CHAPTER IX.
Derivates of functions of one or two real variables.

§ 1. Some elementary theorems. The first part of this
chapter (§§ 1—10) is devoted to studying the various relations between
the derivates of a function of a real variable. With the help of the no-
tion of extreme differentials introduced by Haslam-Jones, certain of
these relations will subsequently be extended, in the second part of
the chapter (§§ 11--14), to functions of two variables.

Accordingly, the term “function’ will be restricted in the first
part of this chapter to mean function of one real variable.

Before proceeding to the theorems directly connected with the
Lebesgue theory, we shall establish in this § some elementary results.

We first observe that a linear set E contains at most a. finite num-
ber, or an enwmerable infinity, of points which are isolated on one side at
least. To fix the ideas, let A be the set of the points of £ which are
isolated points of E on the right. For each integer n, let 4, denote the
set of the points # of A such that the interval [z,2+41/n] contains no
point of E other than . Then it is plain that, for each integer k, the in-
terval [k/n, (k+ 1)/n] can have at most one point in common with 4,.
Hence each set 4, is at most enumerable, and the same is true of
the set A= A,.

We say that a finite function F' assumes at a point @, a strict
maximum if there exists an open interval I containing x, such that
F(x)<F(x,) for every point xel other than x,. By symmetry we define
a striet minimum.
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(1.1) Theorem. Given a finite function of a real variable F, each of
the following sets is at most enumerable:

(1) the set of the points at which the function F assumes a strict
MATIMUM Or Minimum;
(i) the set of the points x ot which

lim sup F(t) >lim sup F(¢) or lim inf F(t) <lim inf F(z);
>x t>x+ t>x ->x-+

(iii) the set of the points x at which
Frm)<F~ (@) or  F (2)<F'(a).

Proof. re (i). Consider the set A of the points at which, for in-
stance, the function F' assumes a strict maximum, and let 4, denote,
for each positive integer =, the set of the points « such that F(t)<F(x)
holds for each point t<=x of the interval (x—1/n, x+1/n). We see at
once that each set 4, isisolated, and therefore at most enumerable.
Since A=>'4,, it follows that the set A is at most enumerable.

re (ii). Let us consider, for definiteness, the set B of the points
z at which limsup F(t)>lim sup F(¢). We denote, for each pair of in-
f>x t>x+

tegers p and q, by B,, the set of the points x such that
lim sup F(t) > p/q > lim sup F(%).
>x X+

Clearly each point of a set B,, is, for that set, an isolated point on
tne right. Each of the sets B, is thus at most enumerable, and, since
B=2'B,,, the same is true of the whole set B.

P9

re (iii). Consider the set ¢ of the points x at which F+(w)<E_(w),
and denote, for each pair of integers ¢>0 and p, by C,, the set of the
points z at which F™(@)<p/q<F (). Write Fp o w)=F(x)—px/qg. We
find ]_f‘;fq(w)<0<.E,7,q(w) at each point xeC,, and this shows that the
function F,, assumes a strict maximum at each point of C,,. By the
result just established, each set (), is at most enumerable, and con-
sequently, the same is true of the whole set C.

It is sometimes convenient (vide, below, §5) to appeal to a
slightly more general form of the last part of Theorem 1.1, which
concerns relative derivates (cf. Chap. IV, p. 108) and which reads thus:

(1.2) Theorem. If U and F are two finite functions of o real variable,
the set of the points t at which the derivative U'(£)>0 (finite or infinite)
exists and at which F }E(t)<[f’(7(t), is at most enumerable.
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This is proved in the same way as the corresponding part of
Theorem1.1. In fact, if we denote, for every pair of integers ¢>> 0 and p,
by C,, the set of the points a at which Fj(z)< plg<Fy(x),
we see at once that the function F(z)—(p/q)-U(x) assumes at each
point of C,, a strict maximum. Therefore each set Cp, is at most
enumerable.

For Theorem 1.1 and its various generalizations, vide: A. Denjoy [1, p. 147],
B.Levi[l], A. Rosenthal [1], A. Schénflies [I, p. 158], W. Sierpinski [1; 2]
and G. C.Young [1]. As regards the enumerability of the set of the points at which
the function assumes a strict maximum or minimum, it is easily seen that this
result remains valid for functions in any separable metrical space (cf. F. Haus-
dorff [I, p. 363]). Mention should be made also of the elegant generalizations of
Theorem 1.1, obtained successively by H. Blumberg [1], M. Schmeiser[1] and
V. Jarnik [3].

§ 2. Contingent of a set. We have mentioned earlier (in
Chapter IV, p. 133), that certain theorems on derivates of functions
may be stated as propositions concerning metrical properties of
sets in Euclidean spaces. In connection with these results, we shall
state in this § some definitions which begin with some well-known
notions of Analytical Geometry.

By the direction of a half-line ! in a space B, (where m>=2) we
shall mean the system of the m direction cosines of I. The half-line
issuing from a point ¢ and having the direction § will be denoted by
af. The half-line issuing from a point ¢ and containing a point b==a

will be denoted by ab.

If we interpret the system of the m direction cosines of a half-
line as a point in I, (situated on the surface of a unit sphere), we may
regard the sct of all directions in a Euclidean space as a complete,
separable, metrical space (¢f. Chap. IL, § 2). It is then clear what is
to be understood by the terms: convergence and limit of a se-
quence of directions, everywhere dense set of directions, etc. We
shall say further that a sequence of half-lines {l,} issuing from the
same point a converges to a half-line ! issuing from a, if the sequence
of the directions of the half-lines [, converges to the direction of I.

Given a set K in a space I2,,, a half-line ! issuing from a point ae¥
will be called an intermediate half-tangent of E at a, if there exists
a sequence {a,} of points of F distinet from a, converging to ¢ and such

—>
that the sequence of half-lines {aa,} converges to I. The set of all inter-
mediate half-tangents of a set K at a point a is termed, following
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G. Bouligand [I], the contingent of E at a and denoted by contgga
(by the contingent of F at an isolated point of E, we shall understand
the empty set). A straight line passing through ¢ which is formed of
two intermediate half-tangents of £ at a is called intermediate tangent
of E at a. Similarly a hyperplane h passing through the point ais called
intermediate tangent hyperplane of E at a, if each half-line issuing from
a and situated in kb is an intermediate half-tangent of £ at a. In R,
the notions of intermediate tangent hyperplane and inter-
mediate tangent are plainly equivalent.

Given in the space I, a hyperplane h, a;2,+ ¢.@y+...-+@mZn=0b,
(cf. Chapter III, §2) the two half-spaces (half-planes if m=2)
W2+ oot WpXm=2b and ay @y +aoy+ ... - Cp@n <b, into which &
divides R,,, will be termed sides of the hyperplane h. In the case in
which # is anintermediate tangent hyperplane of a set £ at a point a
and in which, further, the contingent contgy ¢ is wholly situated on
one side of &, the side opposite to the latter is called empty side of h
and the hyperplane b is termed extreme tangent hyperplane of E at a.
The two sides of h may, of course, both be empty at the same time,
and this oceurs if the contingent.of F at « coincides with the set of
all half-lines issuing from e which lie in the hyperplane h itself.
The hyperplane h is then termed unique tangent hyperplane, or simply,
tangent hyperplane, of B at a.

For simplicity of wording, we shall restrict ourselves in the sequel
to the case of sets situated either in the plane R, orin the space Rj.
Needless to say, the extension to any space I2, presents no essential
difficulty (an elegant statement, which sums up the results of §§ 3
and 13 of this chapter and which is valid for an arbitrary space R,
will be found in the note of F. Roger [2]).

As usual, the hyperplanes in R, and R; are termed straight
lines and planes respectively. Moreover, in the case of plane sets we
shall speak of tangent (intermediate, extreme, unique) in place of
tangent straight line (intermediate, extreme, unique).

We shall discuss the case of the plane (§3) and that of the space
{§13) separately, although the proofs of the fundamental theorems
3.6 and 13.7 which, correspond to these two cases, are wholly analogous.
The proof of the former is, however, more elementary, whereas the
latter requires some subsidiary considerations connected with the
notion of total differential (cf. below §12).
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§ 3. Fundamental theorems on the contingents of plane
sets. For brevity, we shall say that the contingent of a plane set
E at a point a is the whole plane, if it includes all half-lines issuing
from this point. Similarly the contingent of E at a point a will be
said to be a half-plane, if E has at this point an extreme tangent I
and if contgga consists of all the half-lines issuing from @ and
situated on one side of 1.

We shall see in this § that, given any plane set E, at each point a of E except
at most in a subset of zero length, either 1°the contingent of Eis the whole plane, or
2°it is a half-plane, or finally 3° the set ¥ has a unique tangent. This result (together
with the more precise result contained in Theorem 3.6) was first stated by
A.Kolmogoroff andJ.Verdenko [1;2]. It was rediscovered independently, and
generalized to sets sitnated in any space Bm, by F.Roger [2]. The proofs, together
with some interesting applications of the theorem of Kolmogoroff and Vercenko,
will be found in the notes of U. S. Haslam-Jones [2;3]. (For the first part
of Theorem 3.6 cf. also A. S. Besicoviteh [4].)

A finite function of a real variable F, defined on a linear set E,
is said to fulfil the szschztz condition on E, if there exists a flmte
number N such that |F(z,)—F(z,)|<N- I.}cz—xﬂ whenever z, and w,
are points of E. As we verify at once, we then have A{B(F;E)\<
<(N+1)-|E| (for the notation, cf. Chap. II, § 8, and Chap. ITI, § 10).
Thus, if & function F fulfils the Lipschitz condition on a set E of finite
[zero] outer measure, its graph B(F;E) on E is of finite [zero)
length.

It is also easy to see that any function which fulfils the Lipschitz
condition on a linear set E, can be continued outside E so as to fulfil
the Lipschitz condition on the whole straight line 2, and so as to be
linear on each interval contiguous to E.

(3.1) Lemma. Let R be a plane set, 0 a fixed direction and P the set
of the points a of R at which contgr a contains no half-line of direction 6.
Then (1) the set P is the sum of a sequence of sets of finite length,
and (i1) at each point a of P, except at most at those of a subset of length
zero, the set B has an extreme tangent such that the side of the tangent
containing the half-line a6 is its empty side.

In the particular case in which 6 is the direction of the positive semi-
awis of y, the set P is expressible as the sum of an enumerable infinity of
sets each of which is the graph of o function on a set on which the
function fulfils the Lipschitz condition.
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Proof. By changing, if necessary, the coordinate system, we
may suppose in both parts of the theorem that 0 is the direction of
the positive semi-axis of y. Let us denote, for every positive inte-
ger n, by P, the set of the points (x,y) of P such that the inequali-
ties |o'—a|<1/n and |y'—y|<1l/n imply y'—y<n-lo'—a| for every
point (z’,y’) of R. Since there is no point @ of P at which the contingent
of R contains the half-line with the direction of the positive semi-axis
of y, it is clear that P=)'P,. Let us now express each P, as the sum of

n

a sequence {Ppitr—12,.. of sets with diameters less than 1/n. We shall
then have |y,—y,|<n-|lo,—x,| for every pair of points, (z,y,) and
(%, ¥,), belonging to the same set P,,. Let Q,, be the orthogonal
projection of P,, on the axis of . We easily see that each point of
@nr 18 the projection of a single point of P, , Consequently, the set
P, may be considered as the graph of a function ¥, ; on @, .. Moreover
we have |F, y(@;)—F (1)l <n-|we—a| for each pair of points x, and
Zy 0f Qnu, i.e. the function F,, fulfils the Lipschitz condition on Qnk
and therefore (cf. above p.264) each set P, ,=B(F,; Qur) is of
finite length. Thus, since P=)'P,, we obtain the required expres-
nk

sion of the set P as the sum of an at most enumerable infinity of sets
of finite length, which are at the same time graphs of functions
fulfilling the Lipschitz condition on sets situated on the z-axis.

It remains to examine the existence of an extreme tangent to
the set R at the points of P. For this purpose, let us keep fixed for the
moment a pair of positive integers » and %, and let QN,,,k be the set of
the points of @,, which are points of outer density for Q,, and at
which the function F,, is derivable with respect to the set Q, ;. Since
the set Q,,,k—(?,,,k is of measure zero (cf. Theorem 4.4, Chap. VII) and
since the function F””L fulfils the Lipschitz condition on @, 4, it follows
that A [B( Fn,k; Qn,k_Qn,lz)] = 0.

We need, therefore, only prove that R has an extreme tangent
at each point of the set B(F,; 6,,,,,) and that, further, the side of
this tangent which contains a half-line in the direction of the
positive semi-axis of y is its empty side.

Let (£,,%,) be any point of B(F,x; (LN),,,,,), and A4, the derivative
of F,r at & with respect to the set @, . Let & be a positive number less
than 1. Since &, is a point of outer density for the set @, we can
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associate with each point (&, n), sufficiently close to (&,7,), a point
&'eQ), r such that

(3.2)  [&F—&|<[E—4 and (3.3)  |F—El<ef—4

(for otherwise, the outer lower dehsity of Q. at & would not ex-
ceed 1—e). '
Remembering now that 5=F, (&), let us write for brevity

Dn,k(gl) = Fn,!z(s,)‘_no —Ao'(E,‘—EU)-
We shall have

(3.4)  n—ny—Ay(§—&)=D, (&) +[n-F, (&)]+ 4y (§—E).

