CHAPTER VL

Major and minor functions.

§ 1. Introduction. Major and minor functions (defined in § 3
of this chapter) were first introduced by Ch. J. de la Vallée Poussin
in his study of the properties of the Lebesgue integral and those
of additive functions of a set. Entirely equivalent notions (of
“Ober”- and “Unterfunktionen’) were introduced independently
by O. Perron [1], who based on them a new definition of integral,
which does not require the theory of measure. Although, in its original
form, this definition concerned only integration of bounded functions,
its extension to unbounded functions was easy and led, as shown
by O. Bauer [1], to a process of integration more general than
that of Lebesgue. Moreover, as we shall see in § 6, the Perron integral
may be regarded as a synthesis of two fundamental conceptions of
integration: one corresponding to the idea of definite integral as
limit of certain approximating sums, and the other to that of
indefinite integral understood as a primitive funection.

It is usual to associate these two conceptions of integration
with the names of Leibniz and Newton. In accordance with this
distinetion (which is largely a matter of convention) we shall call
a function of a real variable F indefinite integral, or primitive, of
Newton for a function f, if F has everywhere its derivative finite and
equal to f. The function f will then be termed integrable in the sense
of Newton, and the increment of the function F on an interval I,
will be called definite integral of Newton of f on I,. As is seen im-
mediately, this definition implies that any function which is integrable
in the sense of Newton is everywhere finite. This restriction is
essential (cf. the example of § 7, p. 206) for the unicity of integration
in the sense of Newton, which then follows from classical theorems of
Analysis, or, if we like, from Theorem 3.1, or from Theorem 7.1
of this chapter.

The theory of the integral was first developed on Newtonian lines.
This is easily accounted for if we think how much simpler the inverse
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of the operation of derivation must have seemed than the notion of de-
finite integral as defined by Leibniz. It was A. Cauchy [I, t. 4, p. 122]
who returned to the idea of Leibniz in order to apply it to integration
of continuous functions, for which the methods of Cauchy and
Newton are actually completely equivalent. This equivalence dis-
appears, however, as soon as we pass on, with Riemann, to inte-
gration of discontinuous functions. In fact, even in the domain
of bounded functions to which the Riemann process applies, there
exist on the one hand (as we see at once) functions which are inte-
grable in the sense of Riemann but have no primitive, and on the
other hand (as shown by V. Volterra [1]; cf. also H. Lebesgue
[1I, p. 100]) functions which have a primitive but are not integrable
in the Riemann sense. Also the Lebesgue process of integration
does not include the integral of Newton, not even when the func-
tions to be integrated are everywhere finite.

Thus, the function F(x)=x?sin (#/x?) for x40, completed by writing
F(0)=0, has in the whole interval [0, 1] a finite derivative which vanishes for x=0
and which is bounded on every interval [ 1], where 0<{#<C1. On every interval
[e, 1] the function F(z) is therefore absolutely continuous. On the other hand,
on the whole interval [0,1] the function is not even of bounded variation. Hence
F’(z) is not summable on [0,1], since its indefinite Lebesgue integral could
then differ only by an additive constant from F(x) on [0,1], and this is im-
possihle.

We have thus been led to the problem of determining a process
of integration which includes both that of Lebesgue and that of
Newton. As an application of the method of major and minor fune-
tions, we shall consider in this chapter (§§ 6 and 7) the solution of this
problem constituted by the Perron integral. Another solution, the
Denjoy integrals, will be treated in Chapter VIIL.

The notions of major and minor funetions, and their applications to Le-
besgue integration, will be discussed here for arbitrary spaces Rm. In defining
the Perron integral, however, we shall limit ourselves to functions of one real
variable. Although recently various authors have treated the extension of this
integral to Fuclidean spaces of any number of dimensions, the present state of
the theory does not allow us to decide as to the importance of this genera-
lization. On the contrary, in the domain of functions of a real variable, the
method of major and minor functions as a means of generalizing the notion of
integral has already repeatedly shown its fruitfulness. In the memoir of
J. Marcinkiewicz and A. Zygmund [1], the reader will find new applications
of this method in connection with certain fundamental problems of the theory
of trigonometrical series (cf. also J. Ridder [117).
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§ 2. Derivation with respect to normal sequences
of nets. Given a regular sequence N={N,} of nets of intervals
(vide Chap. I1I, § 2) in a space R, and a function of an interval #
in R, we shall call upper derivate of F at a point x with respect to
the sequence of mets N the upper limit of the ratio F(Q)/|Q| as
6(Q)—> 0, where @ denotes any interval containing x and belonging
to one of the nets of the sequence . By symmetry we define
similarly the lower derivate of F at x with respect to the sequence of
nets N. We shall denote these two derivates by (N) F(z) and (N) F(x).
When they are equal at a point , their common value will be
denoted by (N) F'(x) and called derivative of F at x with respect
to the sequence of nets N.

These definitions are similar to those given in § 15, Chap. 1V, in connection
with derivation of additive functions of a set (B) in a metrical space. It should
be observed, however, that additive functions of a set (B) correspond to ad-
ditive functions of an interval of bounded variation, whereas in the present § we
treat derivation of additive functions of an interval without supposing them
a priori of bounded variation. For this reason it will be necessary to impose
certain restrictions on the nets considered in this §, and to distinguish a class
of nets which we shall call, for brevity, normal nets. The latter are, in point of

fact, the nets occurring most frequently in applications (ef., for instance, Chap. 111,
p. 58).

A system of intervals will be called a normal net in the space R,
when it consists of the closed intervals [ag), ails; a, a5 s ay?, af]
for k=0, +1, 4+ 2,..., which are determined by systems of num-
bers a{) subject to the conditions af <a{) , for i=1,2, ..., m and

k=..,—1,0,+1,.., and lima{)= 4 oco. A regular sequence of
kroo

normal nets will be termed normal sequence.

(2.1) Theorem. Let N={ Ny be a normal sequence of nmets, g(x)
a function which is summable in the space R, and F a continuous
additive funciton of an interval such that (i) (N)F (r)>—oco al every
point x, except at most those of an enwmerable set, and (ii) F'(x)=g(x)
at almost all the points x at which the function F is derivable in the
ordinary sense.

Then for every interval I, we have

(2.2) (D)= [ g() da;
I

t. e. F' is a function of bounded variation, whose function of singul-
arities is monotone mon-negative.
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Proof. Consider the points in every neighbourhood of which
there exist intervals I for which the inequality (2.2) is false, and let
P denote the set of these points. The set P is evidently closed,
and we see easily that the relation (2.2) must hold for every interval
I such that I°(C CP. For if this were not the case, we could deter-

mine first an interval I(CCP such that F(I)<C / 'g(x)dw, and then,
I

by the method of successive subdivisions, a descending sequence {I,}
of subintervals of I such that J(I,)-—>0 as wn—>oco and that

F(I,) </‘g(w)dm for n=1, 2, .... Therefore, denoting by & the com-
¥

mon point of the intervals I,, we should have ae¢ P, which is clearly
impossible, 4

It follows that in order to establish the wvalidity of the in-
equality (2.2) for all intervals I , we need only prove that P=0.
Suppose therefore, if possible, that P 3=0. Let us denote, for any
pair of positive integers k and &, by N, , the sum of all the intervals [
of the net N, for which F(I) >—h-|I|. Therefore by writing Np=[][N, p,

k=h
we obtain a sequence {N;} of closed sets whose sum, according to

condition (i), eovers the whole space except for an at most enumerable
set. Consequently, on account of Baire’s Theorem (Chayp.II, Theo-
rem 9.2), the set P contains a portion which either consists of
a single point, or else is contained in a set N, The former case is
excluded since it is evident from the continuity and additivity of
the function # that the set P contains no isolated points. Therefore
there exists a positive integer h, and an open sphere § such that

0 P-SC Ny, Let us write H(I)=F(I)+hy|I|+[lg(2)|do where T
I

is any interval. We shall have H(I)Z>0 for any interval I such
that I°C CP, as well as for any interval I belonging to a net %R,
of index k>=h, and having points of the set XN, in its interior.
Therefore H(I)zZ0 for any interval I(_S belonging to a net I,
of index k>=h,, and consequently, by additivity and continuity of H,

we have H(I)Z>=0, i.e. F(I)=—hy|I|— /‘]g(wﬂda}, for any inter-
i

val I(C S whatsoever. It follows at once that the function F
is of bounded variation in § and that the function of singularities
of F (cf. Chap. IV, p. 120) is monotone non-negative in 8.
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Hence, by condition (i), F(I)=> [ F'(x)de > / g(x)dwz for every inter-
i i

val IC 8. But since P-8= 0 we thus arrive at a contradiction and
this completes the proof.

