CHAPTER VIII.

Denjoy integrals.

§ 1. Descriptive definition of the Denjoy integrals.
We shall base the study of the Denjoy integrals on their descriptive
definition. The essential ideas have already been sketched in
Chap. VII, § 1. We now complete them further as follows.

A function of a real variable f will be termed 9-integrable
on an interval I=[a,b] if there exists a function F which is ACG
on I and which has f for its approximate derivative almost every-
where. The function F' is then called indefinite 9-integral of f on I.
Its increment F(I)=F(b) —F(a) over the interval I is termed
definite 2-integral of f over I and is denoted by

b
(@) [f@)de or (D) [f(x) dw.
I a

Similarly, a function f will be termed 2,-integrable on an
interval I=[a,b], if there exists a function F which is ACG, on I
and which has f for its ordinary derivative almost everywhere.
The function F is then called indefinite 2,-integral of f on I; the
difference F(I)=F (b) —F(a) is termed definite D,-integral of f over [

b
and denoted by (2,)[f(z)dz or by (2,) [#(@) da.
7 2

For uniformity of notation, the Lebesgue integral will fre-
quently be called f£-integral.

The integrals 9 and 2, are often given the names of Denjoy
integrals in the wide sense, and in the. restricted sense, respectively.
The first of these is also termed Denjoy-Khintchine integral (cf.
Chap. VIIL, §1), and the second, Denjoy-Perron integral (for the
latter, as we shall see below in § 3, is equivalent to the Perron in-
tegral considered in Chap. VI). ‘
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It is immediate, by Theorem 6.2, Chap. VIL, that when a func-
tion is 9- or 9,-integrable on an interval, its definite Denjoy
integrals are uniquely determined on this interval (its indefinite
integrals being determined except for an additive constant). More
generally, if two functions are equal almost everywhere and the one
is integrable in the Denjoy sense (wide or restricted) on an intervol Iy,
then so is the other and the two functions have the same definite in-
tegral over I, Another immediate consequence of the preceding
definitions is the distributive property for Denjoy integrals. Thus,
if two functions g and h are 9- or 2D,-integrable on an interval I, the
same is true of any linear combination ag-+bh of these functions, and
we have

(9) [Ta-g(@)+b-h(2)) dv=a- (9) [ gla)dw+D:(2) [ h() da.

I 1 I

It follows from Theorem 10.14, Chap. VII, that a continuous
function which is approvimately derivable at all points except, perhaps,
at those of an enumerable set, is necessarily an indefinite D-integral
of its approximate derivative. Similarly, by Theorem 10.5. Chap. VLI,
a continuous function which is derivable (in the ordinary sense) at
all but an enwmerable set of points, is an indefinite 2, -integral of
its derivative. The process of integration 2, therefore includes that
of Newton (cf. Chap. VI, § 1). The fundamental relations between
the Denjoy and Lebesgue processes are given in the following

(1.1) Theorem. 1° A function f which is D,-integrable on an
interval I is mecessarily olso D-integrable on I and we have

(9) [fdw =(9,) [ da.
1 7
20 A function f which is L-integrable on an interval I is
necessarily 9,-integrable on I and we have (2,) / fdr= / f dex.
i i

3% A function which is D-integrable and almost everywhere non-
negative on an interval I is necessarily £-integrable on I.

Proof. 1° and 2° follow at once from the definitions of the
Denjoy integrals and from the descriptive definition of the Lebes-
gue integral (Chap. VII, § 1). As regards 3° it is sufficient to recall
the fact that, in view of Theorem 6.2, Chap. VII, a function which
is ACG and whose approximate derivative is almost everywhere
non-negative, is necessarily monotone non-decreasing, and therefore
its derivative is summable.
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Part 3° of Theorem 1.1 shows that for functions of constant
sign the Denjoy processes are equivalent to that of Lebesgue (cf.
Theorem 6.5, Chap. VI, for the corresponding result concerning the
Perron integral). Hence, we derive the following further extension
of Lebesgue’s theorem on term by term integration of monotone
sequences of functions (Chap. I, Theorem 12.6).

(1.2) Theorem. Given a non-decreasing sequence f} of functions

which are D-integrable on an interval I and whose D-integrals over I

constitute a sequence bounded above, the function f(x)=limf (x) ds
n

itself, necessarily, D-integrable on I and we have
(9) [ () dw =lim (9) 1, (@) do.
1 n i

Exactly the same is true with 2, in place of @ in the hypothesis
and conclusion.

Proof. This theorem reduces at once to the theorem of Le-
besgue just referred to, for we need only consider in place of the
funetions f,, the functions f —f,, which are integrable in the Denjoy
sense and non-negative, and which are therefore integrable in the
Lebesgue sense on account of Theorem 1.1 (39).

We shall show later on (Chap.IX, §11) that the extreme
approximate derivates of any measurable function are themselves
measurable functions. This includes the result that any function
which is 2-integrable is measurable. In the meantime we give an
independent proof of this last assertion.

(1.3) Theorem. A function which is 9D-integrable is necessarily
measurable and almost everywhere finite.