Now suppose that the point (&,%) belongs to R and that
|6—&l<1/2n® and |p—ny|<1/2n% By (3.3), we have [&'—¢&|<1/n,
and, by (3.2), [F, (&)—nl<n-|&'—&|<n-|E—&£|<1/2n, so that
|Fni(&)—n|<1/n. Since the point (&', F, (&) belongs to P, ,C P, it
follows from the definition of the set P, that n—F,(&)<n-|é—&
and using (3.3) again, we derive from (3.4) that

n—ny—Ay(§—&) K|D, (&) + (n+ |4,))-
<ID, (&) + & (n+ |4))-|5—&,.

Now as £, and therefore &', tends to &, the ratio D, x(§'}/(&—&,)
tends to zero; the same is therefore true, on account of (3.3), of the ratio
D, &) ](§—E&y). Consequently, since ¢ is an arbitrary positive number
less than 1, it follows from (3.5) that the upper limit of the ratio
[n—n,—Ay (6—E)]/|E—&], as the point (&7)eR tends to (£,7,),
is non-positive. Further, since the line y—n,=A4 -(x—§)) is plainly
an intermediate tangent of the set B(F, x; @n ) C R at the point (£, 5,),
we see that this line is an extreme tangent of the set K at this point
and that the half-plane y—»n =>4 (ac—-fo),~ which contains the half-line
issuing from (&, %,) in the direction of the positive semi-axis of y,
is an empty side of this tangent.

This completes the proof.

Y

&—&<

(3.6) Theorem. Given a plane set R, let P be a subset of K at no point
of which the contingent of R is the whole plane. Then (i) the set P is the
sum of an enwmerable infinity of sets of finite length and (ii) at every
point of P, except al those of a set of length zero, either the set B has a unique
tangent or else the contingent of R is a half-plane.
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Proof. Let {6,} be an everywhere dense sequence of directions
in the plane and, for each positive integer n, let P, denote the set of
the points of P at which the contingent of R does not contain the half-
line of direction 6,. We clearly have P=)'P,, and by the preceding

lemma each set P,, and therefore the whole set P, is the sum of a se-
quence of sets of finite length. Further, the same lemma shows that
the set R has an extreme tangent at every point of P, except at most
in a set of length zero.

Now let ¢ be the set of the points of P at which 1° there exists
an extreme tangent which is not a unique tangent and 2° the con-
tingent of R is not a half-plane. For each positive integer n, let @,
denote the set of the points b of @ such that the half-line 58, is situated
on the non-empty side of the extreme tangent of R at b, but does
not belong to contg,b. Plainly @=>¢),. Now, by the preceding

lemma, for every point b¢@, , except at most those of a set of length
zero, the half-line b0, is situated on the empty side of the extreme
tangent at b. It follows that all the sets @ , and therefore also the
whole set ¢, are of length zero. Hence, at every point of P, except
perhaps those of a subset of length zero, either there is a unique
tangent or the contingent at this point is a half-plane.

(3.7) Theorem. Given a plane set R, let P be a subset of R at every
point of which the set R has an extreme tangent parallel to a fived
straight line D. Then the orthogonal projection of P on the line at right
angles to D s of linear measure zero.

Proof. We may clearly assume that the line D coincides with
the axis of x. Let S and T denote, respectively, the sets of the points
(&,m) of P for which the half-planes y>># and y<(» are respectively
the empty sides of the extreme tangents. Consider the former of
these sets. By Lemma 3.1, the set § is the sum of a sequence of
the sets B(F ;@,), where the ¢ are sets on the z-axis and the F,
functions fulfilling the Lipschitz condition on these sets, respectively.
We may suppose (cf. p. 264) that each function F, is defined, and
fulfils the Lipschitz condition, on the whole z-axis and is linear
on the intervals contiguous to the set Qn.

This being so, we easily see that, for every =, the relation
F (2)>0>F,(x) holds at each point  of @, which is not an isolated
point on any side for @ , i.e. (cf. §1, p.260) at all the points of Q,,,
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except at most those of an enumerable set. Thus by Lemma 6.3,
Chap. VII, we have |F [@ ]|=0 for every positive integer n, and
since the projection of § en the y-axis coincides with the sum of
the sets F [@ ], this projection is itself of measure zero. By sym-
metry, the same is true of the projection of the set 7 on the
y-axis, and this completes the proof.

As an immediate corollary, we derive from Theorem 3.6 the following prop-
osition:

(3.8) Given a plane set B, let P be a subset of R at each point a of which there exists
a straight line through a which contains no half-line of contg r@- Then the set B has
a unique tangent at all the points of P except at most those of a subset of length zero.

This result can be easily extended to the space (ct. F. Roger[2]) as follows:

(3.9)  Given a set B in the space Ry, let P be a subset of R at each point a of which there
exisis a plane through a which contains no half-line of contgya. Then (i) the set P is
the sum of an enwmerable infinity of sets of finite length and (ii) the set R has a unique
tangent at all the points of P except at most those of a subset of length zero.

Proof. Let {6,} be an everywhere dense sequence of directions in the space
IR;. For ea,ch pomtlve mteger h,let P, , denote the set of the points a of P such

that [coa(ab 6,)|>>1/h for every point b of R distant less than 1/h from a. We
express each set P, , as the sum of a sequence \’Pn,h,k:lz:I,Z,... of sets of diameter
less than 1/h. We then have

>
(3.10) P=XP,, n%kl Bk
Keeping, for the moment, the indices =, h, k fixed, we choose a new system of
rectangular coordinates, taking for the positive semi-axis of z the half-line of
direction f,. Let a, # and y be, respectively, the three positive semi-axes of the new
coordinate-system. For any set, or any point, Q, we denote by @', 0 and QU the
orthogonal projections of @ on the planes gy, ya and «f, normal to the axes «, g
and y respectively.

We have [cos(ab, y)|>>1/h whenever a €P, ,» beRand 0<e(a,b)<<1l/h. It
follows at once that there is no point P(“) x84t which the contingent of the plane set
R contains a half-line at right- angles to the semi-axis y. Hence, by (3.8),
the set Pfl“}] p 18 the sum of an at most enumerable 1nf1n1ty of sets of finite
length, and the set B has a unique tangent at all the points of P" Bk except at most
those of a set M 0,1 ©f length zero. Similarly, the set R® has a unique tangent at

all the points of P(ﬂ)] . €xcept at most those of aset N, , , of length zero. It follows
that the set F has a unlque tangent at each point a of Pn e ©XCEPt perhaps when
al@ e M,y Or wWhen a ® ¢ Noniy Now we easily see that the two ratios

o(a, b)fo(@™, 8y and o(a, b)/o(a?, b¥) remain bounded (by %) when ¢ and b
belong to the set P, ; ,. It follows that the set of the exceptional points of Pn,h’k
at which the set E has no unique tangent is, with the sets M, , , and N np Of
length zero. For the same reason, sinee the set Pf“}lk is the sum of an at most
enumerable infinity of sets of finite length, so is also the set P, py This com-

pletes the proof, on account of the relation (3.10).
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§ 4. Denjoy’s theorems. We shall apply the results of the
preceding § to establish certain important relations, valid almost every-
where, which connect the Dini derivates of any function what-
soever, and which are known by the -same of the Denjoy relations.
For simplicity of wording, we agree to call opposite derivates of
a function F at a . point x, the Dini derivates F+(w0) and F (x,),
or else F'(x,) and F (a,).

We shall begin with some preliminary remarks.

Let F Dbe a finite function defined in a neighbourhood J of
a point x, and let B denote the graph of F on J. It is clear that if
the function F' is derivable at the point x,, the set B has at (x, F(x,))
a unique tangent not parallel to the axis of y. Similarly, if two op-
posite derivates of F are finite and equal at z,, the set B has at
(29, F' () an extreme tangent y —F(x,)=k -(x—x,), whose angular
coefficient & is equal to the common value of these derivates. Con-
versely, if at the point (x,,F(x,)) the set B has the extreme tangent
Yy —F (x,)=k-(x— x,) where k==oc, then 10 F'(z,)=F (2,)=k in the
case in which the half-plane Yy—Y,=k-(r—ux,) is an empty side of
this tangent and limsup F(z)<<F(x,), and 2° E+((D0):F7({L‘O):k in

XXy
the case in which the half-plane y—y, <k-(r—=x,) is an empty side

and liminf F (x) = F (x,).
X=X,

In the enunciations of the theorems which follow, we shall
frequently be concerned with exceptional sets FE, connected with
a function F and subject to the condition A{B(F;E),=0. This
condition evidently implies both |[E|=0 and |F[E]l=0, since the
sets B and F[E] are merely the orthogonal projections of the set
B(F;E) on the - and y-axes, respectively.

(4.1) Theorem. If at each point of a set E one of the extreme uni-
lateral derivates of a function F is finite, this derivate is equal to its
opposite derivate at every point of E except perhaps at the points of
a set B, of measure zero such that AB(F;E,)}=0.

Proof. We may clearly suppose that the same derivate, F*(w) say,

is the one which is finite throughout E. We thus have lim sup F(x) <F(x,)
x>x+

at every point x,¢ £ and, on account of Theorem 1.1 (ii), we may

even suppose that limsup F(x)<{F(x,) at every point x, of .
XX,

Now, when x,¢ F, the contingent of B(F;E) at the point (g, F(z,))
contains no half-line situated in the half-plane #>a, and having
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angular coefficient exceeding F+(w0). Therefore, by Theorem 3.6,
the set B(F'; E) has an extreme tangent at each of its points (24, F(x,)),
except for those of a subset B, of length zero, and this tangent has the
half-plane y—y0>F+(w0)-(x—m0) for its empty side. Hence, denot-
ing by E, the orthogonal projection of B, on the z-axis, we see, from
the remarks made at the beginning of this §, that at every point »
of the set ¥ — K, the derivates F'(z) and F~(x) are equal. This com-
pletes the proof since A{B(F;E,)}=A(B,)=0.

(4.2) Theorem. If at each point of a set E a finite function F has
either two finite Dint derivates on the same side, or else a finite extreme
bilateral derivate (F(x) or F(x)), then the function F is almost every-
where derivable in E; moreover, denoting by E, the set of the points x
of E at which the function F is not derivable, we have A{B(F;E,);=0.

Proof. It will suffice to consider separately the following
two cases:

1° The funetion ¥ has two Dini derivates on the same
gside finite at each point of E. We then have, by Theorem 4.1,
(4.3) Fr@)=F(2) and  F'(2)=F(x)
at each point x of E, except perhaps those of a set K, such that
A{B(F;E,)}=0. But the relations (4.3) imply the equality of all four
Dini derivates at the point z, and since two of them are finite, by
hypothesis, at each point x of E, the function F is derivable through-
out E— K,

20 The function F has an extreme bilateral derivate
finite at each point of E. By applying twice over Theo-
rem 4.1, and making use of the obvious relations Fr(@)=F"(2) and
F (x)>F (z), we see that the four Dini derivates are finite and
equal at each point of E, except perhaps at those of a set on which
the graph of F is of zero length. This completes the proof.

Theorem 4.2 (in a slightly less complete form, it is true) has
already been mentioned in Chap. VII, p. 236, as a corollary of
Theorems 10.1 and 10.5, Chap. VII. We have also stated that (as
a consequence of these same theorems) the set of the points at which
a function has a unique derivative (even a unilateral derivative)
infinite, is necessarily of measure zero. We can now extend this
result by taking the modulus, as follows:

(4.4) Theorem. For any finite function F, the set of the poinits x
at whichh]iﬁnm(w—i— h)— F(z)|[h=+ oo, is of measure zero.
>0+
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Proof. Denoting the set of the points in question by 4, we
see at once that the graph of the function F has at every point of
the set B(F;A), except perhaps at those of a set of length zero,
an extreme tangent parallel to the y-axis. Thus, by Theorem 3.7,
the set A, which is the projection of the set B(F;A) on the z-axis,
is of measure zero and this completes the proof.

It results, in particular, from Theorems 4.1, 4.2 and 4.4 that the Dini
derivates of any finite function F satisfy one of the following four relations at almost
every point @: 1° F(@)=F ~(w)=-+00, F (2)=F " (x)=—00; 2F(x)=F ()% 0o,
F*(@)=—co, F (a)=+00, 3 F¥(@)=F (z)+00; Ft(z)=+co, F (x)=—00;
49 F"'(m):_F‘i'(x):F“(w):E*(w):koo. For direct proofs of this theorem, which was
established first by Denjoy for continuous functions and then generalized to
arbitrary functions, vide: A. Denjoy [1], G. C. Young [2], F. Riesz [7], J. Rid-
der [4], J. C. Burkill and U. 8. Haslam-Jones [1], and H. Blumberg [2] (cf.
also A. N. 8ingh [1]). A further discussion of the Denjoy relations will be found
in the notes of V. Jarnik [1] (for functions of one variable) and of A. S. Besi-
covitceh [6] and A. J. Ward [4] (for functions of two variables). For Theo-
rem 4.4 see 5. Saks and A. Zygmund [1] (¢f. also S. Banach [1]).

