. Finally, f'(x) will denote the larger of the two num-
bers f(x) and f*(z), or what comes to the same, the upper bound

larly, fﬁ"’(m) will denote the upper bound of the means

of the means @Tlu /'f(t)dt where % and v are subject to the

condition 0 <u<ax<v<l.

(12.4) Lemma. If f(x) is a non-negative measurable function in

the open interval (0, 1) and if E is a set contained in this interval, then
|E]

[fa) do <[ () do.
E 0
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Proof. Let f; be the tunction equal to f on the set E and to 0
elsewhere. We evidently have f/(x)<Cf“(») at each point z of the in-

terval (0,1). Furthermore f(2)=0 as soon as a‘>[Ef Therefore on

account of (12.3) we find / f (o) dow = / fuw) dw = / (@) do<< / () du.

(12 5) Lenuvmna. If f(x) is a non-negative summable function in the
interval (0, 1) then for each point ® of the interval, we have

1) < [ (t) dt.

Proof. Let @, be any point in (0,1), let yo=f"" (), and
let € denote an arbitrary positive number. We write A= R[f* “>yo—£]
and B=E[f"> Yo—¢]. Then since the function f*“ is non- increasing,
we have |A|Z=>x, and therefore, remembering that the functions f/°
and f* are equi-measurable, |B|=|4| = x,.

Now B is the set of the points « for each of which there exists

a point «# subject to the conditions ff(t)dt>(yo——a)-(x—u) and

u
0<<u<x. Therefore, applying F. Riesz’s Lemma 12.1 to the in-
definite integral of f, we find easily that B is an open set and that

[#(t) @t = (yo—2)-|B|. Tt follows by Lemma 12.4 that
8

|B|
(12.6) Yo— |B' /f(t)dt <7, /f (¢) dt.
Now since |B|>wx, and since the function f“ is non-increasing, the

last term of (12.6) cannot exceed wl / f“(t)dt; and since & is an

arbitrary positive number, we must have f%(z,)= / FU()dt
This completes the proof.

(12.7) Theorem of Hardy-Littlewood. If f(x) is a non-negative
summable function in (0, 1) and € is a positive number, then

1 1 1
(12.8) () dw <A [ f(x)log* f(x) dw+B- [ f(x) dn-+e,
0 0 0

where A and B are constants depending on €, but not on f.
S. Saks, Theory of the Integral. 10
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Proof. We first evaluate the integral of 7 over (0,1). Ac-
cording to (12.3) and Lemma 12.5 we have

/fﬁ’(ac)dw—/fﬁ‘ dw</[[f (y)dy]dm

In virtue of Fubini’s theorem the last member of this inequality
is the surface integral of the function f“(y)/x over the triangle
0<Ce<<l, 0Ty << x. Therefore inverting the order of 1ntegra,t10n in
this member, we find

(12.9) /f"*( dm</[/d‘”] y) dy= /f )-[log y| dy.

N —
Let now n<{1 be a positive number such that / log y|/Vy dy < ¢/2.
0

Let us denote by E, the set of the points y of the interval (0, 1) at

which f“(y)<<1/}y, and by H,, the set of the remaining points of
this interval. We find

(12.10) /f |logy|dy<j’ gy'd +2/f )-log f“(y) dy+

1
+[log 7]- f ) ay<2 f 17(y)-log* f“(y) dy-+log ni- [ () dy+e/2.
N 0 0

Further, since the functions f and f“ are equi-measurable, so
are the functions f.log*f and f“log* f“, and it therefore follows
from (12.9) and (12.10) that

1 1
(12.11) / (@) de < 2 [ f(z)-log* f(w) dw+[logn]- [ {(x) Azt &[2.
0 0

A similar inequality clearly holds when on the left-hand side
of (12.11) /ﬁ‘ is repla,ced by 1%, and on adding the two inequalities

we find /f"m)dx</f cc)dw—}-ff@‘av)dm 4/f )-log™ f(z) dw -+

+|210g17|-/']‘(w) dz-+¢; this gives (12.8) with 4 =4 and with B=2{log 7.
0
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*§ 13. Strong derivation of the indefinite integral.
We proceed to prove the theorem of Jessen, Marcinkiewicz and
Zygmund. We shall give the proof for the case of the plane;
its extension to spaces I, of any number of dimensions (cf. §10,
p. 133) presents no fresh difficulties and is effected by means of
the well-known inequality of Jensen.

We shall begin with some auxiliary remarks. Suppose given
a non-negative function f(r,y) summable over the open square
Je=(0,1; 0,1). By Fubini’s theorem, the function f(x,y) is sum-
mable in z over (0,1) for almost all y of (0,1). Denote by H the
set of these values of y. For any ye H and for any « of the interval
(0, 1), we shall denote (cf. §12, p. 144) by f'(», y) the upper bound

of the mean v—i—d /.f(t, y)dt for 0<<u<w<v<1l; and whenever
u )

y e CH, we shall write, for definiteness, f°(z, y)=0 identically in .
We shall prove that the function f(x, y) thus associated with any
function f(x,y) which is summable over the open square J,=(0,1;0,1),
is measurable.