As an immediate corollary of Theorem 2.1, we have

(2.8) Theorem. If % is a normal sequence of nets in the space R
and if F is a continuous additive function of an interval such that:
(i) —o0 << (N) F(x) << (N)F(w) <<+ oo for each point x except at most
the points of an enumerable set, (ii) the (ordimary) derivative F'(x) is
summable on each portion of the set of the points at which this deriva-
tive exists; then the function F is almost everywhere derivable and is
the indefinite integral of its derivative.

For Theorems 2.1 and 2.3 ef. J. Ridder [2]. Let us remark that in the
case where the function F is of bounded vamation, these theorems are included
in Theorem 15.7, Chap. 1V, which concerns derivation of additive functions of
a get in an abstract metrical space.

It follows easily from Theorem 15.12, Chap. IV, that F/(z)=(W)F'(x)
almost everywhere for any regular sequence of nets of intervals 9t and for any
additive function of an interval ¥ which is continnous and of bounded variation.
This remark enables us to replace condition (ii) of Theorem 2.1 by the following:
(ii-bis) F'(x)==(MYF'(x)>g(x) at almost all the poinis x ut which the two derivatives
F'(x) and (N)F'(x) exist, are finite and equal. Similarly we may modify coundi-
tion (ii) of Theorem 2.3.

As it follows from an example due to A. J. Ward [7], the inequality
(M) F(x)>—oco in condition (i) of Theorem 2.1 cannot bereplaced by (R)F(x)> —oo.

§ 3. Major and minor functions. Before introducing the
fundamental definitions of the theory of the Perron integral, we
shall prove

(3.1) Theorem. If an additive function of an interval F' (not neces-
sarily continuous) has a non-negative lower derivate at each point x
of an interval L, then IF(I,)Z=0.

Proof. Let e be any positive number and write G(I)=F(I)+}¢-|I]|
for every interval I. Then G(z)>>&>0 at each point xzel,. Suppose
that G(I,)<<0. By the method of successive subdivisions, we could
then determine a descending sequence {[,} of intervals similar to I,
such that G(1,)<C0 for »=0,1,2,... and that J(I,)>0 as n—>co.
Therefore, denoting by x, the common point of the intervals I,,
we should have @(x,)<<0 which is impossible. Hence G{I,)>>0, and
this gives F(I,) > —e-|I| for each ¢>0, and finally F(I,) = 0.
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An additive function of an interval F is termed major [minor]
function of a function of a point f on a figure R, if, at every point z
of this figure, —ooF(x)=f(x) [+oozdFi(x)<f(x)]. It follows at
once from Theorem 3.1 that if the funetions of an interval U and V
are respectively a major and a minor function of a function f on-
a figure R, their difference U—V is monotone non-negative on R,.

(3.2) Theorem. If f is a summable function, then, for each ¢>0, the
function f has an absolutely continuous major function U and an
absolutely continuous minor function V such that, for each interval I,

(3.3) o<<U(I /f and /f Ydo—V () <e.

Proof. On account of the theorem of Vitali-Carathéodory
(Chap. IIL, Theorem 7.6) we can assoeiate with the function f two
summable functions, one a lower semi-continuous function ¢
and the other an upper semi-continuous function k, such that
i) —ocofg(w)=f(x)=h(x)F+oo at every point x and that

(it) [lg(@)—f(@)ldo<e and [/ (@)—h(x)ldw<e for every interval I.
I I

Therefore, if we denote by U and V the indefinite integrals of the
functions ¢ and k respectiv ely, we find by Theorem 2.2, Chap. IV,
that Ug(x ) g (@) 2= h{x) = V(x), and 80, omn account of (i), that
—ooFUlx)=f(x) and + oo Vix)<f(x) at each point x. Finally,
(ii) then 1mphes the relations (3.3) and this completes the proof.

Theorem 3.2 can easily be inverted. Thus: in order that a function of a point f
be summable, it is necessary and sufficient that for each e>>0 there ewist two absolutely
continuwous functions of an interval U and V, the one a major and the other @ minor
function of f, which fulfil the condition U(I)—-V (I)<Ce for every inlerval I. (These
absolutely continuous functions may clearly be replaced by functions of bounded
variation, and if the function f is supposed measurable, then, of course, for its
summability there suffices the existence of two funections of bounded variation,
one of which is a major and the other a minor function of f.)

* § 4. Derivation with respect to binary sequences of
nets. The theorems of §2 concerned derivation of additive functions
with respect to any normal sequence of nets of intervals. For certain
purposes however, more special sequences of nets are required.
We shall say that a normal sequence {Rg}r—s 2 .. of nets in the space
R, is binary, if the net N,y (where k==1,2,..) is obtained by
subdividing each interval N of the net 9N, into 2™ equal intervals
similar to N.
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An application of this notion may be found in the following theorem which
is proved similarly to Lemma 11.8 of Chap.IV: If N is a binary sequence of nets,
any additive funciion of an interval F is derivable with respect to N al almost all
the points at which either (N) F(x)>—co or (M)F (z)< | oo.

Another application, of particular interest, is due to A. 8. Besicovitch [3]
who, by using derivation with respect to a binary sequence of nets, established
a theorem on complex functions (vide below § 5). The substance of Besicoviteh’s
result is contained in Theorem 4.4 below. We must first, however, give some
subsidiary definitions.

For definiteness, just as in § 11, Chap. IV, we shall fix in the
space I?, a binary sequence of nets Q={Q;}, where Q, denotes, for
k=:=1, 2,..., the net formed by the cubes

[101/2 (P, +1)/2%5 py 2" (p,+1)2% 5 p,,/2% (p,, +1)/2"]
where p,, p,, ..., p,, are arbitrary integers; it goes without saying
that in Theorem 4.4 this sequence may be replaced by any binary
sequence whatsoever.

Given a non-negative number e, we shall say that a function
of an interval F fulfils the condition (1)) [condition (1;)] at a point x,
if liminf #(I)/[6(I)]“=0 [hm supF )/[F(I)]“<C 0], where I is any

5(1)>0
interval containing x. If a functlon f fulfils the condition (LT) [(1z)]
at every point of a figure R, we shall say simply that f fulfils this
condition on R. Finally, we shall say that a function fulfils the
condition (l.) at a point, or on a figure, if it fulfils simultaneously
the conditions (I) and (17).

We recall further the notation A.(E) for the «-dimensional
measure of a set K (cf. Chap. I, p. 53).

(4.1) Lemma. Given a set B in the space R, together with a positive
integer ky and a non-negative number a < m, there exists for each £>0
a sequence {Q,} of intervals belonging to the nets Qy for k==k,, which
fulfils the following conditions:

(1) ?[5(Qn)1“< (4m)"-[Ao(E)+e£];

(i) to each point x of K there corresponds a posilive integer k==k,
such that all the intervals of the net Qx which contain the point x belong
to the sequence {Qy).