A part of the Denjoy relations has recently been generalized to differential
coefficients of higher orders; see the important memoirs of A. Denjoy [9],
J. Marcinkiewiez and A. Zygmund [1], and J. Marcinkiewicz [2].

We may now supplement Lemma 6.3, Chap. VII, by the fol-
lowing result:

(4.5) Theorem. Let M be o finite number and F a finite function
such that |F ()| <M at every point @ of a set B. Then |F[E]| < M-|E|.

Proof. Let E, denote the set of the points z of E at which
F (2)+=F"(¢). By Theorem 4.1, we have A{B(F;E,)}=0 and there-
fore, |[F[E,]]=0. On the other hand, since |F (x)=|F " (x)|<M at
each point xe¢ E—E,;, it follows from Lemma 6.3, Chap. VII, that
|F[E—E,)| < M-|E|, and this completes the proof.

An immediate consequence is the following criterion for a func-
tion to fulfil Lusin’s condition (N) (Chap. VII, § 6):

(4.6) Theorem. If a finite function F has at each point x of a set E
a finite Dint derivate, the function necessarily fulfils the condition
(N) on E.

Proof. It is enough to show that if at each point x of a set H
of measure zero the function F has one of its Dini derivates, F' say,
finite, then |[F[H]=0. For this purpose, let H, be the set of the
points xzeH at which F'(x) <n. We have, by Theorem 4.5,
|F[H,)|<n-|H,=0 for each positive integer », and hence |[F[H]==0.
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It is easy to see that the hypotheses of Theorem 4.5 imply that
AMB(F; E)y<(M+1)-|E|. This remark enables us to complete Theorem 6.5 of
Chap. VII, as follows: If the derivaie F1 of a finite function I is finite at every point
of a measurable set E, except at those of an enumerable subset, then the function F,
together with its derivate F1, is measurable on E and we have

FLE)< [|Ft@)de  and  ABEF; BY= [ 1HEF @)1 - da.
We may note also the following consequence of Theorem 4.5: If one of the
four Dini derivaies of a function F vanishes at every point of a set E, then |F[E]j=0.
For functions F(x) which are continuous, or more generally continuous in
the Darboux sense (i.e. assume in each interval [a, b] all the values between F(a)
and F(b)), we deduce at once the following result:

(4.7) ‘Theorem. If F is a finite function, continuous in the Darboux sense on an
interval I, and if at each point of this interval, except those of an enumerable set, one
at least of the four Dini derivates is equal to zero, then the function F is constant on I.

% § 5. Relative derivates. The Denjoy relations can be
extended in various ways to relative derivates of a function
with respect to another function. Let us remark that, in accordance
with the definition given in Chap. IV, p. 108, the extreme derivates
of any function with respect to a finite function U are determined
at each point which belongs to no interval of constancy of the func-
tion U; consequently, the set of values taken by the function U
at the points at which the extreme derivates with respect to U
remain indeterminate is at most enumerable.

In the sequel it will be useful to employ the notation adopted
in Chap. IV, § 8. Let us recall in particular, that if € is a eurve given
by the equations o= X (1), y=1Y (¢), its graph on a linear set F (i.e.
the set of the points (X (), Y(t)) for te E) is denoted by B(C;E).

(5.1) Lenuna. If C is a curve given by the equations x= U (t), y=1F (1),
the set E of the points t at which Fy(t)<<-oo, may be expressed as
the sum of a sequence of sets {E,} such that

(v) for every n and for every open interval I of length less than 1/n,
the set B(C;I) has a unique tangent at every point of B(C;1-E,)
except those of a set of length zero.

Proof. Let us denote, for each positive integer n, by E, the
set of the points ¢t such that, provided that the differences ¥ (t')—F(f)
and U(t')—U(t) do not vanish simultaneously, the inequality [t'—¢<1/n
implies [F(t)—F()1/[U(t')—U(t)]<n. We see at once that, for any
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open interval I of length less than 1/n, the contingent of B(C;I)
at a point of B(C;I-E,) cannot contain half-lines of angular coef-
ficient greater than n, and can be, therefore, neither a whole plane,
nor a half-plane (cf. §3, p.264). The property (y) of the sequence
{E, thus appears as a direct consequence of Theorem 3.6.

(5.2) Theorem. If U and F are continuous funciions and we have
Fi(t)<<--oo at every point t of a set E, then there is a finite derivative
Fy(t) at each point t of E, except at the poinis of a set H such that
|U[H]|=0.

Proof. Let ¢ denote the curve given by the equations x= U (¢),
y=F(t). On account of Lemma 5.1, the set F is expressible as the
sum of a sequence of sets {E,} which fulfil the condition (y) of this
lemma. Keeping fixed, for the moment, a positive integer =, let us
consider an open interval I of length less than 1/n. Let B,(I) denote
the set of the points of B(C;I-E,) at which the graph of the curve
O on I either has no unique tangent, or else has a unique tangent
parallel to the y-axis. Further, let 3?,,(1) be the projection of the
set B,(I) on the x-axis. On account of the condition (y) and
Theorem 3.7, we have |1N9,,(I )l=0. Now since U and F are continuous,
it is clear that the derivative Fy(f) exists and is finite at each point
tel-E,, provided that U(¢) does not belong to the set 1~3,,(I ). Hence,
I being any open interval of length less than 1/n, this derivative
exists and is finite at each point te F,, except at most at the points
of a set H, such that |U[H,]|=0. This completes the proof, since
E=)E,.

(5.3) Theorem. If U is a continuous function and F any finite
function for which Fy(t)=0 at each point t of a set B, then |F[E]=0.

Proof. Let C denote, as in the proof of the preceding theorem,
the curve x==U(t), y=F(t), and let K be expressed as the sum of
a sequence of sets {E,} subject to the condition (y) of Lemma 5.1.
Keeping fixed, for a moment, a positive integer n, let us consider
any open interval I of length less than 1/n. At each point of B(C;I-E,),
except those of a set of length zero, the set B(C;I) then has a unigue
tangent, and since the function U is continuous and Fy(t)=0 at
each point fe¢ H, this tangent is parallel to the wx-axis. It follows,
by Theorem 3.7, that the set F[I-FE,], which coincides with the
projection of the set B(C;I-E,) on the y-axis, is of measure zero.
Since I is any interval of length less than 1/n, it follows that |F[E,]=0
for each positive integer n, and finally that |F[E]=0.

S. Saks. Theory of the Integral. 18
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The hypothesis of continuity of the function U is essential for the validity
of Theorems 5.2 and 5.3 (the hypothesis of continuity of the function F, which is
not required in Theorem5.3, may, however, be removed also from Theorem 5.2).
Let, F(t)=—t identically, and let U(t)=t for irrational values and U({)=%{+1 for
rational values of {. Denoting by E the set of irrational points of the interval (0,1),
we shall have at each point ¢ of this set

F t)=FLt)=F;t)=0 and Fyty=F ) =F;t)=—I.

Nevertheless |U[E)|=|F[E]l=1. On the other hand, the hypothesis of continuity
of the function U may be removed from Theorgnl 5.3, if we replace the con-
dition F;(t)=0 by the more restrictive condition f7;;(t)=0. To see this, we shall first
establish an elementary lemma.

(5.4) Lemma. If U is a finite function on a set K, there exists a set
T CE such that the set U[T] ts at most enumerable and such that each
point e E—1T s the limit of a sequence of points \t; of E which
fulfils the conditions (i) t;>v and U(t)+=U(z) for each i=1,2,...
and (ii) lim U (t;)=U (7).

i

Proof. Let T be the set of the points r¢E none of which is
the limit of a sequence {t} of points of F subject to the conditions
(i) and (ii) of the lemma. Let us denote, for each positive integer £,
by T, the set of the points v of 7 for which there is no point te¢ E
such that both 0<t—r<<1/k and 0<<|U(t)— U (z)|<1/k. We have
T=)Ty Plainly the function U cannot, on any portion of 7, of

k
diameter less than 1/k, assume two distinet values differing by less
than 1/k. It follows that each set U[Z}] is at most enumerable,
and the same is therefore true of the whole set U[T].

(5.5) Theorem, If U and F are any finite functions and Fy(t)=0
or, more generally Fi(t)=F((t)=0, at each point t of a set E, then
[F[E]=0.

Proof. Let C be the curve = U (t), y=F (¢), and let E, denote,
for each positive integer n, the set of the points ¢ of EF such that
the inequality 0<({'—it<{1/n implies |[F(t')—F () <|U{t")—U(1)
whatever be the point . We can express each set E, as the sum
“of a sequence {F, s, of sets of diameter less than 1/n.

Let us keep n and k fixed for the moment. It is clear that
the contingent of the set B(C;E,x) cannot, at any point of this
set, contain a half-line whose angular coefficient exceeds the num-
ber 1. Consequently, denoting by B, the set of the points of B(C; E, )
at which the set B(C;E,;) has no unique tangent, we see from
Theorem 3.6 that A(B,;)=0.
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Now the set E,, contains, by Lemma 5.4, a subset T, such
that U[T,:] is at most enumerable and that each point vel,,—T,
is the limit of a sequence {{;} of points of E,, which fulfils the con-
ditions (i) and (ii) of this lemma. Hence, the relations Fﬁ(t):p‘g(z)zo
being satisfied, by hypothesis, at each point te E,;, the set B(C;E, )
has a unique tangent parallel to the x-axis at each point of the
set B(C;E,r—Tnt)—Bnr. Since A(B,)=0, it thus follows from
Theorem 3.7 that the set F[H,,—T, ], which coincides with the
projection of the set B(C; K, ,— T, ) on the y-axis, is of measure zero.
The same is therefore true of the set F[E,;], for the set F (T 0]
is, with U[T.x], at most enumerable. It follows at once that
|F[E]|=0, since E=>'E, .

nk

We may mention an application of Theorems 5.3 and 5.5, which is connected
with the following theorem of H. Lebesgue [I1, p. 299]: If the derivative of a con-
tinuous function F, with respect to a function U of bounded variation, is identically
zero, then the function F is a constant. J. Petrovski[l]and R. Caccioppoli[l]
extended this theorem, in the case when the function U is continuous, by removing
the hypothesis of bounded variation for U. At the same time, Petrovski remarked
that it was sufficient for the validity of the theorem to suppose that the relation
F;,(t):() holds everywhere except in an enumerable set.

It is easy to see that this result is contained in each of the separate theorems
5.3 and 5.5. These theorems actually enable us to state the result of Petrovski
and Caccioppoli in two slightly more general forms. Thus:

1° Suppose that U and I' are continuous functions and that at each point ¢,
except at most those of an enumerable sef, one at least of the four relations
F =0, F,t)=0, Fit)=Fjt)=0 or Fyt)=Fyt)=0 is fulfilled. Then the
function F is a constant.

2° Suppose that U is any finite function and F a continuous function, and let
one of the relations F;}(t):E?;(t):O or F,(t)=F;(t)=0 hold at each point t except
at most those of an enwmerable set. Then the function F is a constant.

We observe further that, in both the statements 1° and 2°, we may replace
the hypothesis of continuity of ' by the hypothesis that I is continuous in the
Darboux sense (cf. §4, p. 272); moreover the condition that the exceptional set be
at most enumerable may be replaced by the condition that the set of values assumed
by the function F at the points of this set be of measure zero.

The Denjoy relations have a more complete extension to rela-
tive derivates when the function U of Theorem 5.2 is subjected
to certain restrictions. Thus:

(5.6) Theorem. Let U and F be finite functions, and suppose that,
at each point ¢ of a set K, the derivative U'(t) (finite or infinite) exists
and that Fj(t)<-oo. Then Fy(t)=Fi (t)=oco at each point t of E
except at most the points of a set H such that |U[H]=0.

18%*
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Proof. We may clearly restrict ourselves to the case in which
the derivative U’(t) is non-negative throughout E, and even, by
Theorem 4.5, to the case in which (1°) U'(z)>0 at each point 7
of E. We then have limsup U(f)<< U(r)<]irtn iilf U(t) at each point

t>T— —>T

e E, and consequently, on account of Theorem 1.1 (ii), we may

suppose that (2°) the function U is continuous at each

point of E. This implies that we then have also limsup ¥ (1) <F (7)
—>1+

at each point 7 of E, and hence, appealing again to Theorem 1.1 (ii),
we may suppose further that (3°) limsup F(1)<F(r) at each point
t>T

7ze¢ E. Finally by Theorem 1.2, we may suppose (49°) Eﬁ(r)gﬁﬁ(r)
at each point r¢FE.

Let now C be the curve defined by the equations x= U (i),
y=F(t). We denote, for each positive integer n, by E, the set
of the points te¢E such that, for every point #', (i) the inequal-
ity 0<t’'—t<1/n implies the two inequalities U({')>U(#) and
F(t')—F(@t)<n-[U(t')—U(t)], and (ii) the inequality 0<i—t'<<l1/n
implies U(t)> U ().

Since, by hypothesis, FF(t)<+oco and since, by (1°), U'(¢)>0
at each point ¢ of E, we see that E=)E,.