For this purpose, let ¢ and b denote two positive numbers,

x+b
and write g, s(x, ¥)= /f (t,y)dt when ye H and 0<Co—a<<z+0<1,
and ¢, (2, y)=0 elsewhere in J,. We shall begin by showing that
each of the functions ¢, (v, y) iIs measurable. By Lusin’s theorem,
or more directly by the theorem of Vitali-Carathéodory (Chap. 111,
§ 7), the function f is equal almost everywhere to the limit of a non-

decreasing sequence {f(")} of non-negative, bounded, upper semi-contin-
x+b

uous tunctions. Now, let us put ¢¥, (x,y)= / f™(t, y) dt when

X—a
IS<Sez—a<<r+b<1, and ¢ (2,5)=0 elsewhere. As is easy to show
(e. g. by means of Theorem 12.11, Chap. I), each of the functions
g\, (%, y) is then also upper semi-continuous, and since, as we readily
see, g, ,(x,y)=lim g% (z,y) almost everywhere, the function g,,s(x,y)
is ‘measurable. ’

Finally, with the same notation as above, if {u,} is the
sequence of rational numbers of the interval (0, 1) we have

(@, y) = upper bound gy, @, y)/(uy—uy)
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at any point (x, ) of J,. Thus the function iz, y) is also measurable,
and this proves our assertion.

(13.1) Theorem, If f(x,y) is a measurable function in the plane
R, and if the function flogt|f| is summable, then the indefinite integral
of f is almost everywhere derivable in the strong sense.

Proof. Clearly we need only consider the function f in the
open square J,=(0,1;0,1); and we may also suppose that this
function is non-negative.

We write g (x, y)=F(z, y) wherever f(z, y)<n, and g (z, y)=n
wherever f(x,y)>n; we write further & (2, y)=F(®, y)—g, (%, y)
and we denote by ¢ an arbitrary positive number. The functions
Kz, y) are measurable and non-negative; so that by Theorem 12.7
of Hardy-Littlewood,

//hﬁ(% y) dedy <<
J

<A//hn (w7 ?/)10g+ hn (.’D, y) dxdy+B//h’1(w, y) dxdy—F%Uz’
7, ,

IU

(13.2)

where 4 and B are finite constants depending only on ¢. And since
the integrals on the right-hand side of (13.2) tend to 0 as n-—>oo,
there exists a positive integer N such that the left-hand side of (13.2)
becomes less than o? for n=N. Therefore, writing for brevity
Mz, y)=hn(z, y) and g(», y)=g~(r, y), Wwe have

(13.3) | [ W@, yydzdy < o,
i,

so that in particular the function hﬁ(w, ¥), besides being measurable
and non-negative, is summable on J,,.

Now denote by F the set of the points (x,, y,) of J, such that
1 y
10 [ W (w,, 1) dt<<+o0, and 2° the indefinite integral f W (aq, ) dt
0 0

has at the point y=y, the derivative W (xg, y,) With respect to ¥.
Since, by Theorem 6.3, condition 2° is fulfilled for almost all y,
of (0,1) provided that condition 1° is satisfied, it follows at once
from Fubini’s theorem in the form (8.6), Chap. III (cf. also Theo-
rem 6.7, Chap. III) that |E|=|Jy=1.

Let us write #, H and G for the indefinite integrals of the
functions f, h and g, respectively, in J,. Let (x,,y,) be a point of the
set B and I=[wy—uy, T+ Us} Yo—71, Yo+ Vs] any interval con-
taining (x,, ¥,) and contained in J,. We have
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H(1 1 - 1 o / .
‘I(l )=”2+U1 /[uz—i—ul fh\%_‘—u: ?/o*HJ)duJ dv <<

Uy —u

1 vy
<’02 + v, /hﬂ(%’ Yo+-v) dv,

whence making J(I)—>0 we obtain H(x,, Yo) <WP(p, Yo)- Thus,
since.(xg, Yo) is an arbitrary point of the set E( J, of outer measure 1,
and since the extreme derivate H(w,, Yo) 1s measurable (cf. Theo-
rem 4.2), it follows from (13.3) that 0<CHJ(x,y)<<Hdz,y) <o
at every point (x, y) of J, except at most a set of measure less than o.
On the other hand, since the function g=¢g, is bounded, its in-
definite integral G is, by Theorem 10.7, derivable in the strong
sense almost everywhere. Therefore Fy(z, y¥)—F(x, y) <o at all but
a subset of measure ¢ of the points of J; and so finally, since o
18 an arbitrary positive number, F—S(m, Y)=F«(z,y) almost every-
where in J,, which completes the proof.

By Ward’s Theorem 11.21, to prove that the non-negative function F is
almost everywhere derivable in the strong sense, it is enough to show that
FS (x)<(+oco almost everywhere. Hence by using Theorem 11.21, the proof of
Theorem 13.1 might be slightly shortened.