Proof. Let us cover E by a sequence {F;}i_s . of sets such
that 0<6(E;) << 1/2%%" for i=1, 2, ... and such that

(4.2) ; [6(E)]" << Au(B)+e.
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Let us denote by k;, for each i=1, 2, ..., a positive integer
such that

(4.3) 1/2" > o(E) =12,

We easily see that k;>>ky for every ¢, and that each net Q,

for i=1,2,..., can contain at most 2™ intervals having points in
common with E;. Let {@,},_,, be the sequence of all the intervals
belonging to the nets Qg , Qiyy -y Qiyy .- and having points in com-
mon with the sets E,H,,...,HE,... respectively. The sequence {Q,}

Il’

clearly fulfils the condition (ii). Moreover, we find on account of (4.3),

DI6(Qa1 =<2 Y m 2T L 2" 2 X 2T D < (am)™ X8 (BT,

i {

and this by (4.2) gives at once the condition (i).

(4.4) Theorem. Suppose that F is a continuous additive function of
an interval in the space I, and fulfils the condition (1.) where 0<C a <m,
and that g is a summable function. Suppose further that (1) (Q) F(x) >—o0
at every point x except at most those of a set K expressible as the sum
of an enumerable infinity of sets of finite measure (A.), and that
(i) (Q)F(x)Z=g(x) at almost all points x; then

(£.5) F(Io) = [gla)d
1,

for every interval I.

Proof. Since the function F is continuous, it will suffice to
prove (4.5) in the case in which the interval I, belongs to one of
the nets Qg, to the net Q, say. Further by changing, if necessary,
the values of ¢ on a set of measure zero, we can assume that
the inequality (Q)F(x)>>g(x) holds at every point a.

Let & be a positive number and let V be a minor function of ¢
(cf. § 3, particularly Theorem 3.2) such that

(4.6) V(L) > [g(x)do—e.
1,
Let us write G(I)=F(I)—V (I)+e¢-|I|, where I denotes any interval.
We shall have (Q)G(x) = (Q)F(x)—V (x)+e==>e>0 at every point
2 except at most at the points of E. Finally, since V(r) <<+ oo at
every point x, the function V fulfils the condition (I;) and the fune-
tion @ therefore fulfils the condition (17).
S. Saks. Theory of the Integral, 13
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Let us now represent the set K as the sum of a sequence
{E}i,s,.. of sets of finite measure (4.), and denote, for each pair of
positive integers ¢ and », by E;, the set of the points x such that the
inequality G (I)>—e-[0(I)]"/2' [4a(E;)-+1] holds whenever I is an
interval containing x and belonging to one of the nets Q; for k=n.
The sets E; , are evidently measurable (B) (they are actually sets (®s)).
Moreover, since the function @ fulfils the condition (1), the sum
D' R;, must, for each integer i, cover the whole space R,. Hence,

writing B, ,=E; (Rin— Ry n—1) for n>1, and E,1=E;k;, we
find that

(4.7) (,E)_ZA Tin) for =12, ...

This being so, it follows from Lemma 4.1 that for each pair
of positive integers ¢ and n, we can determine a sequence {Qf’;'l 12,

of cubes which belong to the nets Q for k >n, and fulfil the fol-
lowing conditions:

(4.8) Zw@& < (4m)"-[A,(B, )+1/2"};

(4.9) to each point we E,;, there corresponds am integer k-=k, such
that each cube of the met Qu, containing x, belongs to the se-

(M
quence {QIJH bt ..

(4.10) each cube Qf’l has points in common with the set K, and therefore
fulfils the inequality G(Q)>—&-[6(Q)1/2"[4,( )+ 11

in

For brevity, let us agree to say that an interval has the prop-

erty (A), when it is representable as the sum of a finite number
of non-overlapping intervals I each of which either fulfils the in-
equality G(I)>0, or else coincides with one of the cubes ij,), We
remark that on account of (4.10), (4.8) and (4.7), the inequality

MR/~wLWQﬂ]ﬂM.m+u

in,j
=— Z[/l )+ 1/2")/2 A (B) + 1]=—(4m)™-¢
is valid whenever R is a figure consisting of any finite number
of non-overlapping cubes Qf.’l)l, and therefore that the inequality
G(I)>—(4m)™-¢ must hold for every interval I having the prop-
erty (4).
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We shall now show that the interval I, itself has the prop-
erty (4), so that G(I,)==-—(4m)"e. Let us suppose the contrary.
We could then, starting with I,, construct a decreasing sequence
{I;} of cubes belonging to the nets Q and none of which has the
property (4). Let z, be the common point of these cubes. Then
either wx,¢ B, and consequently, by (4.9), the sequence contains
cubes Q(’), or z,e CE, so that (Q)@G(x,) >0, and therefore G(I,)>0
for each sufficiently large p. Thus in both cases, the sequence {I,}
would contain intervals with the property (4) and we arrive at
a contradiction. It follows that G(I,)=>—(4m)"e, and therefore,
by (4.6), that

F(Lo)=G(Io)+V (Ig)~&|I)|> [ g (2) dw—[1+ (4m)" +|L,[]e;

1y

since e is an arbitrary positive number, this gives the relation (4.5).

* § 5. Applications to functions of a complex variable.
We now interpret the points of the plane R, as complex numbers
and, as usual, we call complex function of a complex variable every
function of the form w--iv where w and v are real functions in
the whole plane, or in an open set. The functions % and v are
termed real part and imaginary part of the function f. A complex
function is said to be continuwous (at a point, or in an open set), if
its real and imaginary parts are both continuous.

Given a complex function f, continuous in an open set @, and
having the real and imaginary parts » and v respectively, we shall
write for every interval I=[a,, b;; ay, b,] contained in G:

b,
Iy (f5 )=~ [ [u(@, b)) —u(z, audx—/[v (b1, y)—0 (@, )] dy,
(5.1)

by

Tolf; D= [Tulby, y)—ulay, y)]dya/'ww, ba) —v (@, ag)] da,

a, a,

J(f; I)=d.(f; I)+ed(f; I)

The expression J(f; I), which will also be denoted by / fdz, will
)

be called curvilinear integral of the function f along the boundary

of the interval I. The function f will be termed holomorphic in an

open set @, if J(f; I)=0 for every interval I(C G. (The equivalence

13*

and
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of this definition of the term ,holomorphic“ — used here in place
of terms such as “regular’’, “analytic”’, etc. — with the more familiar
definitions of the theory of complex functions, follows from. the
well-known theorem of Morera [1].) We verify at once that this
relation holds when f(2)==az+b where ¢ and b are any complex
constants.

If f is a complex function, continuous in an open set G, the
expressions Jy(f; I) and Ju(f; I) are continuous additive funetions
of the interval I in G. Moreover

(s DIIIG D] and I DI 1))

for each interval I in G. On account of Theorem 2.3, we there-
fore obtain at once the following theorem due to J. Wolff [1]
(cf. also H. Looman [2] and J. Ridder [1;2}):

(5.2) Theorem. A complex function f, continuous in an open set aq,
is holomorphic in G if at almost all points z of G,

1im1nfi‘/f(z)dz\:0,
a0 Q] g

and if at all points z of G, except at most those of an enumerable set,

< oo,

Q>0

lim sup %?T l ‘/f(z)dz
(@

where Q denotes any square containing .

A complex function is called derivable at a point z,, if the ratio

[f(2) —f(20)]/(z—2,) tends to a finite limit when z tends to z, in any

manner. This limit is called derivative of f at z, and is denoted by f'(z).