Keeping a positive integer n fixed for the moment, let I be
any open interval of length less than 1/n. Whenever (£.7) is a point
of B(C;I-E,), the contingent of the set B(C;I) at (&, 7) clearly con-
tains no half-line which is situated in the half-plane x>& and which
has an angular coefficient exceeding n. Let D(I) denote the set
of the points of the set B(C;I) at which this set has an extreme
tangent, non-parallel to the y-axis, with an empty side containing
the half-line in the direction of the positive semi-axis of y. Further,
let B,(I) be the set of the points of B(C;I-E,) which do not belong

to D(I), and let l?,,(I) be the projection of B,(I) on the z-axis.

~

By Theorems 3.6 and 3.7, the set B,(l) is of measure zero.

This being so, let #, be any point of the set I-E, such that
U(t,) does not belong to the set E,,(I). Let us denote by k, the
angular coefficient of the extreme tangent to the set B(C;I) at
the point (U(t,), F(t,)). It follows easily from the hypotheses (1°),
(2% and (3% that Eg(to)>k0>F?](t0), and this, in view of (49), leads
to the relation Fy(t,)=Fp(t,) == co.
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Thus, since I is any open interval of length less than 1/n, we
find that the last relation holds at each point ¢, of E, other than
those belonging to a set H, such that |U[H,]|=0. This completes
the proof, since we have seen that E=)E,.

In view of Theorem 7.2, Chap.VII, we derive from Theorem 5.6 the following
theorem which has been established in a different way by A. J. Ward [3]:

(5.7) Suppose that the function U is VBG, and let F be any finite function. Let E
be a set at each point t of which we have either F_’?,‘(t)<+oo or Iy (t)>—oo. Then the
derivates ¥, and F'(*]' are finite and equal at all points of E except at most those of a set
H such that |U[H}|=0.

It will result from the considerations of § 6 (see, in particular, Theorem 6.2)
that Theorem 5.7 remains valid for all continuous functions U which fulfil the
condition (T,). Nevertheless, its conclusion ceases to hold if we allow U to be any
function which is VBG or even ACG. To see this, let @ be a non-negative continuous
function which is ACG on the interval [0, 1] and for which G()=0 and G~ (t)<<—1
at any point ¢ of a perfect set F of positive measure (for the construction of such
a function cf. Chap. VII, § 5, p. 224). Let us choose U(t)=t+G(t) and F(t)=t. We
shall then have at every point ¢ of B, U(t)=t, UT(t)=1 and U (t)<<0< T (1),
so that O<FJ(t)<Fj(t)<1, while Fj()=—co and Fp(t)=-+co. Nevertheless
|U[E]|=|E|>0. (This example is due to Ward.)

x§ 6. The Banach conditions (T,) and (T,). A finite func-
tion of a real variable F is said to fulfil the condition (T,) on an
interval I if almost every one of its values is assumed at most
a finite number of times on I. A finite function F is said to fulfil the
condition (T,) on an interval I if almost every one of its values
is assumed at most an enumerable infinity of times on I.

These two conditions were formulated by S. Banach [6]. We shall begin
by studying the condition (T,) and we shall establish a differential property which
is equivalent to this condition in the case when F is continuous (vide below
Theorem 6.2). Another equivalent condition, due to Nina Bary, will be estab-
lished in § 8 (Theorem 8.3).

(6.1) Lemma. Suppose that F is a continuous function and that E
is a set at no point of which the function F has o derivative (finite
or infinite). Suppose further that each point x of E vs an isolated
point of the set ]:][F(t)-—-F(w)]. Then A{B(F;E)}=0, and conse-

quently |E|=|F[E] = 0.
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Proof. For each xe¢FE there exists a neighbourhood I such
that, when tel, the difference F(t) —F(x) remains of constant sign
as long as ¢ remains on the same side of #; this difference then changes
sign as ¢t passes from one side of x to the other, exeept in the
case in which the function F assumes a strict maximum or mini-
mum at . Therefore, if we denote by FE, the set of the points at
which the function assumes a strict maximum or minimum, we
see at once that the four Dini derivates of F have the same sign
at any point & of ¥ —FE,. In other words, since, by hypothesis, the
function F has no finite or infinite derivative at any point of E,
we shall have at each point z of E—F, either +co>F(r)>=0 or
else —oo<F(z)<0. Hence, by Theorem 4.2, A{B(F;E—E,)}=0,
and, since the set E, is at most enumecrable (c¢f. Theorem 1.1), it
follows that A{B(F;E)}=0.

(6.2) Theorem. In order that a function F which is continuous
on an interval I, fulfil the condition (T,) on this interval, it is neces-
sary and sufficient that the set of the values assumed by I af the points
at which the function has no derivative (finite or infinite) be of meas-
ure zero.

Proof. Denoting by Y the set of the values assumed an in-
finity of times by the function F on I, and denoting by E the set
of the points of I at which F has no derivative, we have to prove
that the relations |¥Y|=0 and |F[E]=0 are equivalent.

1° |Y|=0 implies |F[E]=0. Let X be the set of the points
2el such that F(x)eY. Then F[X]=Y, whence |F[X]=0.

On the other hand, for each x,¢ F —.X, the set of the points «
such that F(x)=F(»,), is finite, and consequently an isolated set.
It follows from Lemma 6.1 that |[F[E—X] =0, and hence finally
that |F[B]|<|FIX]+|F[E—X]=0.

20 |F[E]|=0 implies |Y|=0. Let H denote the set of the
points # at which F’'(z)=0. By Theorem 4.5, we have |F[H]=0.

Now let y, be any point of ¥ —F[E], and let E, denote the
set of the points # at which F(wx)==y, The set F, being infinite and
closed, let z, be a point of accumulation of E,. Since the function F
has a derivative at each point of K, we find that F'(x,)=0; thus
xge H and therefore y,e F[H]. It follows that Y —F[E]JC F[H],
and hence that |Y —F[E]=0. Thus |F[E]=0 implies [Y|=0
and the proof is complete.
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(6.3) Theorem. 1° A continuous function which is VBG, (in par-
ticular, ome of bounded variation) on an interval I, necessarily fulfils
the condition (T,) on I.

20 4 continuous funetion which is VBG on an interval I neces-
sarily fulfils the condition (T,) on I.

Proof. On acecount of Theorem 7.2, Chap. VIL, the first part
of the theorem is an immediate corollary of Theorem 6.2. To
establish 29, let us suppose that F' is continuous and VBG on an in-
terval I. The interval I is then expressible as the sum of a sequence
{E,} of closed sets on each of which the function F is VB. We may
clearly suppose that each E, contains the end-points of the interval 1.
Let us denote, for each positive integer n, by F,, the function whieh
is equal to F on K, and which is linear on the intervals contiguous
to E,. The functions F, are plainly of bounded variation on' I, and
therefore, by 1°, they fulfil the condition (T,). It follows at once
that the function F fulfils the condition (T,) on I.

In the part of Theorem 6.3(1°) that applies to functions which are VBGy,
the continuity hypothesis for the function F is not a superfluous one (thus, the
function F(x)=sin(1/z) for #+ 0 and F(0)=0 is VBG, and does not fulfil the condi-
tion (T,) on [0, 1]). This hypothesis may however be replaced by a weaker one,
which consists in supposing that the function F has no points of discontinuity
other than of the first kind (i.e. that, at each point », both the unilateral limits
F(x+) and F(x—) exist). In particular, functions of bounded variation, whether
continuous or not, all fulfil the condition (T,) (and from this it follows easily that
the continuity hypothesis may be removed altogether from the second part (2%
of the theorem).

Tor functions of bounded variation, the condition (T;) may also be deduced
from the following general property of plane sets, established by W. Gross [1]
(ef. J. Gillis [1]): If B is a plane set and B, denotes the set of the values of v such that
the line y=7 contains at least n distinet points of the set E, then A(Ey=n|E,|.

In connection with part 2° of Theorem 6.3, it may be noted further that
functions which are VBG, or even ACG, need not fulfil the condition (T,). An
example is furnished by the function U considered in § 5, p. 277. The latter is also,
as will follow from results to be established in § 7 (cf. in particular, Theorem 7.4),
an example of a continuous function which is ACG, and consequently fulfils the
condition (N), without fulfilling the condition (S) of Banach.

For continuous functions of bounded variation, the condition
(T,) is also a consequence of the following theorem of S. Banach [5]
(ef. also N. Bary [3, p. 631]), which contains at the same time an
important criterion for a continuous function to be of bounded
variation: '
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(6.4) Theorem. Let F be a continuous function on an interval
Iy=[a,b] and let s(y) denote for each y the number (finite or infinite)
of the points of I, at which F assumes the value Y. Then the function
$(y) is measurable (B) and we have

+oo
(6.5) [ 3) dy="W (F;1,).

Proof.Foreach positiveinteger n,let us put I =[a,a - (b—a)/2"]
and Ip'=(a+(k—1)(b—a)/2",a+k(b—a)/2"], when k=2,3,...,2"
This defines a subdivision 3™ of the interval I o into 2" subintervals,
of which the first is closed and the others are half-open on the
left. For k=1,2,...,2", let si” denote the characteristic function of

211
the set F[I{"], and let s"(y)=Ys{(y).
k=1

We see at once that the functions s®(y) constitute a non-
decreasing sequence which converges at each point y to s(y). Hence,
the functions s™(y) being clearly measurable (B), so is also the func-
tion s(y). +oo

On the other hand, [s{’(y)dy=|F[I{")=0(F;I). Therefore,

denoting by W the sum of the oscillations of the function ¥ on the
—+oo

intervals of the subdivision 3, we obtain f s"(y)=W™, and the
relation (6.5) follows by making n — oco. N
(6.6) Theorem. If F(x) is a continuous function which fulfils the
condition (T,) on an interval I, the set D of the points at which the
derivative F'(x) (finite or infinite) exists, is non-enumerably infinite.
Moreover, if we write
P=TE[veD; F'(x)>0] and N=E[zeD; F'(x)<0],

then, for each interval I=[a,b]CI,, we have

(6.7) — [F[N<F (b) —F (a)<|F[P].
Proof. We may, plainly, suppose that
(6.8) F(a)<F(b),

since the other case may be discussed by changing the sign of the
funetion F.

Let Y Dbe the set of those values of F on I which are assumed
by the function F at most an enumerable number of times on I.
Denoting, for each y, by E, the set of the points xzeI such that
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F(x)=v, we shall show that with each point y ¢ Y we can associate
a point x,e E,, in such a manner that (i) F(z,)>0 and (ii) z, is
an isolated point of the set F,.

For this purpose, we remark first that if the set E, reducecs
to a single point, the latter may be chosen for our x,. For, in that
case, the condition (ii) is elearly fulfilled, while the condition (i)
holds on account of the hypothesis (6.8).

Let us therefore consider the other case, in which the set E,
contains more than one point. Then, since the function F is con-
tinuous by hypothesis and yeY, the set E, is closed, and at
most enumerable. This set, therefore, contains a pair of isolated
points a,8 between which it has no further points. (This is obvious,
if the set E, is finite. If E, is infinite, its derived set (cf. Chap. 1T,
p. 40) is itself closed, non-empty, and at most enumerable; the
latter, therefore, contains an isolated point x, Thus near x, there
are only isolated points of E,. It will, therefore, suffice to choose,
among the latter, any two consecutive points as our points ¢ and 8.)
Consequently, at one at least of the points a and g, the upper deri-
vate of F'(x) is non-negative. We choose this point as our z,. We
then see at once that the conditions (i) and (ii) are fulfilled.

This being established, let X denote the set of all the points
xy which are thus associated with the points yeY. It follows
from the conditions (i) and (ii) and from Lemma 6.1, that
|F[X —P]|=|F[X—D]|=0, and so, by definition of the set X,
that |Y|=|F[X]|=|F[X-P]|<|F[P]. Since the condition (T,) im-
plies that |F[I]|=|Y|, we obtain, in view of (6.8), the inequality
 — |FINJ<KOLF (b)) —F(a)K|F[I]| < |F[P]], i.e. the inequality (6.7).

Finally, since this relation holds for every subinterval [a,b]
of I,, we see that, unless the function F is a constant, one at least
of the sets F[N] and E[P]is of positive measure. The set D=N-+ P
is thus non-enumerably infinite, and this completes the proof.

(6.9) Theorem. Let F be a continuous function which fulfils the
condition (T,) and let g be a finite summable function. Suppose further
that F'(x)<g(x) at each point x al which the derivative F'(x) exists,
except perhaps those of an enumerable set or, more generally, those of
a set B such that |F[E]=0. Then the function F is of bounded vari-
ation and, for each interval [a,b], we have

b
(6.10) F(b)—F(a)< [F'(x)da.

a



282 (HAPTER IX. Derivates of funections of one or two real variables.

Proof. Let P be the set of the points x# of [a,b] at which the
derivative F'(x) exists and is non-negative. Then, since at each point
x e P—F we have 0 F'(x)<g ()<< H 00, it follows from Theorem 6.5,

Chap. VIL, that |F[P—E]|< /F(x dr < / |g(@)|de. On the other
hand, by hypothesm, |F[E]lm0 Hence, on rLccount; of Theorem 6.6,
F(b)—F(a)< /‘|g )|dz for each interval [a,b], and, in conse-

a
quence, F' is a function of bounded variation whose function of
singularities is monotone non-increasing. The inequality (6.10) fol-
lows at once.