Proof. Let f be 2-integrable on an interval I and let F be
its indefinite integral. The function F i therefore ACG on I, so
that I is the sum of a sequence {E,} of closed sets on each of which
P is AC. By Lemma 4.1, Chap. VII, there exigts for each »n a func-
tion F', of bounded variation on I, which coincides with ' on E,. We
therefore have almost everywhere on E, the relation f(x)=Fa,(®)=F.(x);
and since the derivative of a function of bounded variation is meas-
urable and almost everywhere finite, it follows that f is! meas-
urable and almost everywhere finite on each E, and consequently

on the whole interval I.
16*
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Finally, let us mention as an immediate consequence of The-
orem 9.1, Chap. VII,

(1.4) Theorem. If a function f is D-integrable on an interval I,
then every closed subset of I, contains a portion Q such that the function f
is summable on Q@ and such that the series of the definite D-integrals
of { over the intervals contiguous to @ is absolutely convergent.
Similarly, if the function f is 2,-integrable on I, then every
closed subset of I, contains & portion @ such that the function f is sum-
mable on Q and such that the series of the oscillations of the indefinite

9, -integrals of f over the intervals contiguous to @ is convergent.

§ 2. Integration by parts. We have already observed
(Chap. VI, p. 210) that a slight modification of the definition of
Lebesgue-Stieltjes integral leads to an indefinite integral which is
an additive function of an interval. As this modification will
be useful to us in the present §, we now formulate it explicitly.

Given a finite funetion g integrable in the Lebesgue-Stieltjes
gense with respect to a function of bounded variation ¥ on an

interval I=[e,b], we shall write
b

b
(8) [gaF= [ gdF—{g(a)-[F (a) — F (a—)]+9(0) - [F (b +)— F (D)},
b

a @

The number (§) / gdF will be called definite S-integral of g with

respect to F over I. As we see at once, this number (unlike the
Lebesgue-Stieltjes integral) does not depend on the values taken
by the function F outside the interval I, and for each point ¢
of [a,b] we have

b
S/ng—i— /gdr ($) [ gar.

(2.1) Theorem. Let g be a bounded function integrable with respéct
to a monotone non-decreasing function F on an interval [a,b]. Then:

/ ) [ gdF = u-[F(b)—F (a)], where p is a number between
the bounds of the function g on [a,b];

(ii) writing S(x) /gdf for a<e<<b, we have S'(x)=

=g(x)-F'(x) at almost all pomts of continuity of the function g, and
in fact at every point x where g is continuous and F derivable.
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Proof. Clearly (i) follows at once from the obvious inequality
b

m-[F (b)— F(a)]<(8) [gdF <M [F (b)—F(a)], where m and M are

the lower and upper bounds of g on [a,b]. In order to establish (ii),
consider a point x, at which ¢ is continuous and F is derivable.
. We may suppose, by subtracting a constant from g if necessary,
that g(x,)=0. Denoting, for each interval J, by e&(J) the upper
bound of |g(x)| on J, we have |[S(J)|/|J|<e(J)-F(J)/|J]| and taking J
to be an interval containing x, and of length tending to zero, we
find 8'(xy)=0=g(x,). This completes the prooi.

(2.2) Lemvma. Let F be a function of bounded variation on an interval
I,=[a,b], G a continuous function on I, and H the function defin-
ed on I, by the formula

(23)  H(@)=F@) G@)—(8) [GW dF (@) for a<w<d.

Then, tf the function G is ACG [ACG,] on I, so is the function H.

Proof. We may clearly assume F to be monotone non-de-
creasing. Denoting by M, the upper bound of |F(z)| on I,, we shall
begin by proving that for every interval I (I, we must have

(2.4) |HDIS M |G +0(G; 1)-F(I) and O(H; I)<3M,-0(6; I).

In fact, by Theorem 2.1 (i), we have, for every subinterval J=[a, f] of I,

¢
H(p)—H(a)=[G(8) —G(a)]-F(B)+[F(f) —F(a)]-G(a) —(§)./G(t)d1"(t)
=[G(p)—G(a)]-F(p)+[F (B) —F(a)]-[G(a) —p],

where u is a number between the bounds of ¢ onJ. Consequently,
[H(J)| << My |G(JT) +0(G; J)-F(J), and the first of the relations (2.4)
follows by choosing J =1. On the other hand, we derive
|H(J)|<<3M,-O(G; I) for every interval J (I, and hence the second
relation (2.4).

Hence, sinece the function @ is continuous, the function H is
continuous also. Further, if {I,} is any finite sequence of non-
overlapping intervals and if o denotes the largest of the numbers
0O(G; 1), we obtain from the relations (2.4)

;IH(Ik>|<Mo'§|G<1k>x+w-F(IO> and §O(H;Ik><3Mo-§O<G;Ik>.
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The first of these inequalities implies that if the function G is AC
on a set B, so is the function H, and consequently, that if the fune-
tion G is ACG on the whole interval I,, then the function H is also
ACG on I, Similarly, the second of the above inequalities shows
that if @ is ACG, on I, then so is ¥, and this completes the proof.