Let f be any complex function, defined in the neighbourhood

of a point 2z, If we have lin; s(}lp 2o+ h)—f(29))/h| < +00, we
>

can write f(2)=7F(z,)+M(2)-(2—2,), where M(z) is a function of z
which is bounded in the neighbourhood of z,; and we then easily
tind that the ratio |J(f;Q)|/|@], and a fortiori the ratios |J,(f;@)//|Q|
and |J,(f; @)]/|Q|, must remain bounded when ¢ denotes any suf-
ficiently small square containing 2, If, further, the function f is
derivable at z, we have f(2)=](2y)+f (2p)-(2—2)+ €(2)-(2—2p),
where |e(z)]—>0 as 2—#,, and the ratios in question tend to zero as
5(Q)—>0. Finally, let us observe that if the function f is continuous,
the expressions J,(f; I) and J,(f; I), considered as functions of the
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interval I, both fulfil the condition (I;) of § 4. Therefore, if we apply
Theorem 4.4, we obtain the following theorem due to A. S. Besi-
coviteh [3] (ef. also S. Saks and A. Zygmund [2]):

(5.3) Theorem. A compler function f, continuous in an open set ¢,

is holomorphic in G if it is derivable at almost all the points of G and f

further limsup |[f(z+h) —f(2)]/h] <<+ oo at each point z of G except at
B0

most those of a set which is the sum of a sequence of sets of finite length.

The theorem of Besicovitch may be regarded as a generalization of the
classical theorem of E. Goursat [1]: A complex function f, continuous in an open
set (, is holomorphic in G if 1t is everywhere derivable in G.T. Pompein [1] showed
that it is enough to suppose f derivable almost everywhere, provided that
we restrict the expression lim sup |[f(2+ h)—7F(2)]/k to be bounded in G. Finally,

>0

H. Looman [3] (¢f. also J. Ridder [2]) replaced the condition that the expres-

sion Lim sup [f(z+ h)—f(2)]/R| is bounded by the condition that this expres-
h—>0

sion is finite at each point of ¢. Theorem 5.3 evidently includes all these
generalizations.

The theorems of Morera and of Goursat, and their generali-
zations furnished by Theorems 5.2 and 5.3, contain ecriteria for
holomorphism which are based on the notion of curvilinear integral
and of derivation in the complex domain. The elassical theorem of
Cauchy is an instance of a criterion of a different kind, expressible
in terms of real variable conditions on the real and imaginary parts
of a complex function; we have in fact, according to this theorem:
in order that a continuous funetion of a complex vari-
able f(z)=u(x,y)+ tv(x,y) be holomorphie in an open
set @, it is necessary and sufficient that the partial
derivatives u , u ” v, v should all exist in G and be
continuous, and that they everywhere fulfil the Cauchy-
Riemann equations « =v, and ulzﬁv'.

A series of researchcs begun by P. Montel [1] has been de- .
voted to the reduction of these conditions, particularly that of the
continuity of the partial derivatives. The problem was finally solved
by H. Looman [2] and D. Menchoff (vide the first ed. of this book,
D. 243, and D. Menchoff [1]) who succeeded in removing completely
the condition in question without replacing it by any other. It is
remarkable that a classical problem of such an elementary aspect
should only have been solved by a quite essential use of methods
of the theory of real functions.
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(5.4) Lemma. Let w be a real function of one variable, derivable
almost everywhere in an interval [a, b]; let F' be a closed non-empty
subset of this interval, and let N be a finite constant such that

|0 () — w (@) | <<V - |2, — 2,
whenever X, e ' and x,¢[a,b]. Then

(5.5) ‘w(b)—w(a)—'/'fw’(x)dm‘gN-(b—a—|F]).
F

Proof. Let us denote by F, the set obtained by adding the
points ¢ and b to the set F. The function w, equal to w on ¥, and
linear on the intervals contiguous to F,, is evidently absolutely
continuous on [a, b] (and even fulfils the Lipschitz condition). Hence

b
(5.6) w(b)—w(a)= B (b)— b (a)= [ ¥ (x) da.

Now @&'(x)=w'(x) at almost all the points « of F and |%'(x)|<<N
at each point x outside F. The relation (5.5) therefore follows at
once from (5.6).

(5.7) Lemma. Let w(x,y) be a real function whose partial derivatives
with respect to the two variables x and y exist at every point of
a square Q, except at most at the points of an enumerable set; and
let ' be a closed non-empty subset of Q, and N a finite constant
such that

| (g, Y1) —w (21, 43)| SN - [wg—,| and |w(ay, Yo) — W (@4, 41)| SN - |y — 4
whenever (xy,y,) e ¥, (B, y,)eQ, and (z,,)eQ.

Then if [ay, by; ag,by] denotes the smallest interval (which may
be degenerate) containing F, we have

bl v o
| [T, by) —w(@, ap))do— [ [w) (@, y) dody|<5N-|Q—F|
(5.8) “, F
|10y, y) — (@, y))dy — [ [, y) dody|<5N-1Q —F .
a, F

Proof. Let us choose arbitrarily two points (2', a,) and (2", b,)
belonging to the set F and situated on the two sides of the interval
[@y, by; @y, b,] parallel to the w-axis. For any point § of [ay,b,] we
have [1(£, by) —w (&, ag)| < (& by) —w (@, bo) -+ (2", by) —w (@', by)|+
+lw (@', by) —w (2, ay)| 4w (@', ay) —w (&, a,)); and hence, denoting by 1
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the length of the side of the square (), we obtain

|‘L0(é, b2) —w(gs “2)‘<
gN-[|m”—-§|+|m'—m"|—|—{a2—b2|—5—|§—m’|]<4Nl.
We now denote for any point & of [ay, b;], by Fe the set of
all the points y of [a,, b,] such that (E,y)eF. Let A be the set of
the points & of the interval [ay, b,] for each of which F:=0, and
let B denote the set of the remaining points of [a;, b;]. On account
of Lemma 5.4 we have

ol b —w( @) — [0, (5, ) dy| < N (b —ar—|F]
F
whenever £e A, and if we integrate the two sides of this inequality
with respect to £ on the set 4, we find

| [ 1o0(&, o) —0(&, ax)aE— [ [w)(& v) dyds|<
A F
<N'[(b1—“a/1)(bz_“z)_lF\]<N‘lQ'—F|-

(5.9)

(5.10)

On the other hand if we integrate (5.9) with respect to & on the
set B, we obtain | [[w(£, bz)—w(g,az)]dgsgzuvb|B1<4N~lQ~—F1,
B

and by adding this to (5.10) we obtain the first of the inequalities (5.8).
The second inequality follows by symmetry.

(5.11) Theorem of Looman-Menchoff. If the functions w(z,y)
and v(x, y), continuous in an open set G, are derivable with respect
to @ and with respect to y at each point of G except at most at the points
of an enumerable set, and if w.(@,y)="1vy(%,Y) and wy(x, y)=—0x(®,Y)
at almost all the points (x,y) of G, then the complex function f=u-+1v
is holomorphic in G.

Proof. Let us denote by F the set of the points (w,¥) of &
such that the function f is not holomorphic in any neighbourhood
of (x, y). The set F is evidently closed in & and the function f is
holomorphic in G—F. It thus has to be proved that F is empty.

Suppose therefore, if possible, that F =0 and let ¥, denote, for
each positive integer =, the set of the points (x,y) of @ such that,
whenever |h|<{1/n, none of the four differences u(w-+h,y)—u(z,y)
wle, y -+hYy—u(z, y), v(@+h,y)—o(@,y), vlw,y-+h)—v(z,y) exceeds |nhl
in absolute value. By continuity of the functions u and v, each
of the sets F, is closed in G. On the other hand, the sets F, cover
the whole set G, except at most an enumerable set consisting of
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the points at which the functions % and » are not both derivable
with respect to « and with respect to y simultaneously. Therefore,
on account of Baire’s Theorem (Chap. IT, Theorem 9.1), the set F( G
contains a portion which either reduces to a single point, or else is
contained entirely in one of the F,. The former possibility is ruled out,
since, as we easily see on account of the continuity of f, the set F
cannot contain any isolated points. There must therefore exist a
positive integer N and an open sphere § such that 0 -F-S( Fy.