*§14. Symmetrical derivates. If @ is an additive function
of a set in a space R,, we shall denote by Dym ®(z) the upper, and
by D @(x) the lower, symmetrical derivate of @ at a point 2,
these being defined respectively as the upper, and as the lower,
limit of the ratio @(8)/|S] where S represents a closed sphere of
centre x and of radius tending to zero. It is obvious that, for any
point @ whatsoever D®(w)=>Duym D (2) =Dy D (2) = DB ().

Following A. J. Ward [5], we shall establish a decomposition
theorem in terms of symmetrical derivates, which is similar to
Theorem 9.6. We shall begin by the following “covering theorem?’:

(14.1) Theorem. If @ is an additive function of a set in R, and E
o bounded set measurable (B), contained in an open set G, then for
any &> 0 there exists in G an enumerable sequence of closed sphe-
res {Sx} such that (i) the centre of each 8 belongs to E and the ra-
dius is less than e, (ii) 8;8;=0 whenever i< 7§, and (iii) the spheres
Sk cover together the whole of the set E, with the possible exception
of a subset on which the function @ vanishes identically.
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Proof. We can clearly assume (by replacing, if necessary,
the function @ by its absolute variation) that the function @ is
monotone non-negative.

a) We shall first prove that, with the hypotheses of the
theorem, there always exists in G a finite system of equal sphe-
res {8} which sasisfy the conditions (i) and (ii) and cover the
set E except perhaps for a set T'C E such that

(14.2) O(T)<<(1—1/4" "' m™). D (E).

To see this, let A be a subset of E, measurable (B), such
that @(A)>=>L10(E) and ¢(4,CG) >0. Let n, be a positive in-
teger such that m/ny<e¢(4,CG) and m/ny <e.

Denote by § the net in the space I, which consists of the cubes
of the form [p, /ny (p,4-1)/ng Doty (D,H1)[My5 ey P, I0g (P, +1) 6]
where p,, Py, ..., P,, are arbitrary integers. We can clearly sub-
divide the net P into (4m)” families of cubes, B,, B,,..., By,,ym 57,
such that the distance between any two cubes belonging to the same
amily is not less than (4m—1)/ny. Denote, for each k=1,2,...,(4m)",
by A, the part of the set 4 covered by the cubes of the family P..
Then there exists a positive integer ky<C(4m)™ such that

(14.3) D(Ar) = §(A)/(4m)™ = O(E) /4™ m™,

Now let Py, Py, ..., P, be those cubes of P, which contain
points of 4. With each P; we can associate a closed sphere &S,
of radius m/n, whose centre belongs to A, -P: The system of spheres
8i, Ss,..., 8, thus defined is contained in G and clearly satisfies
the conditions (i) and (ii) of the theorem. Again, since P;C S, for
every i=1,2,...,7, the spheres S; cover the whole of the set E
with the possible exception of the points of the set T=E—A4,,
which, in virtue of (14.3), fulfils the condition (14.2)

b) We now pass on to the proof of the assertion of the
theorem. By what has already been proved, we can define by
induction a sequence {S,},_, , of finite systems of closed spheres with
centres in F and radii less than & subject to the following two
conditions: 1° If B, denotes the empty set and B,, for n=>1, the
sum of the spheres belonging to &;+ &+ ...+ G,, then the system
Gnr1, where n>>0, consists of a finite number of closed spheres,
contained in the open set G—B,, no two of which have common
points; 2° O(E—Buy1) <<(1—hn)- O(E—B,) where hn=1/4"""m"
and n=0, 1,... Now, arranging the spheres belonging to the family
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G+ G2+ ...+ 6G,+... in a sequence {8}, we see at once that the latter
fulfils conditions (i) and (ii) of the theorem. On the other hand, by 29
we have @(E—B,)<<(1—hn)"-O®(E) for each n; whence, denoting
by B the sum of all the spheres S;, it follows that @(E—B)=0,
which establishes condition (iii) and completes the proof.

Theorem 14.1 may be established in a slightly more general form:

Given a bounded set E measurable (B), a sequence of positive numbers {rn}
converging to 0 and a family of closed sets U, suppose that with each point x of K
there are associated two finite numbers a=a(x), N=N(x), and a sequence {An(x)}
of sets (A) such that S{(x; rn)C An(x)C S(x; arn) for n == N(x).

Then, for any sequence {@n) of additive functions of a set, we can extract
from U a sequence of sets {Ai=An(x)} such that (i) xie K for i=1,2,..., (i) A;-4;=0
whenever i+, and (iil) the sets A; cover the whole of the set K, with the exception
at most of a set of measure zero on which all the functions @n vanish identically.
(14.4) Lemma. If @ is an additive function of a set in I, and if
Dyn@@)>0 at each point x of a bounded set X measurable (D),
then ©(X)Z= 0.