We can now complete Theorem 14.8, Chap. ITI, which concerned
integration by parts for the Lebesgue integral, by estabhshlng
a similar theorem for the Denjoy integrals:

(2.5) Theorem. If F(x) is a function of bounded variation and g(x)
a function D- or D,-integrable on an interval I,=[a,b], then the function.
F(x) g(x) is integrable on I, in the same sense, and moreover denoting
by G the indefinite integral of ¢, we have

b
@/F w)dw=G () F (b) —G (a)F (a) —(8) [ G(2) AP (@).

Proof. We shall establish the theorem for the 2-integral.
The proof for the 2, -integral is quite similar.

By Lemma 2.2, the function H defined by the formula (2.3)
is ACG on I, Moreover, by Theorem 2.1 (ii), if we form the ap-
proximate derivative of both sides of (2.3), we obtain almost every-
where the relation Ha,(x)=F(z)Gap(x)=F(x)g(x). It follows that
the function F(x)g(x) is 2-integrable on the interval I, and that

/F x) de=H (b)—H (a). This last relation is equivalent to

the one to be proved.

The idea of the above proof, which is directly based on the descriptive defi-
nition of the Denjoy integrals, is due to Zygmund. For another proof, depending
on the constructive definition of these integrals, cf. for instance E. W. Hobson
[1, p. 711]. For an interesting generalization of the theorem on integration by
parts to the &s-integral (cf. Chap. VI, §8) vide A. J. Ward [3].

From Theorem 2.5, there follows easily the second mean
value theorem for the Denjoy integral, which may be regarded
as a generalization of Theorem 14.10, Chap. IIIL.

(2.6) Theorem. Given a non-decreasing function F on an interval
I,=[a,b] and a function g which is D-integrable on I,, there must
exist a point & in I, such that

b

b &
(9) [ 9(@) P (2) dw=F (a)-(9) [ g(a) do+F(1)-(2) [g(a)dz.

£
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Proof. Writing G (z)=(2) /.g(t)dt, we have by Theorems 2.5

and 2.1 (i) the relation

’ ’
(9) [ g(x) F(z) dx = G(b) F (b)—(8) [ G (@) dF ()=

=G (b)F (b) —p-[F(b) —F(a)]=p-F(a) +[G(b) —u]-F (D),

where u is a number between the bounds of G(x) on I. It follows
that there exists a point & in I, such that u=G (&), and the rela-
tion just obtained becomes

b
(2) [g(w) P (@) do=F (a)-G(&) +F (b)-[G(6) —G (£)],
which, by definition of G (), reduces to the required formula.

§ 3. Theorem of Hake-Alexandroff-Looman. The relations
between the Denjoy integrals and those of Lebesgue and of Newton
having already been obtained in §1, we now proceed to establish
an important result of Hake, Alexandroff and Looman, which asserts
the equivalence of integration in the restricted Denjoy sense with
Perron integration.

At the same time we shall show that in the definition of Perron
integral (Chap. VI, § 6) we need only take account of the continuous
major and minor functions. In order to make this assertion quite
precise, let us agree to say that a function f is &-integrable on an
interval I, if 1° the function has continuous major and minor func-
tions on I, and 2° denoting by U any continuous major function
and by V any continuous minor funetion of f on I,, the lower bound
of the numbers U(I,) is equal to the upper bound of the numbers
V (I,). The function f is then plainly &integrable on I, the definite
&-integral of f on I, being equal to this common bound. We have
to prove the converse, i.e. that every function which is ¢ inte-
grable is also &j-integrable. '

(3.1) Lemma. If a function | is Jy-integrable on each interval interior
to an interval [a,b] and if the definite F-integral over the interval
[a+e,b—n] tends to a finite limit as e—>0-+ and n—>0+, then the
function f is Fy-integrable on the whole interval [a,b].
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Proof. It is clearly sufficient (by halving the given interval)
to consider the case of a function f which is &,-integrable on each

interval of the form [a,b—¢] where 0< e<b—a. Let P(x)=(?) [fdw

for a<{e<<b and p=P(b—).

We choose any positive number ¢. Writing for symmetry a,=a,
we consider any increasing sequence of points {“k}k:o,1,... which con-
verges to b. The function f being &,-integrable on each interval
[@r, dri1], we easily define, on the half open interval [a,b), a con-
tinuous function F such that F is a major function of f on each
of the intervals [, art1] and that [F(x) —F (a,)] —[P (@) ——P(wk)]<a/2k
for ax<<e<<aryy and k=0,1,.... By the second of these conditions
the oscillation of the function F on the interval [ab) tends to 0
a8 k—oo, and therefore F' has a finite limit F(b—) at the point b.
Writing F(x)=F (a)+(x —a)"* for x<a, and F(z)=F (b —) for x>b,
we extend the definition of F to make this function continuous
on the whole straight line I;, and the following conditions are then
satistied:

(3.2) —oo=kF(x)=f(x) for a<z<b and (3.3) F(b)—F(a)<p+2o.