Let @ be any square contained in 8. such that J(Q)<C1/N
and @-F==0. We denote by I=[a,, b;; a,, b,| the smallest interval con-
taining @-F. By applying the evaluations of Lemma 5.7 to the
integrals on the left-hand sides of the formulae (5.1) and by taking
into account the relations w.(x, y)=v,(z,y) and w,(z, y)=—v(z,y)
which are, by hypothesis, fulfilled almost everywhere, we find
J,(f; 1) <C10N-|Q —F| and |Ju(f; I)]<C10N-|Q —F|, and therefore
J(f; I)|<X20N-|Q —F|. This last inequality may also be written
|J(f; Q)|<<20N.|{Q —F|, since the figure QI contains no points
of I in its interior, and since therefore J(f; R)=0 for each interval
R contained in Q&1

Now let zy={(xy, y,) be any point of S, and let Q be any square
containing z,. By what has just been shown, if z,¢# we have
|J(f; D/ 1QI<<20N.|Q — F|/|Q] as soon as 6(Q)<I1/N; the ratio
J(f; @)/|Q| therefore remains bounded as d(Q)—> 0 and tends to zero
whenever z, is a point of density of F. Further |J(f; Q)|/|Q@|—0 as
d(Q)—0, whenever z,eS—F, since J(f; @)=0 for every square ¢
which does not contain points of F. Therefore by Theorem 2.3,
the function f must be holomorphic in 8. This is, however, excluded
since 8-F==0. We thus arrive at a contradiction and this completes
the proof.

Theorem 5.11 was stated (even in a more general form) by P. Montel [2]
as early as 1913, but without proof. The proof supplied by H. L.ooman [2]in 1923
was found to contain a serious gap which was only finally filled in by D. Men-
chotff (cf. D. Menchoff [I] and the first edition of this book, p. 243).

By making use of general theorems on derivates (vide, below, Chap. 1X)
it is possible to weaken slightly the hypotheses of the theorem. Thus instead
of assuming partial derivability of the function % and v, it is sufficient to sup-
pose that at each point of G (except at most those of an enumerable
set) these functions have with respect to each variable, z and y,
their partial Dini derivates finite. This condition implies (cf. Chap. VII,
§ 10, p. 236, or Chap. IX, §4) partial derivability of the funections u and v with
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respect to each variable at almost all points of G (this generalization of the
theorem of ILooman-Menchoff does not require any alteration of the proof;
for other and much deeper generalizations, vide the memoirs of D. Menchoff
[1: 2)).

The extension of Theorem 5.11 which we have indicated, includes in par-
ticular the theorem of Loomwan mentioned above, p. 197, but not however the
theorem of Besicoviteh (5.3). It would be interesting to establish a theoremn which
would include hoth the theorem of Besicovitch and that of TLooman-Menchoff.

§ 6. The Perron integral. For functions of one real vari-
able, as announced in § 1, the method of major and minor funec-
tions leads to an important generalization of the Lebesgue integral.

A function of a real variable, f, is termed integrable in the sense
of Perron, or &-integrable, on a figure R, in R, if 1° f has both major
and minor functions on R, and if 2° the lower bound of the numbers
U{(R,), where U is any major function of f on R, and the upper
bound of the numbers V(R,)}, where V is any minor function of f,
are equal. The common value of the two bounds is then called
definite Perron integral, or definite J-integral, of f on R, and de-
noted by (&) / ‘f(m)dx. It is evident that for J-inteqrability of a func-

R, .
tion [ on a figure R, it is necessary and sufficient that for each & >0
there should exist a major function U and a minor function V of f on R,
such that U(Ry)—V (R,)<s.

Since (cf. § 3, p.190) the function U-—V is monotone non-
decreasing for every major funetion U and every minor function V
of f, it follows that every function which is J-integrable on a figure R,
is so ‘also on every figure R R,. The function of an interval

P(I)y=(&) / ‘f(a:)da:, thus defined for every interval I(C R, i3 called
1

indefinite Perron integral, or indefinite J-integral, of f on R,. As we
see at once, P(I) is an additive function of the interval I. Moreover,
given any positive number ¢, there exist always a major function U
and a minor function V of f, such that 0<CU(I)—P(I)<Ce and
0<CP(I)—V (I)<Ce for every interval I Ry; and since U(z) > —co
and V(x) <--oco at each point x of R,, it follows at once that the
function P is continuous. Just as in the case of the Lebesgue integral,
a function of a real variable is termed indefinite F-integral [major
function, minor function] of a function f, if this is the case for the
function of an interval determined by it (ef. Chap. III, § 13).
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As we see at once from Theorem 3.2, every function which
is integrable in the sense of Lebesque on a figure R, is so in the sense
of Perron, and its definite Lebesque and Perron integrals over R, are
equal. On the other hand, if F is the primitive of Newton (cf. § 1)
of a function f, the funetion F is at the same time a major and
a minor function of f, and therefore is the indefinite &integral of f.
1t follows that Perron’s process of integration includes both that of
Lebesque and that of Newton.

We shall establish some fundamental properties of the Perron
integral.

(6.1) Theorem, Every §-integrable function ts measurable, and is almost
everywhere finite and equal to the derivative of its indefinite integral.

Proof. Let f be a function of a real variable, #integrable
on an interval I, and let P be its indefinite &integral on I, It has
to be proved that the function P has at almost all points x, a finite
derivative equal to f(x).

For this purpose, let ¢ be any positive number and U a major

function of f such that
(6.2) U(l,)— P (1) <&
Let us write H=U —P. The function H, as monotone non-decreasing,
is almost everywhere derivable, and if we denote by K the set of
the points x of I, at which H'(x)>e¢, we find, by (6.2) and Theo-
rem 7.4, Chap. IV, that |E|< e.

Now at each point zel, where the function H is derivable,
U(z)=H'(x)+P(z); hence P(z)>—co and P(x)=U(r)—e=>f(v)—e
at almost all the points « of I,— K. Therefore, since | E|<(¢, ¢ being
an arbitrary positive number, it follows that —oo=FP(x) = f(x) at
almost all the points z of I,, By symmetry this gives also
+ oo P(x) << f(x), and finally oo == P'(x)=f(x) almost everywhere
in I,

(6.3) Theorem. If two functions f and g are almost everywhere equal
on a figure Ry and one of them is F-integrable on Ry, so is the other
and the definite J-integrals of f and g over R, are equal.

Proof. Suppose that the function f is &integrable and denote
by A the value of its definite integral over K, Let ¢ be any positive
number and let U and V be two functions of an interval, which
are respectively a major and a minor function of f on R, and which
fulfil the inequalities
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(6.4) U(By)ZAZV(Ry) and U(R,)—V(Ry)<¢f3.

Let us denote by E the set of the points z at which f(x) 5= g(x).
The function equal to 4 oo at all the points of E and to 0 every-
where else is therefore almost everywhere zero, and by Theorem 3.2
has a major function G such that 0<{G(R,)< ¢/3. We have G (x)=-+oc0
at each point xeF and writing U,=U-+ @G, V,=V —(@, we see that
the functions of an interval U, and V; thus defined are respectively
a major and a minor function of the function g on R, Moreover
by (6.4), U (Ry)=AZ=V,(R, and U,(R,)—V,(R,)<<e. Therefore

the function g is Jintegrable on R, and A=(&) /.g(w)dw, which
completes the proof. R,

(6.5) Theorem. Every function f which is -integrable and almost
everywhere non-negative on a figure R, is summable on this figure.