Proof. Let us denote, for every positive integer n, by X, the set
of the points weX such that @(8)Z>=0 whenever 8is a closed sphere
of centre x and radius less than 1/n. Bach set X, is evidently meas-
urable (B), in fact closed in X. Hence, for any ¢>>0, we can associate
with each X, an open set G, )X, such that W(@;G,—X,)<¢
(ef. Theorems 6.9 and 6.10, Chap. ITI). Next, keeping # fixed for
the moment, we can (on account of Theorem 14.1) define in &,
a sequence {8, of closed spheres with centres in X, and radii less
than 1/n, such that (i) S;-8;=0 whenever =4, and (ii) the sphe-
res S, cover the whole of the set X, with the exception at most
of a set T on which the function @ vanishes identically. Since
D(8;) = 0 for every k, we find by (i) and (ii) that @(X,) =
=—[W(@; T)+W(D;G,—X,)]=>—e. Hence, as X =1im X,, and ¢

n

is an arbitrary positive number, it follows that @(X)Z>>0, which
completes the proof.

(14.5). Theorvem. If @ is an additive function of a set in R,
and if Ao denotes the set of x at which one at least of the derivates
Dim () and D @ (x) is infinite, then for any bounded set X
measurable (B), we have
(14.6) D(X)=B(X-doo)+ [ DB () ds.

b

Consequently, if Dsm®(®) >-00 at every point ¢ and DP(x)=0
at almost every point x of a bounded set X measurable (B), then
D(X)=0.
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Proof. We firstly remark that if —oco<D..,®(x) at each point x
of a bounded set @ measurable (B) and of measure zero, then
@(Q)=0. In fact, denoting for each positive integer n by @, the
set of the points x of @ at which —n<Dsym®P(x), and writing
D, (X)=P(X)+n-|X|, we obtain D B.(2)>0 at every point x€Q,.
Hence, by Lemma 14.4, we must have P(Qn)=Pu(Q.) =0, and making
n—>co we find @(Q)=>0. By symmetry we also have D(())<<0 when-
ever ¢ is a bounded set measurable (B) of measure zero, such
that D®(x)<<+ oo at each point = of Q.

We pass on to the proof of formula (14.6). By Theorem 7.3,
there exists a set 4, measurable (B) and of measure zero, such that
the relation

(14.7) @(X)=¢(4Y.A)+fb¢(x)dx
X

holds whenever X is a bounded set measurable (B). Since the set
A is of measure zero, we see at once from the equation (14.7) that
the function @ must vanish identically for all the subsets of A—A4,
which are bounded and measurable (8). On the other hand, by what
has just been proved, the function vanishes also for all subsets of
A—Ac. Hence the set Ao may be taken in place of the set A in
(14.7) and this gives (14.6). Finally, if Dyu®(x)>—oo at every
point & of a bounded set X measurable (B), then (X -A.)=0
and the second part of the theorem follows at once from the first.

Let us mention the following consequence of Theorem 14.5: If at each
point x both the symmetrical derivates of a given additive function of a set are finite,
the latter is absolutely continuous. For ordinary derivates the corresponding pro-
position has long been known (cf. H. Lebesgue [5, p. 423]) and is moreover
included in Theorem 15.7 of this chapter, as well as in Theorem 2.1 of Chap. VI.

*§15. Derivation in abstract spaces. With certain hypo-
theses, a process of derivation may be defined for additive func-
tions of a set in any separable metrical space, and for such a process,
theorems similar to those of §§ 7 and 9 may be established.

(15.1) Lemma. If @ is an additive function of a set (B) on a metrical
space M, then given any set X measurable (B) and any e>0, there
exists an open set G such that

(15.2) W(P; G—X)<e and W(D; X—G)<e.
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Proof. Let B, denote the class of the sets X measurable (B)
for each of which there exists, however we choose >0, an open
set G satisfying the relations (15.2). Since any closed set F is the
limit of a descending sequence of open sets, we observe easily
(cf. Theorems 5.1 and 6.4, Chap. I) that there exists for each >0
an open set G DF such that W(®; G—F)<e. The class B, thus
includes all closed sets; to prove that B=%,, it suffices, therefore,
to show that the class B, is additive.

To do this, we choose ¢>0 and denote by X the sum of a se-
quence {X,},—1s,.. of sets (B,). To each set X, there corresponds an
open set G, such that W(®; G,—X,)<<¢/2" and W(®; X,—G,)<e/2".
Writing G=2YG,, we clearly find that the inequalities (15.2) are
satisfied. The;’efore X e®B,.

Again, suppose that ¢>0 and that X=CY, where Y € B,
There will then exist an open set H such that W(®; Y—H)<e/2
and W(®; H—Y)<e. Consequently writing P=CH, we find that
(15.3) W(P; P—X)<g/2 and W(P; X—P)<e.

But since the set P is closed, there exists an open set @ such that
GOP and W(®; G—P)<¢/2; and this implies, on account of (15.3),
the inequalities (15.2) and so completes the proof.

We shall call net in a metrical space M any finite or enumer-
able family of sets measurable (B) no two of which have common
points and which together cover the space M. The sets constitut-
ing a net will be called its meshes. A sequence {IM,} of nets will
be termed regular, if each mesh of M, (where n>>0) is contained
in a mesh of M, and if further 4(M,) >0 as n—>oco (where 4(M,)
denotes the characteristic number of IM,; cf. Chap. IT, p. 40). It is
easy to see that in order that there exist a regular sequence of nets

in a metrical space, it is necessary and sufficient that this space
be separable.