In view of Theorem 6.3(2°), we may apply Theorem 6.9, in particular,
to continuous functions F which are VBG. We also observe that Theorem 6.9,
when F is of bounded variation, may be deduced from de la Vallée Poussin’s
Decomposition Theerem (Chap.IV, §9).

Theorem 6.9 may be generalized further, by replacing the condition that
the function ¢ is summable, by the condition that the latter is 2,.integrable
(the function I then shows itself to be VBG, ). We thus obtain a proposition similar
to Theorem 7.3, Chap. VI. The proof of Theorem 6.9 in this generalized form is,
however, more complicated.

x§ 7. Three theorems of Banach. We have repeatedly
emphasized the importance of Lusin’s condition (N)in the theory
of the Denjoy integrals. We shall show in this §, that every con-
tinuous function which fulfils the condition (N), also fulfils the con-
dition (T,). This result due to S. Banach [6] (cf. also N. Bary
[3, p. 195]) renders Theorems 6.6 and 6.9 applicable to functions
which fulfil the condition (N).

We shall also study another condition, introduced by
S.Banach[6] and termed condition (S). We say that a finite function
F fulfils the condition (S) on an interval [I,, if to each number >0
there corresponds an #»>0 such that, for each measurable set
ECI,, the inequality |E|<# implies |[F[E]|<e. (This condition is
essentially more restrictive than the condition (N); cf. the remarks,
p. 279, also G. Fichtenholz [4].)

(7.1) Lemma. Given a function F which is continuous on an in-
terval I, every closed set ECI contains a measurable set A on which
the function F assumes each value y e F[E]| exactly once.
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Proof. With each y e F[E] we associate the lower bound w,
of the set of the points # of E at which F(x)=y, and we denote
by A the set of all the points z, which correspond in this way to
the values y ¢ F[E]. Since the set F is closed, we plainly have ACE
and F assumes on 4 each of the values y ¢ F[E] exactly once.

In order to establish the measurability of A, let us denote,
for each positive integer n, by E,, the set of the points « ¢ E such
that E contains at least one point ¢ which is subject to the conditions

F()=F(z) and ¢ —1t>1/n. We have A:E—ZEH, where F is closed

by hypothesis, and where each FE, is closed by continuity of F.
The set A is thus measurable and this completes the proof.

(7.2) Lemma, Let F be o continuous function which fulfils the con-
dition (N) on an interval I. Then

(i) every measurable set ECI contains, for each >0, a meas-
urable subset Q, such that |F[E]— F[Q]|<<e, and on which the func-
tion I assumes each of its values at most once;

(ii) every measurable set ECI contains a measurable subset R,
such that |F[E]—F[R]|=0, and on which the function F assumes
each of its values at most an enumerable infinity of times.

Proof. re (i). As a measurable set, K is the sum of a set H of
measure zero and an ascending sequence of closed sets {E,}. Since
the function F fulfils the condition (N), we have |[F[H]|=0, and
hence, the sets F[FE,] being measurable, there exists a positive in-
teger m, such that |F[E]—F[E,]|<e. Now, by Lemma 7.1, there
exists a closed set QCH, such that each value yeF[E,] is as-
sumed exactly once by F on . This set @ plainly fulfils the condi-
tions stated.

re (ii). In view of (i), there exists for each positive integer n
a measurable set Q,CE, such that |F[E]—F[Q.}|<1/n, and on which
the function F assumes each of its values at most once. Therefore,
writing R=2'Q,, we see immediately that |F[E]—F[R] =0 and

that on R the function F assumes each of its values at most an
enumerable infinity of times. This completes the proof.

We shall establish in this § three theorems due to Banach on
functions which fulfil the conditions (N) or (8). The first of these
theorems, which concerns functions fulfilling the condition (N),
is as follows:
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(7.3) Theorem. Any continuous function F which fulfils the condition
(N) on an interval I, necessarily fulfils also the condition (T,) on I.

Proof. Let us denote, for each measurable set ECI, by Rg
the class of all measurable sets RCE which are subject to the
following two conditions: (i) |[F[E]—F[R]|=0, and (ii) each
value yeF[E] is assumed by the function F at most enumerably
often on R. By Lemma 7.2, the class Ry is non-empty, however we
choose the measurable set FCI. We shall denote, for any such set E,
by u, the upper bound of the measures of the sets (Rg).

Consider, in particular, a sequence {H,} of sets (R;) such that
lim |H,|=p, Let H=2'H, and let U be a set (R, y). We verify

atljl once that |U|=0, nWhence on account of the condition (N),
|F[U]|= 0. Therefore [F[I—H]|=|F[U]|=0, so that almost every
value y ¢ F[I] is assumed by F only on the set H, and therefore at
most enumerably often.

The second of the theorems of Banach concerns functions
which fulfil the condition (S).

(7.4) Theorem. In order that a continuous function F be subject
to the condition (S) on an interval I, it is necessary and sufficient
that F' be subject on I to both the conditions (N) and (T,).

Proof. 19 Suppose that the function F fulfils the
condition (S) on I. Since this condition clearly implies the con-
dition (N), we need only prove that F fulfils the condition (T,).

Suppose then, if possible, that the set of the values assumed
infinitely often on I by the funection F, is of positive outer measure.
Since this set is measurable by Theorem 6.4, it contains a closed
subset Y of positive measure. Let X denote the set of all the points
x eI such that F(x)e Y. The set X, plainly, is also closed.

We shall now define by induction a sequence of measurable
sets |X;} subject to the following conditions: (i) X;-X;=0 whenever
i=j, (i) |[F[X]=|Y|/2 for i=1,2,...,, and (iii) the function F
assumes each of its values at most once on each set X,

For this purpose, suppose defined the first & sets X,-k for which
the conditions (i), (ii) and (iii) are satisfied. Let E,=1I-—>X, Since,

k i=1

on }'X, the function F assumes each of its values at most a finite
i=1
number of times, it follows that each value ye Y is necessarily

assumed on the set E,. By Lemma 7.2, this set therefore contains
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measurable subset X,i; such that |F[Xx]=|F[E:]/2>|Y]|/2 and
that each value is assumed by F at most once on X,i;. The sets
X1, Xs,..., Xp1 clearly fulfil the conditions (i), (ii) and (iii).

The sequence {X;} being thus defined, it follows from (i) that
lim |X;|=0, and hence, remembering that the function F fulfils

the condition (S), we have also lim |F[X]|=0. But this clearly

contradicts (ii), since |Y|>0.

20 Suppose now that the funetion F fulfils the conditions (N)
and (T,), but not the condition (8). We could then determine a po-
sitive number ¢ and a sequence of sets {F,) in I so that for k=1, 2,..,,

(7.5) || < 1725, and (7.6) |F[E] > o.
Let us write E = lim sup E; and A4 = lim sup F[E,]. We easily see
k k

that, if y € A, then either y ¢ F{E], or else the value y is assumed
by F on I infinitely often (in fact there exists an increasing sequence
of positive integers {k; and a sequence of points {x;, every two
of which are distinct, such that z; ¢ Eki and F(x;) =y for i=1,2,...).

Now, on account of (7.5), we have |E|=0, and therefore
also |F{E]=0. On the other hand, by (7.6), |A|>¢>0. Thus
|A —F[E]|> ¢, and since, as we have just seen, each value
y e A— F[E] is assumed by F infinitely often on I, this contradicts
the hypothesis that the function F fulfils the condition (T,).

We shall establish next a “differentiability theorem” for
the functions which fulfil the condition (N):

(7.7) Theorem. In order that a continuous function F be absolutely
continuous on an interval L, it is nmecessary and sufficient that the
function F fulfil simultaneously the condition (N) and the condition

(7.8) [F' (@) dw < + oo,

j)
where P denotes the set of the points at which the function F has
a finite non-negative derivative.

Proof. Since the conditions of the theorem are obviously
necessary (cf. Theorem6.7, Chap.VIL), let us suppose that the
function F fulfils the condition (N) and the inequality (7.8). Let g
be the function equal to F'(xz) for x ¢ P and to 0 elsewhere. Then,
if E denotes the set of the points « at which F'(x)=+ oo, we shall
have F'(x) <g(x) at every point z of I,—FE at which the derivative
F'(x) exists.
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On the other hand, since |E[=0 (cf. Theorem 4.4, or
Chap. VII, §10, p.236), we have |F[E]|=0, and, since the funec-
tion F fulfils, by Theorem 7.3, the condition (T,), it follows from
Theorem 6.9 that F is of bounded variation on I, This completes
the proof, since, by Theorem 6.7, Chap.VII, every continuous
function of bounded variation, which fulfils the condition (N) is
absolutely continuous.

Theorem 7.7 (in a slightly less general form) was first proved by N. Bary
[2; 3, p. 199]. It shows in particular that every continuous function F(x), which is
subject to the condition (N) and whose derivative is non-negative at almost every point
where F(x) is derivable, is monotone non-decreasing. This proposition contains an
essential generalization of Theorem 6.2, Chap. VII.

Theorem 7.7 may, moreover, be generalized still further. If a continuous
Junction F(x) fulfils the condition (N) and if the function g(x), equal to F’(x) wherever
F(x) is derivable and to O elsewhere, has a major function (in the Perron sense),
then the function F(x) is ACGy <. 6. an indefinite -integral.

For the part played by the conditions (N), (T,) and (T,) in the theory of
Denjoy integrals, cf. also J. Ridder [8].

From Theorem 7.7 we obtain the third theorem of Banach:

(7.9) Theorem. Any function which is continuous and subject to the
condition (N) on an interval, is derivable at every point of a set of
positive measure. '

* § 8. Superpositions of absolutely continuous functions.
Suppose given a bounded funection G on an interval [a,5], and a func-
tion H defined on the interval [a, ] where a and g denote respectively
the lower and the upper bound of G on [a,b]. We call superposition
of the functions @ and H on [a,b], the function H(G(z)). The func-
tion G is termed inner fumction and the funetion H outer function
of this superposition.

If a function F is continuous and increasing on an interval
[a,b], the continuous increasing function ¢ defined on the interval
[F(a), F(b)] so as to satisfy the identity G (F(x))=x on [a,b], will,
as usual, be termed inverse function of F and denoted by F .

It has long been known that the superposition of two abso-
lutely continuous funetions is not, in general, an absolutely con-
tinuous function. By means of the conditions discussed in the
preceding §§, particularly the condition (S), Nina Bary and D. Men-
choff succeeded in characterizing completely the class of functions
expressible as superpositions of absolutely continuous functions.
(Ct. also G. Fichtenholz [3].)
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(8.1) Theorem. Any function F which is continuous and subject
to the condition (T;) on an interval [a,b] is expressible on this interval
as o swperposition of two continuous functions, of which the inner
function is of bounded variation and the outer function is imcreasing
and absolutely continuous.

If, further, the function F fulfils the condition (N), the inner
function of this superposition is necessarily absolutely continuous also.

Proof. Let a and g denote respectively the lower and upper
bounds of F on [a,b], and let sr(y) denote, for each y, the number
(finite or infinite) of the points of the interval [a,b] at which F
assumes the value y. Since, by hypothesis, the function ¥ is contin-
uous and subject to the condition (T,), we shall have 0<<1/sp(y) <1
for almost all the values y of the interval [a,5]. Let us denote by U
an indefinite integral of the function which is equal to 1/sx(y) on
[a,8] and to 1 elsewhere. We now write G(x)=U[F(x)] for x ¢ [a,b].
We thus have F(x)=U "1[G(w)], and in order to establish the first
part of the theorem, it is enough to show that (i) the function U’ !
is absolutely continuous and (ii) the function @ is of bounded variation.

Suppose, if possible, that the function U ' (which is continuous
and increasing together with U) is not absolutely continuous. Then
(c¢f. Theorem 6.7, Chap. VIL), there exists a set £ of measure zero
such that |U'[E]|>0. Writing Q= U '[E], we thus have

(8.2) 19| >0 and |UQ1] = o.

We may, plainly, suppose that the set K, and therefore the
set @, are sets (®;). Thus (cf. Theorem13.3, Chap.III)

UTQ) = [ U () dy,
Q

which renders the relations (8.2) contradictory, since almost every-
where U'(y)=1/sr(y) >0 for yela,f] and U'(y)=1 outside the in-
terval [a, f].

In order to establish (ii), we shall make use of the eriterion
of Theorem 6.4. Denote for each z by sg(z) the number of the points
of the interval [a,b] at which the function G assumes the value z.
Since the function U is increasing, we clearly have sq(U(y))=sr(y)
for each y, and sg(2) =0 for each z outside the interval [U(a), U(p)].
Hence, remembering that the function U is absolutely continuous,
we obtain (c¢f. Theorem 15.1, Chap.I)
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+oo u® g
[sa(2)de= [ s6(2) dz= [s6(U(y)) AU (y) =

U ) «
g g
=[sr@W)U' (y)dy = [dy = p—a

which shows, by Theorem 6.4, that the function @ is of bounded
variation.

Finally, if the given function F fulfils the condition (N), so
does the function G(x)==U(F(x)), and the latter, since it is of
bounded variation, is absolutely continuous by Theorem 6.7, Chap.VII.
This completes the proof.