Proof. We may assume, by Theorem 6.3, that the function f
is everywhere non-negative on R,. Therefore if U is any major
function of f, we have U(x)z=f(x)>=0 at every point zeR,, and
consequently, by Theorem 3.1, the function U is monotone non-
decreasing. Its derivative U'(x) is therefore summable on R, and,
‘since U'(x)Z= f(x) =0 almost everywhere, the function f is also sum-
mable on R,

Theorem 6.5 shows that, although Perron integration is more general
than Lebesgue integration, the two processes are completely equivalent in the
case of integration of functions of constant sign.

§ 7. Derivates of functions of a real variable. Certain
of the theorems of §§ 2 and 3 can be given a more complete statement
when we deal with functions of one real variable. We shall begin
with the following proposition which is due to Zygmund:

(7.1) Theorem. If F(x) is a finite function of a real variable such
that (i) lim sup F(z—h)<F(x)<limsup F(x 4 h) at every point x, and
h—>0- hA->0+

(ii) the set of the values assumed by F(x) at the points x where Frz)<<o
contains no non-degenerate interval, then the funmction F is monotone
non-decreasing.

Proof. Suppose, if possible, that there exist two points «
and b such that a <b and that F(b) < F(a). Then, denoting by F
the set of the points 2 at which F1(x)<C0, we can determine a value y,
not belonging to the set I'[ E] and such that F(b)<ly,<<F(a). Let
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a4, be the upper bound of the points x of [@,b], for which F(x)=y,.
We shall obviously have a <z, <b, F(x,)=1vy, and F(r)<y, for
each point @ of the interval [z,, b]. Therefore F ' (x,)<J0, although x,
does not belong to K. This is in contradiction with the definition
of the set K.

Let us mention the following consequence of Theorem 7.1:
Dini’s Theorem. Given on an interval 1=={a, b} a continuous function F{(x),
the uwpper and lower bounds of each of its four Dini derivates are respectively equal

. ey —F(x
to the upper and lower bounds of the raiio #ﬂu, where x, and x, are any

poinis of I. i

Let, for instance, m be the lower bound of the derivate F+(x) on the inter-
val I, and suppose first that m >—oco. Then, if m’ denotes any finite number
less than m, the function F(z)—m’-x has everywhere on [a, b] its upper right-
hand derivate positive; and so by Theoremn 7.1, F(x,)—1F (&) =m'-(xy,—xy),
and therefore also [F(w,)—F (x;)]/(wg—w,) = m, for every pair of points x; and x,
of I such that x,<w,. Since the inequality just obtained is trivial in the case
m=--00, the theorem follows.

An immediate consequence is the following theorem:

If any one of the four Dini derivates of a continuous function is continuous
al a point, so are the three others, and all four derivates in question are equal, so
that the function considered is derivable at this point.

These two propositions were proved by U. Dini [I] in 1878.

(7.2) Theorem. If H is a finite function of one variable such that

(i) lim sup H(x—h) << H(z) << limsup H(x -+ k) at every point x, and
A0+ A0+

(i) H (x)==0 at every point x except at most at those of an enumer-
able set, then the function H is monotone non-decreasing.

Proof. Let ¢ be a positive number and write F(x)=H (x)-+¢x.
We have F'(z)>>e>0 at each point 2 except at most at those of
a finite or enumerable set K. The set F[J] being, with F, at most
enumerable, it follows from Theorem 7.1 that the function
F(x)=H (x)+ ex is non-decreasing for each &>0; and by making
e —> 0 we obtain the assertion of the theorem.

(7.3) Theorem. Suppose that F is a continuous function and g
a F-integrable function of a real variable, and that, further, we
have (i) F'(x)>=g(x) at almost all points x and (i) F'(x)>—oo
at every point x, except at most at those of an enumerable set; then

b
(7.4) F(b)—F(a) > (9) [ glr)da

for every pair of points a and b such that a <b.
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If, in add@twn, 4y) F™ (@) =g (x) =F"(x) at almost all points i«
and (ii;) Ffx)>—o0 and F' () <+ oo at every point & except at most
at those of an enumerable set, then the function F is an indefinite
F-integral of g¢.

Proof. We may obviously assume that Fﬂ;z;)}g(m) at every
point x. Therefore, denoting by V any minor function of g, and
writing H=F—V, we shall have H' (2)>F"(2)—V"(#)=0 at every
point x, except at most at those of a finite or enumerable set where
F+( x)=-—oo. Further, since the function F is continuous, the
inequality V(x)<(4 oo, which holds at every point , implies that the
function H satisfies the condition (i) of Theorem 7.2. Consequently,
by Theorem 7.2, H(b)—H (a)>0, i.e. F(b)—F (a)=V (b)—V (a), and
since V is any minor function of g, we obtain the inequality (7.4).

The second part of the assertion is an immediate consequence
of the first part.

As we easily see, the condition of continuity of the function F in the
first part of Theorem 7.3 may be replaced by the condition (i) of Theorem 7.1.

Theorem 7.3 constitutes, on account of Theorem 7.4, Chap. IV, a general-
ization of the following theorem of Lebesgue [I, p. 122; 2; 3; 4; II, p. 183]:
in order that one of the derivates of a continuous function, supposed finile, be sum-
mable, it is necessary and sufficient that this junction be of bounded variation; iis
absolute variation is the integral of the absolute value of the derivate in question.
Let us add that in the case in which the function F is assumed to be of bounded
variation, Theorem 7.3 is included in Theorem 9.6 of Chap. IV.

The condition (ii) of the first part of Theorem 7.3, as well as the con-
dition (ii;) of the second, is quite essential for the validity of the theorem. It is
possible, in fact, to give an example of a continuous function whose derivative
exists everywhere and is summable, without the funection being the indefinite
integral of its derivative, and this because the latter assumes infinite values.
To gee this, we shall first show that given any closed set B of measure zero in
an interval J,=[a, b], there exists a function G, absolutely continuous and in-
creasing in J,, which has a derivative everywhere in J, and fulfils the conditions
(7.5) G'(x)=-+co for axeFE and G(x)+ oo for wedy—

Let us suppose for simplicity that E contains the end-points a and b

of J, and let us denote by {[an,bn]} the sequence of the intervals contiguous
to E. Let {hs) be a sequence of positive numbers such that

(7.6) i h/(bn—an) =00 “and (7.7) Nha=1
n

n=1
o

(it suffices to write, for instance, huzl";;—l/?,:rl_, where rp= b—l—a 27(’)1'Aai))-

Let us write =n

(1.8) _J hafe—an)"® bn—2)'?, when  an<<a<bn,
‘ —+c0, when xel.
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Thus defined the function g(x) is non-negative on J, and summable on J,,
b b

gince fg(x)dx:nhn, so that by (7.7) we have fg(x)dw:n. Let @ be the indefi-

an a
nite integral of g on J,. In order to verify that the function @ fulfils the con-
ditions (7.5), we observe that the function ¢(») is continuous for every = eJg—H;
on the other hand, if we denote by my, the lower bound of g(x) in [an, bs] we derive
from (7.6) that lim ma,=lm 2k,/(bp—an)=-o00, from which it follows that
n n
lim g(#)=-+oco=g(x,) for every x,¢H. Consequently G'(x)=g(x) for every u,

XXy

and therefore, by (7.8), the conditions (7.5) hold.

Now let (ef. Chap. ITI, (13.4)), H(x) be a continuous non-decreasing sin-
gular function on J,, which is constant on each interval contiguous to the set K,
and such that H(a)4 H (b). Let us put I'==G4-H. As we verify easily from {7.5),
we have F/(x)=G"(x)=g¢(x) at every point z of J,. The function F therefore
has everywhere a derivative which is summable on J,. But, since H is the
function of singularities of the function ¥, the latter is certainly not absolutely
continuous, let alone the indefinite integral of its derivative. (The functions
G and F provide at the same time an example of two functions whose deriv-
atives, finite or infinite, exist and are everywhere equal, without the difference
G—F being a constant; ¢f. H. Hahn [1] and 8. Ruziewicz [1].)