In the rest of this § we shall keep fixed a separable metrical
space M and we shall suppose givenin M aregular sequence M={IN,}
of nets and a measure u which is defined for the sets measurable
(B) and which is subject to the condition w(M)<+oo. Let @ be
an additive function of a set (B) on M. For x ¢ M, where M is any
mesh of a net IM,, let us write

|¢>(M)/ﬂ(M) when  u(M)==0,
dn()= + oo when  u(M)=0 and O(M)=0,
— 00 when w(M)=0 and D(M)<O.
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The functions d.(x) are thus defined on the whole space M
and are measurable (B). Let us write (u, M)DP(x) = lim sup d.(x).

The number (u, M)DD(x) thus defined will be called upper derivate
of the function @ at the point x with respect to the measure p and the
regular sequence of nets M. Considered as a function of x, this upper
derivate is clearly measurable (B). Similarly we define the lower
derivate (u, M)D®(x). If at a point 2 the two numbers (xz, M)DP (x)
and (u, M)D@(x) are equal, their common value will be written
(1, MDD (x) and called derivative of the function @ at x with respect
to the measure u and the reqular sequence of nels M. For the rest
of this §, a measure x and a regular sequence of nets M will be
kept fixed in the space M.

(15.4) Lemma. Let D be an additive function of a set (B) on the
space M. Then
(i) if the inequality (u, M)DD(x)==k, where k is a finite number,
holds at every point x of a set A measurable (B), we have D(A)=k-u(A);
(ii) ¢f at each point x of a set B measurable (B) and of measure (1)
zero, the derivative (u, MDD (x) either does not exist or else exvists and
is finite, ©(B)=0.

Proof. re (i). By subtracting from the function @ the function
k-u, we may assume that k=0. Let ¢ be any positive number. By
Lemma 15.1 there exists an open set @ such that
(15.5) W(D; G—A)<e and W(P; A—G)<e.
Let Eﬁ?l be the set of the meshes M of the net M, such that
(15.6) MCa and O(M)=—e-u(M),
and generally, for n>=1, let 93?,,“ be the set of the meshes M of the
net My, which fulfil the conditions (15.6) and are not contained in any
of the meshes of Eﬁtl—{—ﬁ?z—i—...—}—ﬁn. By arranging the sets belonging
to Sﬁl—{—ﬁtz—{—...—{—ﬁ?ﬁ—... in a sequence { M}, we have @ (My)>—e- u( M)
for k=1,2,..., and A-GC D' M,. Since the sets M are measurable (B)

k
and no two of them have common points, it therefore follows
from (15.5) that @ (4)=® (A -G)+P(A —Q) =D () M) — 2>
k
= —e X u(My)—2e = —e-[u(@)+2], and so that D(4)>=>0.
k
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re (ii). Denote, for any positive integer n, by B, the set of
the points # of B at which D®(x)=—n. On account of (i) we have
D(Bp)zZ—n-u(B,)=0 for each n, and, since B = lim B,, this gives
@(B) = 0. By symmetry @(B)<{0, and so finally &(B)=0.
(15.7) Theorem. If @ is a function of a set (B), which is additive
on the space M, the derivative (u, M)DDP () exists almost everywhere
and is integrable (B, u) on M; moreover, if E. o and E_o denote the
sets of the points at which (u, M)DD ()= +cc and (1, MDD (£)=—c0
respectively, we have
(15.8)  B(X)=0(X Eioo) +P(X-E_oo)+ / (1y M) DD () dps ()
and
(15.9) W(®; X)=¢’(X-E+oo)+@(X-E7oo)l+/l(#,%)D@(w)ld‘u(év)

X

for every set X measurable (B).

Proof. By Theorem 14.6, Chap. I, there exist a function of
a point f integrable (B, x) on M and an additive function of a set &
singular (B, ) on M such that

(15.10)  ®(X)=6(X)+ [f(2)du(z) for every set X eB.
X

Let E be a set measurable (B) such that u(E)=0 and that
the function ® vanishes identically on CE. Writing, for brevity,
D, Dand D in place of (1, M)D, (u, M)D and (;, M)D respectively,
let us denote for any pair of integers n>0 and k, by P, the set of
the points o at which D®(x)>>(k-+1)/n>k/n>2f(x). If we substitute
P, CE for X in (15.10), we find on account of Lemma 15.4 (i) that

B(P, - CB) =" +

(P cE)/ (P CE) > [ {(2)d ()= ®B( Py CT),
P CE

and so that u(Pni)=u(Pu,CE)=0. Therefore D®(z)<f(z) at

almost all points z. By symmetry D®(x)_>=f(x) must also hold

almost everywhere in M. Therefore the derivative D®(x) exists and

equals f(z) at almost all the points ®# of M, and the identity (15.10)

takes the form

(15.11) &(X)=0(X)+ f Dddy =¢(E-X)+'/'D¢dy for every set Xe®.