(8.3) Theorem. 1° In order that a continuous function F be expres-
sible as a superposition of two continuous functions of which the inner
function is of bounded variation and the outer function is absolutely
continuous, it is necessary and sufficient that F fulfil the condition (T,).

20 I'm order that a continuous function be representable as a super-
position of two absolutely continuous functions, it is necessary and
sufficient that the function fulfil both the conditions (T,) and (N), or
what amounts to the same, the condition (S).

Proof. Since it follows at once from Theorem 8.1 that these
conditions are sufficient, we need only prove them necessary.

Let therefore F(x)=H(G(x)) on an interval [a,b], where @
is a function of bounded variation and H an absolutely continuous
function. Let a and # be respectively the lower and the upper bound
of G on [a,b]. Let Eyz and Ey denote the sets of the values which the
functions ¢ and H assume infinitely often on the intervals [a,b]
and [a, ], respectively. Since the functions G and H fulfil the con-
dition (T,), we have |Eg¢|=|Ex|=0, and since the function H is,
moreover, absolutely continuous, we have also |H[Es]|=0. Now
we see at once that each value which is assumed infinitely often
on [a,b] by the function F, belongs either to Ey, or to H[E4]. The
set of these values is thus of measure zero, and the function F ful-
fils the condition (T,).

If, further, the function @ is absolutely continuous (as well
as H), then the function F is a supevposition of two functions which
fulfil the condition (N), and, thei fore, itself fulfils this condition.
This completes the proof.
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Theorems 8.1 and 8.3 are due to Nina Bary [1; 3, pp. 208, 633]
(ef. also 8. Banach and 8. Saks [1]). Part 2° of Theorem 8.3 was
established a little earlier in a note of N. Bary and D. Menchoff [1]
(cf. also N. Bary [3, p. 203]) in a form analogous to Theorem 6.2. Thus:

(8.4) Theorem. In order that a function F which is continuous on
an interval [a,b] be on this interval a superposition of two absolutely
continuous functions, it is necessary and sufficient that the set of the
values assumed by the function F at the poinls of [a,b] at which F is
not derivable, be of measure zevo.

Proof. Let @, be the set of the points of [a,b] at which F
is not derivable. Suppose ftirst that

1° P(x)=H{G(x))on[a,b], where H and G are absolutely
continuous functions. Let @, and @, be respectively the sets
of the points at which the functions G and H are not derivable.
We have |Q.|=[Q,| =0 and, consequently, |F[Q,]|=|H[Q,,]|=0.
Now, we see at once that if the function F is not derivable at a point «,
then either z e @, or G(x)e@,. Therefore F[Q,|CF[Q,]+ H[Q,]
and hence, |F[Q,]|=0.

Conversely, suppose that

20 |F[Q,]] =0. By Theorem 6.2, the function then fulfils the
condition (T,). To show that F also fulfils the condition (N), con-
sider any set of measure zero, K say, in [a,b]. Since the function F
is derivable at each point of E—@,, we have, by Theorem 6.5,
Chap. VII, |F[E—Q,]|=0, and since, by hypothesis, [F[Q,]|=0,
we obtain |[F[E]|=0. The function F thus fulfils both the conditions
(T,) and (N), and is, therefore, by Theorem 8.3 (29), a4 superposition
of two absolutely continuous functions.

It follows from Theorem 8.3 (2°) that a superposition of any finite number
of absolutely continuous functions is expressible as a superposition of two absolutely
continuous functions. For the superposition of any finite number of functions
which fulfil the condition (8), itself fulfils this condition.

The results exposed in this § have been the starting point of the important
researches of Nina Bary [3] on the representation of continuous funections
by means of superpositions of absolutely continuous functions. Let us cite two of
her fundamental theorems: 1° Lvery continuous function is the sum of three super-
positions of absolutely continuous functions, and there exist continuous functions
which cannot be expressed as the sum of two such superpositions. 2° Every continuous
function which fulfils the condition (N)—or, more generally, every continuous function
which is derivable at every point of a set which has positive measure in each interval —
is the sum of two superpositions of absolutely continuous functions, and there exis
continuwous functions which fulfil the condition (N), but are not expressible as one
superposition of absolutely contivuous functions (the function U(x) discussed ahove
in §6, p. 279, is an example of xuch a function).

For further researches, »ide N.Bary [4] and J. Todd [1; 2.

8. Saks, Theory of the Integral. 19
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§ 9. The condition (D). We shall now establish, for the
extreme approximate derivates, a theorem, analogous to Theo-
rem 4.6, but whose proof depends on a different idea. It is con-
venient to formulate it, from the beginning, in a slightly more ge-
neral manner.

Given two positive numbers N and ¢, we shall say that a func-
tion F fulfils at a point , the condition (DY .), if there exist positive
numbers h, as small as we please, such that the difference between the
outer measure of the set B[F(x) —F(x,) = N - (x—xy); 0o~z << h]

and that of the set E[F(r)—F(2))=—N-(x—x,); 0<x— 2y h]

exceeds the number he in absolute value. By symmetry, merely
replacing F(x)— I'(x,) and o—x, by F(x,)—F () and x,—a respec-
tively, we define the condition (Dy,).

If, for a point x,, there exists a pair of finite positive numbers N
and e such that the function F fulfils at this point the condition (D),
or the condition (Dy,.), we say that F fulfils at o, the condition (D).

For measurable functions the condition (D) may be formulated
more simply: a measurable function F fulfils at a point x4 the con-
dition (D), if there exists a finite positive number N such that x,
is not a point of dispersion for the set of the points x at which
| P (@)—F (), <N -lo— ).

(9.1) Theorem. If any one of the four approximate extreme derivates
of a function I 48 finite at a point x,, then the function fulfils the con-
dition (D) at this point.

Proof. Suppose, to fix the ideas, that |[Fi(x,)|<--oco and write
N=|Fi(xo)+1. Let E, and E, be the sets of the points # which are
situated on the right of the point x, and which fulfil respectively the
inequalities F(x)— F(xy)>N-(x—a,) and F(z)— F(x,)>=—N - (z—x,).
It follows at once from the definitions of approximate derivates
(Chap. VII, § 3) that x, is a point of dispersion for the set E,, while
E, has at x, a positive upper outer density. Denoting the latter
by J, we see at once that the function F fulfils at z, the condition

(DL) whatever be the positive number e<Cé.

(9.2) Lemma. Let N and ¢ be finite positive numbers and suppose
that a finite function F fulfils the condition (DX.) at each point of
a set E. Then |F[E]<(2N/e¢)-|El.
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~

Proof. We shall first show that for every interval I=[a,b],

(9.3) |I|>(¢/2N)-|F[E-I]|.
For this purpose, we write, for every v,
(9.4) H(y)=|E[F (r)>y; zel]|.

The function H thus defined is non-increasing and bounded on the
whole straight line (—oo, + o0); we have, in fact, for every y,

(9.5) 0<H (y)<|I|.

Given an arbitrary point y, of F[E-I], which is distinct from
F(b) and at which the function H is derivable, let us consider a point
woe B-1 such that F(x,)=y,. Plainly x,==b. Let us write, for brevity,

A(hk)=E[F(2) 2yo+ k-(1—x,); 0<<— 2y <h]

and
B(h, k)= B[ F(x)=y,+kh; 0<@—x0<h].

For every subinterval [xz,, 2,4+ k] of I, we then have the re-
lation B(h,N)CA(RN)CA{hy—N)C B(h,—N), whence it follows
easily, on account of (9.4), that

H(yo—Nh)—H (yo+Nh)=|B(hy—N)|—|B(h, N)|>|A(hy—N)|—|A(h, N)|.

Now, since F fulfils, by hypothesis, the condition (D%,) at z,, there
exist positive values h, as small as we please, such that

|A(h7 _N)"|A(]7’7N)| =he,

and therefore H (y,— Nh)— H (y,+ Nh)>=he. Hence, H'(y,) << —¢/2N
for every point y,==F(b) of F[E.I] at which the function H is
derivable. Therefore, denoting, for each positive integer n, by @,
the part of the set F[E-I] contained in the interval [—n, n], we
find, on account of (9.5), |I|>|H (n)— H(—n)|>¢&-|Q.|/2N, from which
the inequality (9.3) follows by making n—oo.

This being established, let % be a positive number and {1}
a sequence of intervals such that

(9.6) EC ;1,, and |E| + n>%‘|1,,|.

Since (9.3) holds for each interval I, it follows from (9.6) that

|E|+n = (¢/2N)- Y |F[E-I]| > (¢/2N)-|F[E]|, whence, remembering
k

that # is an arbitrary positive number, we see that |[F[ E)|<(2N/¢)-|El.
19*
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(9.7) Theorem. If at each point of a set E, a finite function F ful-
fils the condition (D) (and so, in particular, if at each point of E the
function F has one of its extreme approximate derivates finite),
then the function F fulfils the condition (N) on K.

Proof. Let H be any subset of £ of measure zero, and let H,
denote, for each positive integer n, the set of the points z of H at
which the function F fulfils the condition (D,t tn) or (D 1), We
clearly have H=) H,, and since, by Lemmx 9.2, | F[H,]|<4n2-|H,|=0,

we obtain |F[H]=0.

Theorem 9.7 enables us to complete Theorems 10.5 and 10.14
of Chap. VII, as follows:

(9.8) Theorem. 1° Every finite function I which 18 continuous on
a closed set E and which has at each point of E, except perhaps those
of an enumerable subset, either two finite Dini dev wates on the same
side, or one finite extreme bilateral derivate, is ACG, on K.

20 Every finite function F which ts conlinuwous on a closed set B
and which has at each point of E, except perhaps those of an enumerable
subset, either one finite Dini derivate, or one finite extreme approximate
bilateral derivate, or finally two finite extreme approximate unilateral
derivates on the same side, is ACG on E

Proof. By Theorems 10.1, 10.5, 10.8 and 10.14 of Chap. VH,
the function # is VBG, on K in case 1° and VBG on F in case 20
On the other hand, by Theorems 4.6 and 9.7, this function fulfils,
in both cases, the condition (N) on K. Hence, by Theorems 6.8
and 8.8 of Chap. VII, the function is ACG, on E in case 1°, and
ACG on FK in case 29

In the most important case in which' the closed set F is an
interval, Theorem 9.8 may further be stated in terms of Denjoy
integrals. For this purpose, let us begin by noting the following
proposition (c¢f. A. 8. Besicovitch [2], and J. C. Burkill and
U. 8. Haslam-Jones [1]):

(9.9) Theorem. If a finite function F is measurable on a set E and
has at each point of this set one of its Dini derivates finite, then this
derivate is, at almost all points of E, an approvimate derivative of F.

Proof. It follows from Theorem 10.8, Chap. VII, that the
function F is V3G on E, and so, approximately derivable at almost
all the points of E. Let us denote by E, the set of the points of K

-
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at which one at least of the opposite Dini derivates F™ and F~ is
finite. Plainly, F(2)<Fa,(#)<F ' (x) at each point x at which
the approximate derivative Fy(r) exists, and therefore by
Theorem 4.1, F (z)=F " (2)=Fyy(x) at almost all points
of FE,. Similarly, we show that E+(m):F_(w)=F;p(x) at almost all
the points z of E at which one of the derivates F' and F~ is finite.
This completes the proof.

(9.10) Theorem. 1° If f is a finite function which, at each point of
an interval I,, except those of an enumerable set, is equal to an extreme
bilateral derivate of a continuous function F, then the function | is 2,-in-
tegrable on I, and the function F is an indefinite 9,-integral of f.

20 If f is o finite function which, at each point of an interval I,
except those of an enumerable set, is equal either to a Dini derivate, or to
an extreme approximate bilateral derivate of a continuous function F,
then the function f is D-integrable on I, and the function F is an in-
definite 2-integral of f.

Proof. In view of Theorem 9.8, the function F is ACG, in
case 19 and ACG in case 2°. Moreover, at almost all the points
of E, we have F'(x)=f(x) in case 1° and by Theorem 9.9, Fy,(x)=f(x)
in cagse 29. This proves the theorem.

Although Theorem 9.8 presents a formal analogy with Theorems 10.5 and
10.14 of Chap. VII, there is an essential difference between the result of this § and
those of §10, Chap. VII. We see, in the first place, that the criteria of Theorems
10.5 and 10.14 of Chap. VII concern functions which are given on quite arbitrary
sets, whereas those of Theorem 9.8 are established only for closed sets. In the
second place, if the derivates of a quite arbitrary function satisty on a set £ the
conditions of Theorem 10.5, or of Theorem 10.14, of Chap. VII, then the set ¥ can,
by these theorems, be decomposed into a sequence of sets on which the function
is absolutely continuous. On the contrary, Theorem 9.8 of this § does not enable
us to draw any concludion as to a similar decomposition of the set B (even when
this set is an interval), unless the function considered is continuous.

Two examples will now be given to show that this feature of
Theorem 9.8, [which represents a restriction as compared with the results of § 10,
Chap. VII, is essential for the validity of the theorem.