In connection with these examples, it may be interesting to mention the
following theorem (vide G. Goldowsky [1] and L. Tonelli [8]):

(7.9) Theorem, If a continuous function F has a (finite or infinite) derivative
at each point of R, except perhaps at the points of an enumerable set, and if this
dertvative is almost everywhere mnon-negalive, the function I' is monotone non-de-
creasing.

Proof. Let I/ be the set of the points & such that the function F is not
monotone in any neighbourhood of w. The set £ is evidently closed, and the
function F' is non-decreasing on every interval contained in CKE. 1t therefore
has to be proved that the set F is empty.

Suppose, if possible, that E+ 0, and denote for every positive integer n
by Pp the set of the points & for which the inequality 0<<x'—=z<1/n implies
F(x)—F (x) <— (x"—x) however we choose z’. Similarly let @, be the set of the
points x for which the same inequality implies F(z')—F (x)>—2(x'—x). We
see easily that the sets Pn and @, are closed, and that they cover the whole straight
line R, except at most the finite or enumerable set of the points at which the
function ¥ is without a derivative. Consequently, by Baire’s Theorem (Chap. II,
Theorem 9.2) the set K must contain a portion which either 1° reduces to a single
point, or else 2° is contained in one of the sets P,, or finally 3° is contained in
one of the sets ¢),. The first case is obviously impossible, since the set E has no
isolated points. Let us therefore consider case 2°, and suppose that there exists
a positive integer n, and an open interval I such that 04.-E.IC P,. We may
clearly suppose that 6(I) < 1/ny. Since by hypothesis, F'(x) == 0 almost everywhere,
the set Py, is certainly non-dense. Let [«¢,b] denote any interval contiguous
to E.I. The function F is then non-decreasing on [a, b] and this contradicts the
fact that, since ¢ and b belong to Pn, and b—a < 1/n,, we have

Fb)—F(a) < —(b—a) < 0.
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There now remains only case 3°. In this case there exists an open interval I
such that the set E.I is non-empty and is contained in one of the sets ¢n. But
then F+(x):>—2 everywhere in I, and F'(x)=>0 almost everywhere, in I. Therefore,
by Theorem 7.3, the function F is non-decreasing in I, and this again is impos-
gible since the interval I contains points of F in its interior.

We thus arrive at a contradiction in each of the three cases, and this
proves our assertion.

Let us mention a corollary of Theorem 7.9:

If F is a continuous funciion having a derivative at every poinl, except per-
haps at those of an enumerable set, and if there exists a finile constant M such that
[F (@) <M at almost all points x, then the function F is the indefinile integral of
its derivative.

*§8. The Perron-Stieltjes integral. Among the various gen-
eralizations of the Stieltjes type for the Perron integral (vide for in-
stance R. L. Jeffery [2;3],J. Ridder [9] and A.J. Ward [3]), that
due to Ward has the advantage of including the others and of defining
the process of Stieltjes integration with respect to any finite fune-
tion whatsoever. In this § we shall give the fundamental defi-
nitions and results of the theory of Ward. For a deeper analysis,
in the case in which the function with respect to which we integrate
is of generalized bounded variation in the restricted
sense (vide below, Chap. VII) the reader should consult the memoir
of Ward referred to.

As in the two preceding §§ we shall consider only functions
defined in B, i. e. functions of a linear interval or of a real variable.
We shall, moreover, restrict ourselves to integration of finite func-
tions. This restriction is essential for the methods which we shall
employ.

Given two finite functions f and @, an additive function of an
interval U will be termed major function of f with respect to G on
an interval I,, if to each point x there corresponds a number >0
such that U(I)>f(x)G(I) for every interval I containing x and
of length less than & The definition of minor funciion with respect
to G is symmetrical, and by following the method of §6, p. 201, with
the help of the notions of major and minor functions with respect
to @, we define Perron-Stieltjes integration, or &S-integration with
respect to any finite function ¢ whatever. The &#8-integral of a func-
tion f with respect to a function @ on an interval I,=/[a, b] will

- b
be denoted by (&’é‘)./f(x)d(}(x), or by (&’8)./‘f(m)dG(m).

1
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If U and V are respectively a major and a minor function
of the same function f with respect to the same function @, their
difference U —V is evidently monotone non-decreasing. The criterion
for &s-integrability of a function is entirely similar to that for
g-integrability given in § 6, p.201, and it follows that every fune-
tion which is @§-integrable on an interval I, is so equally on each
subinterval of I,. We are thus led to the notion of indefinite
FS-integral with respect to any finite function @. This indefinite inte-
gral is an additive function of an interval, and is continuous at each
point of continuity of the function G. Finally we observe that the
Ps-integral possesses the distributive property which we may express
as tollows: If each of the two finite functions f, and f, is FS-integrable
on an interval I, with respect to each of the two functions Gy and G,,
then each linear combination of the functions f, and f, is &S-integrable
with respect to each linear combination of the functions Gy and Gy,
and we have

(&8) / (a,f;+a,15) (1G1+bzG2):2 00 (7) /fdGle

Io i, k=:1,2

for all numbers ay, @y by and b,.

If G(xr)=x for every point x (or, what amounts practically
to the same, if @G(I)=|I| for each interval I) &$-integration with
respect to G coincides with &integration. In fact, if f is any finite
function, each major [minor] function of f with respect to the
function G(z)=x in the sense of Ward, is at the same time a major
[minor] function of f in the sense of the definition of § 3; the con-
verse is not true in general, but we see at once that if U is a major
function of f in the sense of § 3, the function U(x)+¢x is for each
£>0 a major function of f w1th respect to G(x)=wx. Thus the
Perron-Stieltjes integral includes the ordinary Perron integral, at
any rate as regards integration of finite functions. On the other
hand, the Perron-Stieltjes integral includes also the Lebesgue-
Stieltjes integral. We have in fact

(8.1) Theorem. A finite function f integrable in the Lebesque-Stieltjes
sense on an interval I,=/[ag, by] with respect to a function of bounded
variation @, is so also in the Perron-Stielijes sense and we have

(8.2) (& /fdG /fdG Hao) [ G(ag)—Gag—)1+1(by)[G(by+)—G(bo) -

a, ay
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Proof. Let us denote for brevity, by A the right-hand side
of the relation (8.2). We may evidently assume that the function f
is non-negative and it is enough to consider only the following
two cases:

1° @ is a continuous non-decreasing function. The
proof is then just as in Theorem 3.2. Let ¢ be any positive number.
Since the function f is finite, there exists by the theorem of Vitali-
Carathéodory (Chap. III, § 7) a lower semi-continuous funetion g,
integrable (@) in the Lebesgue-Stieltjes sense, such that g(z)>f(z) at
each point z and such that /[g(m)—f(w)] d@(x) <e. Denoting by U

the indefinite integral (G)’Oof the function g, and taking account
of the lower semi-continuity of ¢, we see easily that U is a major
function of f with respect to & on I;. Moreover, the function G being
continuous by hypothesis, the number 4 is equal to the integral

b\!
/fd(} and we find 0<{U;)—A <e. By symmetry we determine

a,

also a minor function V of f with respect to ¢ on I, in such a manner
that 0<<A—V(I,)<<e and this establishes ¢&S§-integrability of f
on I, and at the same time the validity of the formula (8.2).

20 ¢ is a non-decreasing saltus-function. Let us denote
by (@ubn-1,2,.. the sequence of the points of discontinuity of ¢
which are in the interior of the interval I,; and let ¢ be any positive
number and {k.},—12 .. & sequence of positive numbers such that
(8.3) Z‘k,,.[a(wﬁ)ﬁ G@y—)]<e and lim ky— -+ co.