Moreover, since D®(x)=f(x)Fco almost everywhere, the set £, +F_c
is of measure (u) zero, and it follows directly from (15.11) that the
function @ vanishes identically on the set (E wtE o)—K.
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On the other hand, by Lemma 15.4 (ii), @ vanishes identically
on BE—(E w+E o). Therefore in (15.11) the set F may be replaced by
the set K o+E o, and the relation (15.11) becomes the required
formula (15.8). Finally, since by Lemma 15.4 (i) the function @
is non-negative for the subsets (B) of F.. and non-positive for
the subsets (B) of E.., formula (15.9) follows at once from for-
mula (15.8).

Let us mention specially the following corollary of Theorem 15.7:

(15.12) Theorem. Suppose given in the space M two regqular sequences of nets
N and B, and, as before, a measure u defined for the sets (B) and subject to the
condition u(M)< -+oco. Then for every function @ of a set (B), which is additive on M,
we have almost everywhere (u, MDD (x)= (p, P)DDP(x); moreover, if E denotes
the set of the points x at which either one at least of the derivatives (u, R)D® (x)
and (u, PYDP(x) does not exist, or else both exist but have different values, then
the function D vanishes identically on E, i.e. W (®; E)=0.

In fact, if we write, for brevity, D, and D, in place of (u, ®)D and (x, R)D
respectively, and if we denote by @ the function of singularities of @, we have
by the previous theorem

UX)=O(X)+[ Do) dp ()= 6(X)+ [ DyD(z) ds(z)

for every set X measurable (B). Equating the two integrals which occur in this
relation, we obtain almost everywhere D,®(x)=D,P(x).

Now the set E of the points at which this relation does not hold, may be
expressed as the sum of three sets A;, 4, and 4,, where 4, is the set of the points
zeE at which one at least of the derivatives D,&(x) and D,%(x) does not exist,
or else exists and is finite, 4, the set of the points z at which D,®(x)=+c0 and
D,®(x)=- o0, and 4, the set of the points x at which D, ®(x)=— co and D,P(x)=-}oc0.
It follows directly from Lemma 15.4 (ii) that the function @ vanishes identically
on A4,. In the same way, it follows from part (i) of this lemma that we have
simultaneously @(X)>=0 and @(X)<0, and so @(X)=0, for every subset X
measurable (B) of 4, or of A;. Consequently W(&; E)=0, and this completes
the proof.

Theorem 15.7, which corresponds, to a certain extent, to Theorem 9.6,
was first proved by Ch. J. de la Vallée Poussin [1; ef. also I, p. 103] for
derivation with respect to the Lebesgue measure, and with respect to the regular
sequences of nets of half open intervals in Euclidean spaces. Strictly, the Lebes-
gue measure does not fulfil the condition which we laid down for the measure g,
since Euclidean space has infinite Lebesgue measure. Nevertheless it is easy
to see that for the validity of Theorem 15.7 (a8 well as for that of the other pro-
positions of this §) it suffices to suppose only that the meshes of the nets considered
have finite measure.

For the derivation of additive functions of a set in abstract spaces, see
also R. de Possel [1].
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*§16. Torus space. As an example and an application of the
results of the preceding §, we shall discuss in this § a metrical space
which, from the point of view of the theory of measure and inte-
gration, may be considered as one of the nearest generalizations
of Euclidean spaces. This space, called torus space of an in-
finite number of dimensions, oceurs in a more or less ex-
plicit form in the important researches of H. Steinhaus (2], of
P. J. Daniell [2;3], and of other authors, in connection with
certain problems of probability; but the first systematic study of
this space is due to B. Jessen [2].

Following Jessen, we shall call torus space Q. the metrical
space whose elements are the infinite sequences of real numbers
§= (1, @y ... ; Tny...) Where 0<Cz, <1 for wn=1,2,..., the distance
e(&, ) of two points &= (@, @5y ..oy Buy ...) ANA 5= (Y1, Yoy cvr s Yny --.)
in @, being defined by the formula o(&, )=Yly,—.//2". By Oum,

where m is any positive integer, we shall denote the half open cube
[0,1;0,1;...; 0, 1) in the Euclidean space R,,. If &= (xy, 2y, ..., Zn, ...)
is a point of (), we shall denote, for any positive integer m, by &

the point (wy, @y, ..., 2w) 0f Qpn, and by & the point (Zmi1, Lmyzy...)
of Q,, and we shall write &=(£ ,&). According to this notation,
(&,m) is a point of Q, whenever &e(),, (where m is any positive integer)
and neQ,. So that, if 4C Q, and BC Q., the set A x B (cf. Chap. I1L,

§§ 8, 9) lies in the space Q,; and in particular Q,,x Q,=0,.

We shall call closed interval, or simply interval, in the space
Q., any set of the form I X @Q,, where I is a closed subinterval of Q,,
for some value of m=1, 2, .... Similarly, taking I to be an interval
which is half open (on the left or on the right) in Q,, we define in
the space Q. the half open intervals (on the left or on the right).