(i) Consider the function 1"(w):2[2";v}/5”, where [2"x] denotes, as usual,

n
the largest integer not exceeding 2" x. This funetion is increasing. Its lower right-
hand derivate is finite everywhere, and even, as we easily see, vanishes identically.
- Nevertheless, there is no decomposition of the interval J,—[0, 1] into a sequence
of sets on which F' is absolutely continuous, or even only uniformly continuous.
In fact, no such decomposition can exist for a monotone function ¥ whose points
of discontinuity form a set everywhere dense in .J,.
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For, if such a decomposition {E,, E,, ..., E,,...} existed, one at least of the
sets &, would, by Baire’s Theorem (Chap. I1.§9), be everywhere dense in an interval
ICJ,. This is plainly impossible since the function F, monotone by hypothesis,
is uniformly continuous on each set E, and has points of discontinuity in the in-
terior of I.

(ii) Let us now consider an example of a continuous function
F(x), inereasing on the interval J,=[0,1], and which has its lower
right-hand derivate zero at every point of a set K, without being
ACG on E.

For this purpose, let us agree to call, for brevity, function attached to
an interval I=[a, b], any function H(x), which is continuous and non-decreasing
on I, and which fulfils the conditions:

(a) H(x) is constant on each of the intervals I, of a sequence {I,} of non-
overlapping sub-intervals of I such that |I|= I 4 the length of any sub-
K

interval of I on which H(z) is constant does not exceed |I}/2;

(b) H(x)—H(a)<x—a and H(b)—H(x)<b—ux for every wmel.

Such a function is easily obtained, by slightly modifying the construction
of the function f(x), considered in Chap. III, § 13, p. 101.

This being so, we shall define by induction a sequence {F,(x)} of functions
attached to the interval J,, beginning with an arbitrary function F,(x) attached
to this interval. Given the function F, attached to J,, let {I;:'):[ag’), bk”)]}
be a sequence of the intervals of constancy of F, in the interval J, (By an
interval of constancy of a funection in J, we mean here any interval I(J,
such that the function is constant on I without being constant on any sub-
interval of J, which contains I and is distinct from I.) For each k=1,2,..,
we determine a funetion Hg')(x) attached to the interval Igf")’ and we write

2OEMGW) — A a)] jor wed, _~kZI§;')
1

F, (&)=
H HP@)— BP@P)1+ SO —HD(@)] for oel ", k=1,2, ...
1

the sum > being extended over all the values ¢ such that bg”) N
i

The sequence {F (z)} being thus defined, let

(9.11) F(x)=) F (v)/2".

The function F(x) is clearly continuous, increasing, and singular on J,.
Consider the set BE=[]) (If,?"))o, and let x, be any point of K. Then there
n k

exists a sequence {I(l:l,:}n:hl..., of intervals each of which contains x, in its
interior. Plainly, for each positive integer n, Fj(b,(z'l’l))w Fj(:vo):O if 1<n, and
F(B0)—F o) < b0 —a, if j>n. Hence, by (9.11), F ) —F (@) < (b — o) /2"
for each n, and therefore F7(xy)=0.

Nevertheless, the function F is not ACG on E. To see this, suppose, if pos-
sible, that E is the sfim of a sequence of sets E, on each of which the function
F is AC. Since the set J,—E is the sum of a sequence of non-dense closed sets,
one at least of the sets E, is everywhere dense in a sub-interval I of J,, and,
since the function F is absolutely continuous on each E,, this function would
be 0 also on the whole interval I. This is clearly impossible, for the function F
ijs singular and increasing. ‘
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§ 10. A theorem of Denjoy-Khintchine on approximate
derivates. The considerations of the preceding § will now be
completed by a theorem which establishes, for the extreme ap-
proximate derivates, relations similar to those which hold for
Dini derivates (cf. § 4). This theorem was proved independently
by A. Denjoy [6, p. 209] and by A. Khintechine [4; 5, p. 212]
(cf. also J. C. Burkill and U. S. Haslam-Jones [1; 3]).

(10.1) Theorem. If a finite function F is measurable on a set B
and if, to each point x of H, there corresponds a measurable set ¢ ()
such that (i) the lower unilateral density of Q(x) at x is positive on at
least one side of the point @ and (ii) Fou(w)<too or Fouw(w)>—oc0, then
the function F is approvimately derivable at almost all the poinis of E.

Consequently, if a finite function F 4is measurable on
a set E, then at almost every point of E either the function F
is approximately derivable, or clse Fi(z)=Fo(x)=-+oco and
Frp(w)=F ()= —o0.

Proof. In view of Lusin’s Theorem (Chap.III, §7), we may
suppose that the set E is closed and that the function F is con-
tinuous on E. To fix the ideas, consider the set A of the points x ¢ K
such that (i,) the lower right-hand density of @(x) at » is positive
and (ii;) Foe(x)<+ oo. We shall show that the function F is ap-
proximately derivable at almost all the points of 4. By symmetry,
this assertion will remain valid for each of the other three subsets
of E, defined by a similar specification of the conditions (i) and (ii)
of the theorem.

Let us denote by P the set of the points of 4 at which the
function F is not approximately derivable, and suppose, if pos-
sible, that |P|>0. For each positive integer n, let A, be the set
of the points # of E such that the inequality 0<<h<{1/n implies

(10.2) |E[F(t)—F(z)<n-(t—x); te B; o<t <z+h] >h/n.

The sets A, are closed. To see this, let us keep an index » fixed
for the moment, and let (). be a sequence of points of the
set A, converging to a point . Let h<{1/n be a non-negative number,
and, for brevity, let E;=E[F(t)—F (z)<n-(t—:); te B3 2 <t<wi+- k]

t
where i=0,1,2,.... We obtain |E{>h/n for i=1,2,..., and since,
by continuity of F on E, we have K;D lim sup E; it follows
i
(cf. Chap. I, Theorem 9.1) that |E,/>h/n, which shows that e 4.,
i.e. that A, is a closed set.
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Let us now denote, for every pair of positive integers » and k,
by A, the set of the points x of A4, such that the inequality
0<h<{1/k implies

(10.3) |Elted,; x—h<t<z]>=(1—Lin1Y)-h.
t

We observe easily that the sets 4,, and therefore the sets A,
also, cover the set A almost entirely. Hence, there exists a pair of
positive integers n, and k, such that |4, ,-P|>0. Let R denote
a portion of the set A4, ,-P such that

(10.4) |R|>0, (10.5) d(R)<1/my,  and  (10.6) &(R)<1/k,.

Writing G(x)=F (x) —(ne+1)-2, we shall show that the func-
tion ¢ is monotone non-increasing on R. Suppose therefore, if pos-
sible, that there exist two points ¢ and b in R, where a<(b, such that

(10.7) , GHa) < G(b).

Let J=[a,b]. Since the set A, is closed and the function &
continuous on A4,, the function ¢ attains, at a point ¢ of the set
Ap,J, the lower bound of its values on this set. In virtue of (10.7)
we have e<Cb. Since ced,, and since, by (10.5), 0<b—e<1/ny,
we may put n=n, r=c¢ and h=>b-—¢ in the relation (10.2). We
thus obtain

(10.8)  |[B[G(t)—G(e)<—(t—e); te B e<t <Y =>(b—e)/n,.
t

Again, since beRCA, , and since, by (10.6), 0<<b—c<<1/k,,
we may put n=mn,, x="~ and h=»b—e¢ in (10.3). This gives

(10.9) (Blted,; e<t<b] =1 —ing™")-(b—0).
t

Now the sets which oceur in the relations (10.8) and (10.9)
are both measurable; it therefore follows from these relations that
there exist, in the open interval (e,b), points feA, for which
G(t)—G(e)<—(t—e)<®. This is plainly impossible, since the
function @ attains its minimum on the set A, .-J at the point e.

The function G is thus monotone on the set R, and since it
is, moreover, measurable (indeed continuous) on the closed set
EDR, it follows that G is approximately derivable at almost all
the points of B. On the other hand, however, since RCP the
function F is approximately derivable at no point of R, and, in view
of (10.4), we arrive at a contradiction. This completes the proof.
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By a slight wodification of the proof, we may extend Theorem 10.1, in
a certain way, to functions which need not be measurable. Let us agree to under-
stand by approxzimate derivability of a finite function F at a point x,, the existence
of a set for which x, is a point of outer density and with respeet to which the
function F is derivable (if the function F is measurdble, this notion of approxi-
mate derivability clearly agrees with the definition of Chap. VIL, § 3). ‘When
approximate derivability is interpreted thus in the statement of Theorem 10.1,
this theorem remains valid without the hypothesis that the function ¥ be meas-
urable on the set E (although the hypothesis concerning the measurability of
the sets ¢ (x) remains essential).

From Theorem 10.1, we may deduce the following proposition: If, for
a finite function F, we can make correspond fo each point x of a set E, a measurable
set Q () whose lower right-hand density at x is positive, and with respect to which
the function has an infinite derivative at x, then the set E is of measure zero. This
theorem is simnilar to Theorem 4.4, but only partially generalizes the latter. It is
not actually possible to replace, in Theorem 4.4, the ordinary, by the approx-
imate, limit, without also removing the modulus sign in the expression
|F (x+ k)~ F (x)|. This rather unexpected fact was brought to light by V.Jarnik[2],
who showed that there exist continuous functions F for which the relation
l}ilm ap |F (@4 h)— F(x)|/h=-+co holds at almost all points w.

-0+

Finally, let us note that T'heorem 10.1 is frequently stated in the followiny
form:

If a finite function F is measurable on a set E, then at almost every point x
of B either (i) the function F is approwimately derivable, or else (i1) there exists a meas-
urable set R(x) whose right-hand and left-hand upper densities are both equal to
1 at @, and with respect to which the two upper unilateral derivates of F' at x are oo

and the two lower derivates -—oco.
It has been shown by A. Khintchine [4] (cf. also V. Jarnik [2]) that
there exist continuous functions for which the case (ii) holds at almost every point x.

§ 11. Approximate partial derivates of functions of
two variables. The §§ which follow will be devoted to generali-
zations of the results of §4 for functions of two real variables (their
extension to any number of variables presents, as already said,
no fresh difficulty). In this § we shall establish some subsidiary
results.

Given a plane set @ and a number #, we shall understand
by the outer linear measure of @ on the line y=mn, the measure of
the linear set 1;1[(7:,77)6@]. Similarly, we define the outer linear measure

of Q on a line x=¢&, where £ is any number. It follows from Fubini’s
Theorem in the form (8.6), Chap. IIT, that if @ is a measurable set
whose linear measure on almost all the lines y=1# (i.e. on the lines
y=n for almost all values of #) is zero, then the set ¢ is of plane
measure zero.
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A point (zy,y,) will be termed point of linear density of a plane
set @ in the direction of the x-awxis, if x, is a point of density of the
linear set E[(t,y,) ¢Q]. We define similarly the points of linear den-

4

sity of @ in the direction of the y-awis.

(11.1) Theorem. Almost all points of any measurable plane set @
are points of linear density for it both in the dwectzon of the x-awis
and in that of the y-axis.

Proof. We may clearly assume that the set @ is closed. Con-
sider, to fix the ideas, the set .D of the points of ( which are points
of density of  in the direction of the z-axis. Since the set Q—D
is of linear measure zero on each line y= 7, the proof of the relation
|Q —D|=0 reduces to showing that the set D is measurable.

In order to do this, we write, for each point (r,y) and each
pair of numbers & and b,

E(x,y; a"b):]?[(ty?/) €Q; a<t<b],

and we denote, for each pair of positive integersn and %, by @n,r the
set of the points (x,y) of @ such that the inequalities a<az<b and

b—a<1jk imply |E(2,y; a,b)|>(1—n=")-(b —a). Plainly D=[]>0Q, .
n k
We now remark that all the sets Qu,r are closed. To see this,

we keep the indices n and k fixed for the moment, and consider
an arbitrary sequence {(x, yl.)}l.:I,l_. of points of Q, which converges
to a point (24,¥,). Let @ and b denote real numbers such that a<<xy<<b
and b —a<1/k. For every sufficiently large index i, we then have
a<w;<b, and 80 |E(z,y; a,b)|=(1—n"")-(b—a). Now it is easy to
see that lim sup E(x, y; a,b)CE(x,y,; a,b); it therefore follows from
Theorem 9. 1 Chap. I, that |E(w4,y0; a,b)|>(1—n""1)-(b —a), and so,
that (.%‘O,yo EQn,k

Since the sets @, . are closed, D is a set (§os) and this com-
pletes the proof.

If F is a finite function of two variables, the extreme approx-
imate partial derivates of F(x,y) with respect to # will be denoted
by de ) Fapx, F,,, and Fap.. If these derivates are equal at a point
(z,y), their common value, i.e. the approximate partial derivative
of F with respect to w, will be denoted by Fap (2,y). Analogous
symbols will be used with respect to y. For the partial Dini deri-
vates, we shall retain the notation of Chap. V, namely F;, Il ete.
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(11.2) Theorem. If a finite function of two variables F is meas-
urable on a set Q, its extreme approxvimate partial derivates are them-
selves measurable on Q.

Proof. In view of Lusin’s Theorem (Chap. III, § 7), we may
suppose that the set @ is closed and that the function F is con-
tinuous on Q. Consider, to fix the ideas, the derivate F:;x. Let a be
any finite number and let P be the set of the points (z,y)

of ) at which F;{,x(w,y) < 2. We have to prove that the set P is
measurable.