Now let ¢ be an interior point of [a4,b] such that the oscillation
of F on [¢,b] is less than o. For each point x of [¢,b], let O(x) denote
the oscillation of ¥ on [«,b]. The function O(x) is continuous and
non-increasing on the interval [e¢,b], and we extend its definition
on to the whole straight line B, by making O(x)=0(¢) for z<<c¢
and O(x)=0(b)=0 for x>b. We now write G(x)=F(xr)—0(x)
and U(x)=G(r)+o-(x — b)l"'3 /(b — 0&)1 *.  Since the function
o-(@—b)"?/(b—a)"*—0 (x) is non-decreasing, it follows at once from
(3.2) that —oo==U (z)>f(x) for a<<x<<b. Moreover, since G(b) —G(x)
is non-negative for each point x of the interval [e,b], and 0 for
£c>b, we find G(b)>=0, and therefore U (d)= -+oo. Hence U is a con-
tinuous major function of f on the interval [a,b] and fulfils, by (3.3),
the inequality U (b)—U(a)<F(b)—F (a)420<p-+40. Similarly we
define a function V which is a continuous minor function of f on
[a,b] and fulfils the condition V(b)—V (a)>=p —4c. It follows that
the function f is &,-integrable on [a,b]. This completes the proof.
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(3.4) Lewvna. Let Q be a closed and bounded set, a,b its bounds,
{Ir=1[ar, br]} the sequence of intervals contiguous to Q, and f a function
which is summable on Q@ and Fy-integrable on each interval contiguous to Q.

Then, if the series of the oscillations of the indefinite F-integrals
of the fumction f on the intervals I, converges, the function f is
Fy-integrable on the whole interval [a,b] and we have

b . bk
(3.5) () [ dw= [{de+3() [} de.
a Q ap

Proof. Let ¢ be a positive number and let K be a positive
integer such that ‘
(3.6) D0r< g,
k=K41

where O, denotes the oscillation of the indefinite &integral of f
on the interval I,. Denote by f, the function which agrees with f
on the set @ and on the intervals I, for k<K, and which is 0
elsewhere. By Theorem 3.2, Chap. VI, and by the hypotheses
of the lemma, the function f, has a continuous major function U,
and a continuous minor function V,; such that

(B)  U0)— U= e< [1a0-+3() [fao< V() —Via)+e.
Q =1

We shall now define a continuous major function for f—f,.

Let F,. be, for each k, a continuous major function of f on
the interval I such that Fi(az)=0 and O(Fp; I,)<204, and let Ax(x)
and Bx) denote, for any point xel, the oscillations of the func-
tion F, on the intervals [as®] and [x,b;] respectively. We write
G (x) = Fy(@)+ Ax(®) —[Br(x) — Bi(az)] when xel? and k>K, and
G (x)=0 elsewhere. Finally, for each z, we write

Uy(w)= G (@) +;“”>G(bk —),

where the summation E("') is extended over the indices k for
k

which by<x. Since, for every k, we have G(axt)=G(ax)=0 and
O(G; I)<3-O(Fp; 1,)<6-04, the function U, is continuous on the
straight line R,, and since the function G vanishes identically on
each interval I, for k<K, we have by (3.6),

(3.8) Uy(b) — Uy(a) <6 20, < 6e.
h=K4-1



250 CHAPTER VIII. Denjoy integrals.

Now, for each k, we have G(x)>0 and G(by—)—G(x)=0 for
every point xel, Therefore the increment of the function U, is
non-negative on each interval containing points of the set ¢, and
congequently Uy(x)>0=f(x)—f,(x) at each point x of this set.
Again, since the function G vanishes on each interval I, for k<K,
we have Uy(w)=0=/f(x)—f(x), whenever xel; for k<<K. Finally,
since the function A4,(x)—B(x) is non-decreasing on each I, we
see that —oo==U,(x)>= Fi(x)>=f(x)=f(2)—f(x) at each point wel}
for k> K. Thus U, is a continuous major function of f —f, on [a,b].
Similarly, we determine a continuous minor function V, of f—f/,,
subject to the condition V,(b)—Vy(a)>=>—6e which corresponds to
(3.8). Therefore, writing U=U,+ U, and V=V,+V,, we obtain
a continuous major function U and a continuous minor function V/
for f on [a,b], and if we denote by p the right-hand side of (3.5),
we obtain from (3.6) and (3.7), U (b) — U (a) —8e<p <<V (b) —V (a) +Be.
The function f is thus &-integrable on the interval [a,b] and its
definite & integral over this interval is given by the formula (3.5).

(3.9) Theorvem. A function f which is 9,-integrable on an interval I,
is necessarily Fy-inlegrable on I, and we have

[fdx /fdx

Proof. Let F be an indefinite 9,-integral of f on I,. We call
an interval I(C I, regular, if the function f is #-integrable on I
and if the function F is on I an indefinite &integral of f. Further,
we call a point xel, regular, if each sufficiently small interval
I I, containing x is regular. Let P be the set of the non-regular
points of I,. We see at once that the set P is closed and that every
subinterval of I, which containg no points of this set is regular.
We have to prove that the set P is empty.