Let us define a function # in R,, by writing: h(x)=7F(x) for all
the points x of I, which are distinet from the points x,; h{x,)=f(x,)+ k.
for n=1, 2, ...; and h(x)={(a,) for x <a,, and h{x)=Ff(b,) for x> b,.
Finally let us write, for each interval I=[a, b],

U(I):./'h ()dG (x)—h(a)[G(a)—G (a—)]+h(D)[G(b+)—G (b)]}.

The function of an interval U thus defined is evidently ad-
ditive, and as we easily verify, is a major function of f with respect
to G on I,,. Moreover, it follows at once from (8.3) that 0<CU(I,)—A<e.
Similarly we determine a minor function V of f with respect to ¢
80 as to have 0<CA—V([,)<(&; hence A:(c"é‘)/fdG, and this

completes the proof. Lo
S. Saks. Theory of the Integral. 14



210 CHAPTER VI. Major and minor funetions.

Formula (8.2) brings out the fact that the definite Perron-Stieltjes and
Lebesgue-Stieltjes integrals are not always equal, even for a function f integrable
in both senses. This is due to the fact that the indefinite integral of L.ebesgue-
Stieltjes is not in general an additive function of an interval. We could, of course,
modify the definition of this integral so as to ensure its additivity as a function
of an interval. The term in brackets { } would then disappear from the
formula (8.2), but it would then be necessary to give up the additivity of the
indefinite Lebesgue-Stieltjes integral considered as a function of a set (cf.
Chap. VIII, §2).

Let us mention further the following generalization of Theo-
rem 6.1 on derivation of the indefinite Perron integral:

(8.4) Theorem. If P is an indefinite &8-integral of a finite function f
with respect to a function G, then, at almost all points x, the ratio

(8.5) [P(I)—f(x) G(D)]/|1]
tends to 0 as 6(I)— 0, where I denotes any interval containing x.
Hence at almost all points ©, P(x)=f(x)G(x) and P(x)=f(z) G (x)

or else P(x)=f(x) G(x) and P(x)=f(x)G(x) according as f(x)=0 or

f(x) <03 in particular P'(x)=0 at almost all points x where f(x)=0.

Proof. The proof is quite similar to that of Theorem 6.1.
Let I, be an interval, & a positive number, and U a major function
of f with respect to G on I, such that U([))—P(l,) <. We write
H=U—P. The function H is monotone non-decreasing, and we
have H'(x) <<e at every point x eI, except at most those of a set B
of measure less than e. Now, since U(I)—f(z)G(I)>=0 for every
point « and for every sufficiently small interval I containing , the
lower limit of the ratio (8.5), as d(I)—>0, exceeds —e at each point x
except at most at those of E. Therefore, & being any positive number,
this limit is non-negative for almost all points x. Combining this
with the symmetrical result for the upper limit of the same ratio,
we complete the proof.

Another generalization of Theorem 6.1, also due to Ward,
uses the following definition of relative derivation, which is slightly
different from that given in Chap. IV, §2 (cf. A. J. Ward [3] and
A. Roussel [1]).

Given two finite functions of a real variable ¥ and &, we shall say
that a number @ is the Roussel derivative of the function F with
respect to G at a point ,, if when I denotes any interval containing x,,
we have (i) F(I)—a-G(I)—>0 and (ii) |F(I)—a-G(I)|/O(G; I)—>0,
as 6(I)—>0 (the ratio in (ii) is to be interpreted to mean 0 whenever
its numerator and denominator vanish together; O(G;I) denotes,
in accordance with Chap. III, p. 60, the oscillation of G on I).
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When the oscillation of the function G at z, is finite, the condition (ii)
evidently implies (i); however, when o(@; x,)=+4-00, the condition (i) plays an
essential part, whereas (ii) is then satisfied independently of F and of a.

It is also to be observed that when o(G; z,) < +oo, and when F is a function
which has the relative derivative Fg(z,) (cf. Chap. IV, § 2, p. 109), the latter is
also the Roussel derivative of F' with respect to G. Finally, in the case of deri-
vation with respect to monotone functions, the two methods are completely
equivalent. In particular therefore, when @G(x)==x, Roussel derivation with
respect to G it equivalent to ordinary derivation.

The proof of the theorem on Roussel derivability of the in-
definite &#$-integral is much the same as that of Theorems 6.1 and 8.4;
it depends, however, on the following lemma which may be regarded
a8 a generalization of a result of W. Sierpinski [4].

(8.6) Lemma. Let G be a finite function of a real variable, E a bounded
set in By, and 3 a system of intervals such that each point of E is a
(vight- or left-hand) end-point of an interval (3) of arbitrarily small
length.

Then, given any number p<|G[E], we can select from 3 a finite
system {1} of non-overlapping intervals such that

v 1
D611 = G u
k

Proof. Suppose, for simplicity, that the set & lies in the open
interval (0,1). For each positive integer =, let 4, and B, denote
respectively the sets of the points of E each of which is respectively
a left- or right-hand end-point of an interval (3) contained in (0,1)
and of length exceeding 1/n. We evidently have E= hm( »+B,) and

there therefore exists a positive integer n, such that |G[A,,0 + B,] > u.
Suppose, for definiteness, that |G[4,,] > Lu.

Now, it is easily seen that, if |@[A4,,]=-+oo, there exists a point z,
such that |G[A4,-J]=+ oo for any interval J containing x, in its in-
terior. Hence, from the family of intervals (3) whose left-hand end-
points belong to A4, and whose lengths exceed 1/n,, we can ob-
viously select an interval I so as to have |G[I]>|G[4,, I1|>Lu.

Suppose now that |G[A4,]<+oco. Then, by induction, we can
extract from J a finite sequence of intervals {I,= (az, be)te—1,2, ... p
in such a manner that, writing for symmetry by=0 and a,,;=1,
we have: (i) bp—ar > 1/n, for k=1,2,..,p, (i) by < ar and
|G[An(.'(bk717 ak)]| < (‘G[Ano]‘_-ﬁ‘n“)/no for IC:l, 21 e Py and (iﬁ) the

14*
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interval (b, @,+1)=(bp, 1) contains no points of A4,. Since, on
account of (i), we certainly have p < mn,, it follows from (ii) and

(i) that X|G[1) = |614a)p-(6[A0]—im)jng > tu, i e. that
k

the system of intervals {I,} fulfils the required conditions.

(8.7) Theorem. Every finite function f which is &S-integrable with
respect to a function G on an interval 1,, is the Roussel derivative with
respect to G of its indefinite FS-integral ot each point x of I, except
at most those of a set E such that |G[E]=0.

Proof. Let ¢ be any positive number and U a major function
of f with respect to @ such that U(I,)—P(l,) < ¢, where P de-
notes the indefinite #8-integral of f. Let us write H=U—P, and
denote by E. the set of the points x of I, for which there exist
intervals I of arbitrarily small lengths, such that xeI and that
H(I)>e|G[I]. It follows that each point of K. is an end-point of
intervals I, as small as we please, which fulfil the inequality
H (D=le |G[I]\ Therefore, denoting by s any number less than
E.)| and applying Lemma 8.6, we can determine in I, a finite
8y %tem of non-overlapping int ervals I} such that H(I,)>=}e-|G[1]]
for k=1,2,...,p and that IZ|(1[I,¢]\ > Lu. Consequently, since H

is non-decreasing, &> H (I,)>zeu/4; and therefore p < 4¢, and hence
G B <4e.

Now let «# be any point of I,, We have for every sufficiently
small interval I containing ,

P(I)—f(x) H(1)=UI)—f(z) GU)—H (1) Z—H(I)>—¢;
and, unless x belongs to the set K., we also have
P(I)—f(2) G()z—H(I)=—¢|G[1]|=>—e O(G; I).

Combining this with the similar upper evaluations ot P(I)—f(x)G(I)
obtained by symmetry, we see, since & is an arbitrary positive
number, that f is the Roussel derivative of the function P with
respect to @, at every point x of I, except at most those of a set K
such that |G[H]=0.