Every (closed) interval J in €, has only one expression of
the form 7x @, where I is an interval in a space Q,. (It is to be re-
marked that the space Q,, itself is not a closed interval in the sense
of the definitions given above.) By the volume of the interval J=1I x Q,,
we shall mean the volume of the interval I in Q,C R, (cf. Chap. III,
§ 2). Just as in Euclidean spaces, the volume of an interval J in Q.
will be denoted by |J| or L.(J). Again, as in Euclidean spaces
(cf. Chap. 111, § 5), we shall extend the notion of volume in the space
Q. by defining for every set E in this space the outer measure L(E)
of the set E as the lower bound of the sums %’le! where {J,) is

any sequence of intervals such that E(CJJ;. Thus defined, the
&k
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outer measure evidently fulfils the three conditions of Carathéodory
(cf. Chap. II, § 4) and determines, first the class of sets measurable
(8:x), and then the class of functions measurable (£.7). For brevity,
the sets and the functions belonging respectively to these classes,
will simply be termed measurable. Also by the measure of a set B
in the space Q. we shall always mean its measure (L)

It is easily shown, with the help of Borel’s Covering Theorem,
that the measure of any closed interval coincides with its volume
(¢f. Chap. III, § 5, p. 65), so that we can, without ambiguity, write
|E; or L.(E) (omitting the asterisk) to denote the outer measure
of any set E in Q,. We also see that the boundary of any closed
interval is of measure zero. Finally, we remark that the whole space Q.
is of measure 1.

We shall now define in Q. a regular sequence of nets (cf. § 15,
p. 153) of intervals half open on the right. We shall, in fact, denote
for any positive integer m, by Q" the finite system of 2™ intervals
half open on the right

(B /27, (1) 1275 kg /2"y (Bp 1) /275 o5 /2" (B t1)/27) X Qo

where the %; are arbitrary non-negative integers less than 2™,
We see at once that each system Q" is a net in Q.. To see
that the sequence of these nets is regular, we observe in the first
place that each interval of QY ig contained in one of the intervals
of Q™. On the other hand, no interval of the net Q™ ecan have
a diameter exceeding the number k§11/2m+kk+§:_11/2k<1/2"771, so that
the characteristic number A(Q™) of the net Q" tends to zero as m—> oo,

If 2 and y are two real numbers, :H—y will denote the number
@+ y—I[x+y], where, as usual, [x+y] stands for the largest integer
not exceeding x+y. If &= (@, Tgy covy By -.) ANA 4= (Y5 Ypy eov s Yps =)
are two points of Q,,, we shall write f—{'—n for (wl—i.— Y uvz—i— Yoy vevs wn~i'— Yproee)e
The point f—l-—n clearly belongs to Q..

We shall call translation by the vector a, where a is a point of Q.,
the transformation which makes correspond to each point & of Q.
the point & —]—a. The translation by the vector a will be termed of
order m, if all, except at most the first m, coordinates of a vanish.
A function f in Q, will be termed eylindrical of order m, if f(§)
does not depend on the first m coordinates of the point &, i. e. if
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(&) =F(E+a) identically in &, for every point a whose coordinates,
except perhaps the first m, all vanish. A set E in Q, will be termed
cylindrical of order m, if its characteristic function is so, or, what
amounts to the same, if F=Q,,Xx4 where 4 is a set in Q..

(16.1) Theorem. A function which is measurable on Q., and cylindrical
of every finite order, is constant almost everywhere, i. e. f(£)=c for
almost all points & of Q., where ¢ is a constant.

Proof. Suppose first that the function f is bounded, and
therefore integrable, on Q.. Denoting by @ the indefinite integral
of f, let us define, for each Value of m and for each mesh ¢ of the
net Q) f"(&)=®(Q)/L.(Q) whenever £eQ. For every pair of
meshes ¢; and @, of the same net Q(m), there always exists a trans-
lation of order m which transforms @, into Q,; therefore, since the
function f is cylindrical of order m, it follows that @ (Q,)=®(Q,);
and since further L.(Q,)=L.(@,), each of the functions f (&) is
constant on Q.. On the other hand, we deduce from Theorem 15.7
that f(£) = lim f(”')(f) almost everywhere in Q,, i. e. that the function

is almost eve';ywhere identical with a constant.

Now let f be any measurable function which is cylindrical of
every finite order. Let us write f,(&)=7(&) when [f(£)|<<n and
f(&)=n when If(&)>n. Each of the functions f,(¢) is bounded and
cylindrical of every finite order, so that by what has just been proved,
each of these functions is constant almost everywhere. Therefore
the same is true of the funection f(£)= hm fo(&) and this completes
the proof.

The fundamental properties of our measure in the space Q.
may be established by methods similar to those used in Euclidean
spaces. To illustrate this, let us enumerate some of these properties.

Given any measurable set E and any >0, there exists a closed
set F' and an open set G such that FC ECG and such that |G—E| <e
and |E—F|<e (cf. Theorem 6.6, Chap. 1II).