Suppose, if possible, that P4=0. By Lemma 3.1 we sece easily
that every interval contiguous to P is regular and that the set P
therefore has no isolated points. On the other hand, by Theorem 9.1,
Jhap. VII, the set P contains a portion P, on which the function #
is AC,. Let J, be the smallest interval containing P,. Since the
set P has no isolated points, the same is true of any portion of P,
and therefore P-Ji==0. It follows that in order to obtain a con-
tradiction, which will justify our assertion, we need only prove that
the interval J, is regular.
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To show this, let J be any subinterval of J, and let ¢ be the
set consisting of the points of the set P-J and of the end-points ofJ.
We denote by {I,} the sequence of the intervals contiguous to
and by @ the function which coincides with F on ¢ and is linear
on the intervals I,. Plainly the function @ is absolutely continuous
on J. Therefore, since G'(z)=F'(x)=f(x) at almost all points x of @,
and since G(I,)=F(I,) for each n, we obtain

(3.10) F)=6(J)= [ (@) de=3F (L) + [ { (@) de.
J n B

Now the function f is summable on @ and &p-integrable on
each interval I, and moreover, F' i an indefinite &integral of f on
each of these intervals. The series of the oscillations of F on the
intervals I, being convergent, it follows, by Lemma 3.4, that the
function f is &,-integrable on J and that, on account of (3.10),
F(J):(c‘?)/'f dxz. Therefore, since J is any subinterval of J,, the

J
interval J, is regular and this completes the proof.

(3.11) Theorem. A function which is J-integrable on an interval I,
is necessarily 2, -integrable on I,

Proof. Let f be a function &-integrable on an interval I,
and let P be its indefinite & integral. We shall show that the func-
tion P is an indefinite 9.-integral of f. Since P’'(x)=f(x) almost
everywhere (cf. Theorem 6.1, Chap. VI), it is enough to show that
the function P is ACG, on I, i.e. that any closed set @ (I, con-
tains a portion on which the funetion P is AC,.

Let H be any major function of f. Since H (x)>—oc at each
point x of I,, the function H is by Theorem 10.1, Chap. VII, VBG,
on I,, and hence I, is expressible as the sum of a sequence of closed
sets (cf. Theorem 7.1, Chap.VIL) on each of which the function H
is VB,. It follows, by Baire’s Theorem (Theorem 9.2, Chap. II) that
the set @ containg a portion @, on which the function H is VB,.
Since the difference P —H is a monotone function, the function P
is actually VB, on @,. We shall show that P is further AC, on ,.

For this purpose, we denote by J,=[a,b] the smallest interval
containing Q,. Let & be any positive number and U a major func-
tion of f on I, such that

(3.12) U(I,) —P(I,)<e.
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Let P, and U; denote the functions which coincide on @, with the
functions P and U respectively, and which are linear on the.intervalg
contiguous to @, and constant on the half-lines (— oo, a] and [b,4o0).
The function P, is clearly of bounded variation. On the other hand,
we see easily that U,(x)>-—oo at every point, and that U,(x)> Pi(x)
at almost all points, of the interval J,. Therefore, writing f,(z)= Pi(x)
wherever the second of the above inequalities holds, and f,(x)=-—oco
elsewhere, we see at once that the function f(x) is summable on J,

and has U, for a major function. It follows that U,(I)> / .fl(x) dx
i

for each interval I (e, and therefore that the function of singularities
(ef. Chap. IV, p. 120) of U, is monotone non-decreasing on J,. Let T,
be the function of singularities of P,. Since the function P, — U,
is monotone non-increasing on J, and since, by (3.12), we have
0=P(Jy) —Us(Jy)=P(Jy) —UlJg) = —s¢, it follows that Ty (I)>—¢
for each interval I(CJy; and ¢ being any positive number, this
requires T(1)>0 for every interval I (CJ,. Similarly, by considering
minor functions of f 1n place of major functions, we find 7,(I)<C0,
and therefore, finally, 7T,(I)=0, for each interval I J,. The func-
tion P, is thus absolutely continuous on .J,. This requires the func-
tion P to be AC on the set @, as well as VB,, and therefore AC,
on this set on account of Theorem 8.8, Chap. VIL. Thus every clos-
ed set Q(CI, contains a portion ¢, on which the function P is
AC,, and this completes the proof.

The first of the theorems proved in this §, which together eéstablish the
equivalence of the processes of 9,-, -¥,- and &integration, was derived
in 1921 by H. Hake [1] from the constructive definition of the integral 2
(vide below, § 5). The second theorem was obtained some years later by P. Alex-
androff [1; 2] and H.TL.ooman [4] independently. For an interesting extension
of these results to Perron-Stieltjes integral, vide A. J. Ward [3].