From this we may deduce next Lusin’s theorem (cf. Theorem 7.1,
Chap. III): If f is a finite function measurable on a set E, there exists
for each ¢>0, a closed set F(C E such that the function f is continuous
on F and that |E—F|<e; and its immediate corollary: any function
which is measurable in Q., is equal almost everywhere in Q. to a funciion
measurable (B). Finally Fubini’s theorem (cf. Chap. III, §8) may
be stated as follows for the space Q.,:
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(16.2) Theorem. If f is a non-negative measurable function in the
space Q., then for any positive integer m,

(1) the definite integral /.f(§, n)dL.(n) exists for every & e Qu,
0

)

except at most for those of a set of measure (L) zero,

(ii) the definite integral /.f(é, AL, (&) exists for every ne Q.,
O
except at most for those of a set of measure (L,) zero,

(iii) [f 0)ALo(l)= [ /f(f,n)de ) L&) = [[ [ 1(5,7)0Lnl £) JdLial).

""l "(l) W )lﬂ

Proof. We begin by verifying this direetly when f is the
characteristic function of a closed interval, or of a half open interval,
and then successively when f is the characteristic function of an
open set, of a set (®;), of a set of measure zero, and finally of any
measurable set. It follows at once that the theorem is valid in the
case where f is a simple function, and then, by passage to the limit,
in the general case where f is any non-negative measurable function.

The line of argument that we have sketched, does not differ substantiaily
in any way from the proof of Fubini’s theorem for Euclidean spaces, and is even
in a sense simpler than the latter, since in proving Theorem 8.1 of Chap. III we
had to allow for the possibility of there being hyperplanes of discontinuity of
the functions U and V

In the space Q, there is, however, as shown by B. Jessen [2, p. 273],
another theorem of the Fubini type, whose proof requires new methods. This
theorem allows integration over the space @, to be, so to speak, reduced to
integrations over the cubes @, in Euclidean spaces, whereas each of the three
members of the relation (iii) of Theorem 16.2 contains an integration extended over
the space Q.

(16.3) Jessen’s theorem. If f is a non-negative measurable function
in the space Q., the integral

(16.4) /f(&, g )AL, (&), where m=1,2, ..,

exists, and we have

(16.5) lim fu(0)= [ {E)ATilE),

9,
for almost all £ in Q..
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Proof. Let us first remark that if @ is a set of measure zero
in Q,, it follows from Theorem 16.2, applied to the characteristic
function of @, that for any m whatever, the set E[(&, n)eQ; &e Qu]

5
is of measure (L) zero for almost all 4 of Q.. Hence (with the not-
ation adopted p.157) we also have L _{E[(&, £ )e@]i=0 for almost all
§

¢ of Q.. It follows that if g and & are two non-negative measurable
functions which are almost everywhere equal in Q,, the integrals
/g(f, £.)dL (&) and /h(f, ) dL, (&) are equal for almost all the ¢
O Qn '
oft Q.,, whatever m may be. We may therefore, without loss of gen-
erality, assume in the proof of Theorem 16.3 that the given func-
tion f is measurable (B); for any measurable function is almost
everywhere equal to a function measurable (B).

The integral in the formula (16.4) then clearly exists for every {,
and moreover it follows directly from this formula that the function
fm(C) is ecylindrical of order m. The upper and lower limits of
the sequence {f,({)} are thus cylindrical of every finite order and
by Theorem 16.1 we may write almost everywhere in Q,

lim inf f,,()=4 and lim sup fu($)=RB

m m

where A and B are constants. It remains to be proved that A=M=B,
where M denotes the integral on the right-hand side of (16.5).

We shall prove in the first place that 4 >M. For this purpose,
let A" be any number exceeding A (if A=--co our assertion is
obvious), and write

m

(16.6) P=E[fx(0)<<A], Su=2Pr and 8=1Lm§¥,.
4 k=1

m

The set § coincides, except for a set of measure zero, with the whole
space Q.. Keeping an index m fixed, let us evaluate the integral of
fmover 8y. Writing R, =P, Ry 1=Pu—1-CP,p, ...,.R1=P1-CP2-...-CP,,,’
we have

nt

(16.7) Su=2R. and  (16.8) R:R;=0 whenever 1<i<<j<m.
k=1

On the other hand, since every function f; is cylindrical of order £,
so are the sets P, and CP; and therefore the sets Ry for k=1, 2, ..., m.
We may thus write (cf. above p.159) Ri=0Q,x E, where R.C Q..
According to (16.6), we have f,({)<CA’ for every (eR,(C P,
where k=1, 2,...,m, or, what amounts to the same by formula (16.4),
S. Saks, Theory of the Integral. 11
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f]‘(f,n)de(S)<A’ for every neﬁk. Therefore, on account of
O
Theorem 16.2, we obtain for k=1, 2, ..., m,

[1@) aLu@) = [[ [ 18 n) dL(&) | dLu(n) < A" L Bi)=A4" Li( Ry),
R, i

R, O
whence it follows by (16.7) and (16.8) that / fO)AL.(C)<<A’ - Lo(Sm)<d .
' 8,
Making m—>co, we obtain in the limit M= [({)dL.({)< 4’ and
80 M<A. Q,

By symmetry M > B and, since it is clear that A <C B, this
requires A=M=B and completes the proof.