It should, perhaps, be added that in their original definitions O. Per-
ron [1]and O. Bauer [1] employed only continuous major and minor functions.
The equivalence of the original Perron-Bauer definition with that of Chap. VI,
§ 6, has therefore been established here as a consequence of Theorems 3.9 et 3.11.

Let us remark further that in the definition of Perron integral, ordinary
major and minor functions may be replaced by generalized continuous major
and minor functions defined as follows. A function U is a generalized continuous
magjor function of a function f on an interval I if 1° U is continuous and VBG4
on I, 2° the set of the values assumed by U at the points at which U’(#)=—o0,
is of measure zero, and 3° U(x)==f(x) at almost all points x. The definition of
generalized continuous minor functions is obtained by symmetry.
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We shall conclude this § with the following result, due to
Marcinkiewiez:

(3.13) Theorem. A measurable function f which has on I, at least
one continuous major function and at least ome continuous minor
function, is necessarily F-integrable on I,

Proof. Let U and V be respectively a continuous major func-
tion and a continuous minor function of f on I,, We shall call
a point xel, regular if the function f is §-integrable on each suf-
ficiently small interval I(CI, which contains x. Let @ be the set
of the points  of I, which are not regular. The set @ is plainly closed
and we see at once that the function f is &-integrable on each sub-
interval of I, which contains no points of Q. Thus it has to be proved
that @=0.

Suppose, if possible, that Q=-0. For every 1nterval I on which
the function f is &integrable, we have U(I)>(9) / fx)de=V (I).

Therefore, if [a,b] is an interval contiguous to Q, the definite
&~integral of f on the interval [a-+e, b—y] interior to [a,b] tends
to a finite limit as ¢—0 and %—0. By Lemma 3.1, the function f
is thus &integrable on each interval contiguous to Q. It follows,
in particular, that @ can have no isolated points.

Now let @, be a portion of @ on which the functions U and V
are both VB,. Such a portion exists by Theorem 9.1, Chap. VII,
since the functions Uand Vare VBG, on I, on account of Theorem 10.1,
Chap. VII. Let J, be the smallest interval containing @,. Since
U(x)=f(#)2= V(x) everywhere on I,, the function f is summable.
on @, together with the two derivatives U(x) and V(z). On the
other hand, denoting by {I,} the sequence of the intervals contiguous
to @, and by 0O, the oscillation on I, of the indefinite @integral
of f, we shall have 0,<O(U;I,)+O(V;I,) for every =, and so
20,<~4oc. It follows by Lemma 3.4, that the function f is éinte-

grable on the whole interval J,. But thig is clearly impossible, for
since the set @ has no isolated points, the interval J, contains in
its interior some points of . We thus arrive at a contradiction
which completes the proof.

Just as in the definition of the Perron integral, we may replace, in The-
orem 3.13, ordinary major and minor functions by generalized continuous ones
(cf. above, p. 252). Nevertheless, the conditions of Theorem 3.13 differ from those
of the definition of Chap. VI, § 6, in that continuity is essential. In fact, if
we write f(x)=0 for <0 and f(r)=-—1/a? for x>0, U (x)=0 identically in I,
and V{x)=0 for x<0 and V(z)=1/z for x>0, we see at once that U and V are
respectively a major and a minor function of f: and yet f is evidently not
Fy-integrable on [0, 1].
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+§4. General notion of integral. We shall deal in this §
with some notions of a more abstract kind which we shall employ,
in the next §, as a basis for the constructive definition of the
Denjoy integrals.

Let € be a functional operation by which there corresponds
to each interval I=[a,b] a clags of functions defined on I, and to
each funection f of this class a finite real number. This class of func-
tions will be called domain of the operation T on the interval I, and
the number associated with f will be denoted by €(f;I).

An operation T will be termed an integral, if the following three
conditions are fulfilled:

(i) If a function f belongs to the domain of the operation c
on an interval I,, the function belongs also to the domain of & on
any interval I(CI, and C(f;I) is a continuous additive function
of the interval I( I,,.

(ii) If a function f belongs to the domain of the operation €
on two abutting intervals I, and I,, the function belongs also to
the domain of € on the interval I;+1I,.

(iii) A funetion f which vanishes identically on an interval I
belongs to the domain of € on I, and we have €(f; [)=0.

If € is an integral, any function f which belongs to the domain
of € on an interval I, will be termed C-integrable on I, and the
number €(f;I,) will be called definite CT-integral of f on I, The
function of an interval I I,, €(f; I), which is additive and continuous
on account of (i), will then be called indefinite T-integral of f on I,
and its oscillation on I, (i. e. the upper bound of the numbers |€(f; I )!,
where I denotes any subinterval of I,) will be denoted by O(T; f; I,)-

Two integrals € and €, will be termed compatible, if
G, (f; I)=C,(f; I) for every interval I and for every function f
which is both &- and €,-integrable on I.

We shall say that the integral &, imcludes the integral &,
if the two integrals are compatible and if every function which is
Z,-integrable is also C,-integrable. When this is so we shall write
€, T,

Given an integral € and a function ¢ which vanishes out-
side a bounded set K, it is evident that if g is €-integrable on an
interval I, which containg E in its interior, then ¢ is so also on
any interval I which contains K, and we have &(g;I)=C(g;I,).
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This fact justifies the following definition: we shall say that
a funection f is T-integrable on a bounded set E, if the function ¢ which
coincides with f on F and is 0 eisewhere, iy €-integrable on each
interval I ) E. The number € (g;I) is then independent of the choice
of the interval I D) F; we shall call this number definite T-integral
of the function f on the set E and we shall denote it by €(f; E).

Of the known processes of integration, all those which give rise to a con-
tinuous indefinite integral (for instance those of Lebesgue, Newton, Denjoy, etc.)
are easily seen to be integrals according to the above definition. If, however,
we wished to include also discoutinuous integrals (e.g. that of W. H. Young
cf. Chap. VII, p. 215) we should have to modify some details of the definition,

Given a function f on an interval I, and given an integral ¢,
we ghall say that a point ael, is a C-singular point of f in I, if there
exist arbitrarily small intervals I (C I, containing a on each of which
the function f is not C-integrable. Denoting by 8 the set of these
points, we see at once that the set S is elosed and that the function f
is C-integrable on every subinterval of I, which contains no points of S.

With each integral € we now associate three ‘“‘generalized’
integrals ’CC‘, c" and @“*, defined as follows.

Given any interval I, the domain of the operation ¢“ on I,
is the class of all the functions f which fulfil the following two

conditions:
(¢') the set of the ¢-singular points of fin I, is finite (or empty);
(c?) there exists a continuous additive function of an interval F
on I, such that F(I)=&(f;I) whenever I ig a subinterval of I,
which contains no €-singular point of f.
Since such a function F (if existent) i uniquely determined
by the conditions (c*) and (c?), we can write €°(f; I,)=F(I,).
The domain of the operation ¢" on 1, is defined as the class
of the functions f which fulfil the following conditions:

(ht) if S denotes the set of all Z-singular points of f in I,, the
function f is Z-integrable on the set S and on each of the intervals I,
contiguous to the set consisting of the points of § and of the end-
points of I;

(h?) X |€(f; I)|<< + oo and, in the case in which the sequence {1}
k

is infinite, lim O(Z;f; I;)=0.
k
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For any such function f, we write by. definition:

c(f; Iy ) =2¢(f In) + C(15 8).

Finally, wé obtain the definition of the operation gh by re-
placing in the definition of the operation c" the condition (h%) by
the more restrictive condition:

(h3) 30(&; f; 1)< + o

We verify at once that the operations @C, ¢" and €™ all
fulfil the conditions (i), (ii) and (iii), p. 254. These operations are there-

fore integrals according to the definition, p. 254, and we evidently

have €C ¢ and ¢C ™ c". For brevity, we shall write " and

™ in place of (%) and (€“)™ respectively.

The integral T€ and the integrals ¢! and ¢H+ may be regarded respectively
as the Cauchy and the Harnack generalizations of the integral ¢. They correspond,
in fact, to the classical processes employed by Cauchy and Harnack to extend
integration from bounded to unbounded functions of certain classes. The original
process of Harnack actually corresponds to the operation THx rather than to the
operation CH Cf. A. Harnack [1], E. W. Hobson [I, Chap. VIII] and A. Rosen-
thal [I, p. 1053].

If we were to add to the conditions (h') and (h?) which characterize the
generalized integral T H_ the condition that lim O(T; f; Ix)/e(x, Ir)=0 for almost

k

all z ¢S, we should arrive at a generalized integral T intermediate between
gH and @Hx. By applying the process TH' in the constructive definitions of Den-
joy integrals of the next §, we should then obtain an integral 9’, intermediate
between 9 and 9,. Its descriptive definition is very simple: a function f is 9'-
integrable if it is D-integrable and if its indefinite D-integral is almost everywhere
derivable (in the ordinary sense). This integral has been discussed by A. Khin-
tehine [1]; ef. also J. C."Burkill [1].

% § 5. Construetive definition of the Denjoy integrals.
With the notation of the precedmg §, we see at once that for each
integral €C 9, we have also CD similarly the relation ¢( 2,
implies CCC 2,. It is not quite so obvious that the relations ¢ 2
and €C 9, imply respectively € ¢*C 9 and €™ 9,. This last as-
sertion is a consequence of the following theorem which is anal-
ogous to Lemma 3.4.
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(5.1) Theorem. Let Q be a bounded closed set with the bounds
o and b, and let {I,} be the sequence of intervals contiguous to Q;
and,_suppose that f is a function D-integrable on. the set Q as well as
on each of the intervals I, a,nd that (in the case in which the sequence
{4} is mfm@te)

|<+oo  and lim O/(2; f; L)=0.

Then the f@mct@on f is D-integrable on the whole interval
I= [a b] and we have

(5.2) 9)/fdx /fdx+2 /fdw

If we suppose, further, that the fufrwtwn fis D -'mtegmble on
as well as on each of the intervals I, and that Z O(9,; f; 1) << + oo,
then the function f is 2,-integrable on I.

Proof. We shall prove the theorem for the 9-integral. The
case of the 9, -integral is similar.

Let I(x) denote the interval [a,x] where we suppose xe[a,b],
and let , |
(5.3) (2) [ ft

I peI(x)

We shall show that the function F, thus defined, is ACG on
the interval I. For this purpose, it will suffice to show that F is
AC on the set @, the function being ev1dent1y continuous on [ and
ACG on each of the intervals I,.

Let g(x) be the function equal to 0 for zeQ and to — |I ] /)'/f(t)dt

Tk

for xelj, Where k=1, 2, .... The function ¢ is summable on I and
if Gz / g(t) dt, the function F clearly coincides with @ on Q;

F is thus AC on @ and therefore ACG on I.

This being 80, we have Fy,(2)=@G'(x)=g¢(z)=0 at almost all
points 2 of ¢, while it follows at once from (5.3) that Fi,(x)=f(z) at
almost all points # of I—¢@. Hence, F being ACG on I, it follows
that the function equal to f on I—@ and to 0 on @ has F for an
indefinite 9-integral. On the other hand, the function equal to f
on ¢ and to 0 elsewhere is, by hypothesis, 9-integrable on I.
It follows that the function f itself is 9-integrable on I, and
that (9) /f(w ) dav=F (b) — F (a) - (D) /fdw, which, on account of (5.3),

is equlvalent to (5.2). This completes the proof.
S. Saks. Theory of the Integral. 17
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We now pass on to the constructive definition of the Denjoy
integrals. We begin by introducing the following notation.
Let {@'5} be a sequence of integrals, in general transfinite, such

that ¢°(C €” whenever £<7. We then denote by >'C° the operation €
f<a

whose domain on each interval I is the sum of the domains of the
operations ¢t for & < a, and which is defined for every function f
of its domain by the relation &(f; I)=C"(f; I), where &, is the least
of the indices £<Ca such that f is Eg-integrable on I. It then follows,
of course, that (f; I)=C*(f; I) for every &£, since by hypothesis o
then includes . ,

This being g0, let (£} and {£5} be two transfinite Sequences
defined, by an induction starting with the Lebesgue integral £, as
follows:

£0= 20 =2,
0% = ( <2 £ and £0 = (g £) o for a>0.

Denoting by 2 the smallest ordinal number of the third class

(cf. for ingtance, W. Sierpinski [I, p.235]) we shall show that
9=22'=2" and D, =0l = 12
{8 £<Q ’ L

We shall restrict ourselves to the case of the 9-integral (that of
the 2,-integral being quite similar).

Since £C 2, we find at once by induction (cf. above, P. 256)
that for every &, £° CD and so, obviously, Z £§CD In order to

change this last relation into one of 1dent1ty, 1t is enough to show
that every function f which is 2-integrable on an interval I,=[a,b],
is £ -mtegrable on I, for some 1ndex E< .

Let §° denote the set of the £*-singular points of f in 1, The
sequence {S°}, as a descending sequence of closed sets, is sta-
tionary, i.e. there exists an index »<®Q such that §'=8"""
(For if not, there would exist for every &< a point
:vgeSg—Sg“Ll, and therefore also an interval I: with rational end-
points, containing the point x; of §° but without points in common
with the closed set S§+1, nor therefore, with any of the sets
Si+2, S5+3, .... We should thus obtain a transfinite sequence of type
0 of distinet intervals with rational end-points, and this is impossible.)
We shall prove that 8'=0.
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Suppose, if possible, that S°+0. We see at once that the func-
tion f is £"-integrable on each interval I (C I, which containg no
points of 8. It follows that the function f is (£”)“integrable, and
a fortiori £""integrable, on each interval contiguous to 8°. Since
8"=8"*, it follows, in particular, that the set 8" contains no iso-
lated points.

The function f being, by hypothesis, 9-integrable on 1y, the
set 8" (cf. Theorem 1.4) must contain a portion ¢ such that the
function f is summable on @ and such that the series of the definite
2-integrals of f over the intervals contiguous to § converges absolu-
tely. Since L’C()J”)CC 9, it follows at once that the function f is
(L‘”)GH-integmble, i.e. £"+1-integrable, on some interval J, contain-
ing @. But this is clearly impossible, since, in view of the fact that
the set 8" has no isolated points, the interval J o certainly contains
points of the set §"==8""' in its interior.

We thus have 8"=0, which establishes the £’-integrability of
f on I, and completes the proof.

Various definitions, constructive and descriptive, of Denjoy integrals will
be found in the papers mentioned in Chap. VI, p. 207, and Chap. VII, pp. 214-215,
as well as in the following treatises and memoirs: N. Lusin [I;4], T. H. Hil-
debrandt [1], P. Nalli [I], E. Kamke [Il, A. Kolmogoroff [2],
H. Lebesgue [7; TI, Chap. X], A. Rosenthal [1] and P. Romanowski f1].

For further extensions to functions of two or more variables, see also
H. Looman [1] and M. Krzyzanski [1].
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