For this purpose, let D denote the set of the points of the
set Q which are its points of linear density in the direction of the
x-axis. Further, for every point (z,y) and every positive integer n,
let E.(x,y) denote the set of the points ¢ such that

t=2, (LY)eQ and Fy)—Floy) <(etn"") (—)

We easily observe (cf. Chap. VII, § 3) that, in order that
F‘;ﬁ)x(xo,yo) <a at a point (wg,y,) € D, it is necessary and suffi-
cient that the point (2,3, be a point of right-hand density for
every set E,(z,,1,), where n=1,2,... Hence, denoting for every
system of three positive integers n,k and p, by Qurp the set of
the points (x,y) of Q such that the inequality 0 <h < 1/p implies
| B (@yy) - [@,+ 1] = (L—k~") - b, we have

(11.3) P.D=[] l[] 2Qu. k. p-
n p

Now the set @ is closed and the function F is continuous on @,
and by means of Theorem 9.1, Chap. T (¢f. the proofs of Theorems 10.1
and 11.1) we easily prove that all the sets Q. , are closed. Hence,
by (11.3), the set P-D is measurable, and since, by Theorem 11.1,
|@ —D|=0, we see that the set P is measurable also. This completes
the proof.

It follows, in particular, from Theorem 11.2 that the extreme approximate
derivates of any finite measurable function of one real variable are themselves mea-
surable functions. We thus obtain a result analogous to Theorem 4.3, Chap. 1V,
which concerned the measurability of Dini derivates (cf. also Theorem 4.1, Chap.V,
and the remark p. 171).
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§ 12. Total and approximate differentials. A finite func-
tion of two real variables F is termed totally differentiable, or simply
differentiable, at a point (o) o) it there exist two finite numbers
A4 and B such that the ratio

(12.1) [F(x,y)~F(wo,:l/o)—A-(W~wo)—B~(y—yo)]/Hw—wol+ly~yof]

tends to zero as (w,y)—>(xy,y,). The pair of numbers {4, B} is then
termed total differential of the function F at the point (g, 9,) and
we see at once that A4 and B are the partial derivatives of # at
(%,99) With respect to z and to ¥ respectively.

If, for a finite function of two variables  and for a point
(€4, Yo), there exist two finite numbers 4 and B such that the ratio
(12.1) tends approximately to 0 as (@, y)—(29,4y), the function F
is termed approwimately differentiable at (zo,%o) and the pair of
numbers {4, B} is called approzimate differential of F at (x,,y,).
The numbers 4 and B will be called coefficients of this differential.

We see at once that no function can have at a given point
more than one differential, whether total or approximate.

The existence of a total differential of a function F(z,y) at a point may
be interpreted as the existence of a plane, tangent at this point to the surface
2=F(x,y) and non-perpendicular to the xzy-plane. In this way the notion of total
differentiability of functions of two variables corresponds exactly to the similar
notion of derivability of functions of one variable. Nevertheless, whereas ‘every fune-
tion of hounded variation of one variable is almost everywhere derivable, a
tunetion of bounded variation (in the Tonelli sense), and even an absolutely
continuous function, of two variables may be nowhere totally differentiable
(ef. W. Stepanoff [3, p. 515]).

The coefficients of an approximate differential of a function
at a point are not, in general, approximate partial derivatives of
this function. Nevertheless they coincide with the latter almost
everywhere, as results from the following theorem:

(12.2) Theorem. In order that o finite function of two variables r,
which is measurable on a set Q, be approximately differentiable at
almost all the points of this set, it is necessary and sufficient that F
be, almost everywhere in Q, approximately derivable with respect 1o
each variable.

When this is the case, the approximate partial derivates Fy, (x,y)
and F;py(x,y) are, at almost all the points (r,y) of Q, the coefficients of
the approximate differential of F.
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Proof. 1° Suppose that the function F is approximately
differentiable at almost all the points of @. We denote,
tor each positive integer n, by I, the set of the points (&%) of @
such that, for every square J containing (&%), we have

(12.3)

B[|F (2,y) —F (& n)|<n-6(J); (2,y) eJ]{>3-rJr/4

(1
o oy Wl
whenever 6(J)<2/n. Writing R=>'R,, we clearly have |Q — k|=0.
n
Let us now denote, for a general plane set £ and any number 7,
by E' the linear set of the points & such that (& 7)eE. Keeping
fixed, for the moment, a positive integer n, and a real number z,,
- . 9, .
we consider any two points &, and &, of R‘,,'(,"] for which 0<{&, — &, <1 /ny,
and we denote by J, the square [£,&; 9y, 10+ &, —&]. We then
have 6(J,)<<2/ny, and so, putting n=mny, J=dJ, n=7, in (12.3),
and choosing &=§& and &£=¢, successively, we see at once that the
square J, contains points (.,%) for which we have at the same time

| [ (&15 o) —F (0, )| < 0(T o) <2 (£, — &)
ang
LF' (&, 770)*1’1('07!/)’<"0‘5(J0) L2y (E3— &)

Hence |F(&,, 1) —F (&, 10)] < dnyg - [E,—E&;], which shows that,
for any fixed #, F(x,7), as a function of z, is AC on each set R,
and so VBG on the whole set R (¢f. Chap. VIL, § 5). Now R is
(with ¢) a plane measurable set, so that the linear set R" is meas-
urable for almost every . Hence (cf. Theorem 4.3, Chap. VII)
for almost all #, the function F(x,%) is approximately derivable
with respect to x at almost all the points of R Since further,
by Theorem 11.2, the set of the points of R at which the function F
is approximately derivable with respect to one variable, is meas-
urable, it follows at once that the function F is approximately
derivable with respect to » at almost all the points of R, and so,
at the same time, at almost all the points of ¢. Similarly, we establish
the corresponding result concerning approximate derivability of I
with respect to y.

20 Suppose that the function F is approximately
derivable, at almost all the points of ¢, with respeect
to x and with respect to y. We shall show that the function F
then has, at almost all the points of ¢, an approximate differential
with coefficients Fa, (@,7) and Fz;py(:r:,y). On account of Theorem 11.2
and of Lusin’s Theorem (Chap. ITI, § 7), we¢ may suppose that
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(a) the set @ is bounded and closed, (b) the function ¥ is approximate-
ly derivable with respect to each variable at all the points of @, and
(c) the function F, and both its approximate partial derivatives,

are continuous on .
This being so, we write, for each point (&, #) of @ and each

point (x,y) of the plane,

(12.4) D(& ;) |F @,y )—F(&n)— (w"‘f)'Fi;Px(San)_(?/_n)'Fi;py(fﬁ'])L
Dy(é, n; ©) =|F (z,n)— F(f,ﬂ)—(w—f)'Fépx(f,n)l,
Dy(& n; y) =F(&y) —F (& n)—(y —n)-Fap (& 7).

Let ¢ and 7 be any positive numbers. We shall begin by de-
fining a positive number o and a closed subset 4 of ¢ such that
| —A|<e and such that, for any point (&,7),

[BLD(, 73 2) <v-lw—&]; (2,7) € Q; 6<w<b]| =(1—e)-(b—a)
whenever (&,nm)eA, a<lé<b and b—a<o.

(1)

For this purpose, let us denote, for each positive integer n,
by A, the set of the points (&, ) of @ such that the inequality in the
first line of (i) is fulfilled whenever a<<é<d and b—a<1/n. Since
the set @ is closed and since the function F and its derivatives Iy,
and ]’f‘,Ip are continuous on @, it is easily seen that all the sets A4,
are olosed On the other hand, the sets 4, form an ascending se-
quence and we immediately see that the set @ —1lim A, is of

measure zero on each line y=7. Hence, this set being measurable,
we have 1Q—11mA,,l—0 Consequently |Q —4,|<e for a suffi-

ciently large 1ndex ng, and writing o=1/n, and 4=A4,, we find
that the inequality |@ —A|<¢ and the condition (i) are both satisfied.

In exactly the same way, but replacing the set ¢ by 4 and
interchanging the rdle of the coordinates x and y, we determine
now a positive number ;<o and a closed subset B of 4 such that
|4 —B| <<e and that for any point (&)

lD[D (&5 y)<t- |J 7]‘ (& y)ed; a’<7/<b]l> —e&)+(b—a)
whenever (&,n)eB, a<n<b and b—a<o;.

(i)

Finally, let 0,<<o, be a positive number such that
| Fap, (g, Yo)— Fap (21, 1) <7

for any pair of points (x,y,) and (z, y,) of @ subject to the con-
ditions |z,—wx,| <o, and |y,—y,|<o,.
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This being so, let (£,,%,) be any point of B. Let J =[ay, f;; as, fs]
denote any interval such that (&, #,)ed and o(J)<o,<oy<<o. We
write:

Ez—E[D S0y m05 Y) <70y — 7]0[ (S0y9) € A5 a, <Y< B,

and, for each y,
E(y)=E[Dy(&,y; 2)<telo —&gf; (#,9) €Q; ey <o <y ]

Then any point (x,y) such that ye £, and xeE,(y) belongs to the
set Q-J and, for such a point, we have

D(507’705357?/)<D1(5071’/5w)+D2(§0,’70§?/)+|w—50| : {F;i:lx(gm?/)_Fz:lpx(éo,%”$§
L2t-[lo —& |+ |y —noll-

On the other hand, it follows at once from (ii) and (i) respectively,
that |Ey>(1—e)-(fy—as), and |[E(y)=(1—e)-(f;—a;) whenever
yeE, MHence, D(&,ny;x,y) being a measurable (indeed contin-
uous) function of the point (x,y) on @-J, it follows that the set
of the points (x,y)eQ-J such that D (&, 70; %, y) <2t [|@ — &+ |y — 10/
is of measure at least equal to (1 —e)2 (8, —a;) (B2 —as)=(1—¢)2-|J|.
The point (&, n,) here denotes any point of the set B, and J any
interval, containing (&, #,), whose diameter is sufficiently small.
Therefore, since |Q —B|<|Q —A|+ |4 —B|<2¢, where ¢ is at our
disposal, we see that, for every positive number 7, almost every
point (&%) of @ is a point of density for the set of the points (w,y)
of  which fulfil the inequality D(&,n; ,y) /[l —&+ ly—n|]1<27; and
in view of (12.4), this completes the proof.

We notice a similarity between the preceding proof and that of the “Den-
sity Theorem” (Chap. IV, §10). Actually the result just established constitutes
a direct generalization of the Density Theorem. To see this, we need only inter-
pret, in the statement of Theorem 12.2, the function F as the characteristic
function of the set @ (cf. the first edition of this book, p. 231).

The notion of approximate differential, together with Theorem 12.2, are
due to W. Stepanoff [3]. There is, however, a slight difference between the defi-
nition adopted here and that of Stepanoff, so that, in its original form, as proved
by Stepanoff, Theorem 12.2 generalizes Theorem 6.1, Chap. IV, rather than the
Density Theorem of § 10, Chap. IV.

We conclude this § by mentioning the following theorem,
which, in view of Theorems 9.9 and 11.2, is an immediate con-
sequence of Theorem 12.2:
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(12.5) Theorem. Suppose that a finile function of two variables F
which is measurable on a set Q, has at each point of Q ot least one finite
Dini derivate with respect to x and at least one finite Dint derivate
with respect to y. ,

Then the function F is approximately differentiable at almost
every point of Q.

§ 13. Fundamental theorems on the contingent of
a set in space. Following F. Roger [2], we shall now extend
to sets in the space R,, the results obtained in § 3. The proofs will
be largely a repetition of those of §3 with the obvious verbal changes.
We shall therefore present them in a slightly more condensed form.

Generalizing the definitions of §3, p. 264, to functions of two
variables, we shall say that a funetion I'(x,y) fulfils the Lipschitz
condition on a plane sct FE, if there exists a finite constant N such
that | (@, ys) — F (@, y)| S N-[eg— 2| + [yz—w[]  for every two
points (z;,%,) and (x,¥y,) of K. We verify at once that the
graph of the funection F on E is then of finite area whenever
|E| < 4 oo, and of area zero whenever, in particular, |F|=0
(¢f. Chap. II, §8; more precisely, we have, for every set E
A B(F; E)\<4-(1+N?)-|H|).

In the sequel we shall make use of the following notation
for limits relative to a set. If £ is a set (in any space) and ¢, is a point
of accumulation for K, the lower and upper limits of a function

F(t) as t tends to ¢, on E will be written liminf, F (f) and lim supxF (¢)
11, >,
respectively. Their common value, when they are equal, will be

written limgF (1).
=>4,

(13.1) Lemiuna., Let R be a set in the space Iy, 0 a fixed direction
in this space and P the set of the points a of R at which contgre con-
tains no half-line of dirvection 0. Then (i) the set P is the sum of a
sequence of sets of finite area and (il) af cach point a of P, except
at most at those of a subset of area zero, the set R has an extreme tan-
gent plane, for which the side containing the half-line a0 is its empty side.

In the particular case in which 0 is the direction of the positive
semi-axis of 2, the set P is expressible as the sum of an enumerable
infinity of sets each of which is the graph of a function on a plonc
set on which the function fulfils the Lipsehitz condition.

’
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Proof. We may clearly suppose (in the first part of the theo-
rem also) that 0 is the direction of the positive semi-axis of z. We
denote, for every positive integer n, by P, the set of the points
(x,9,2) of P such that the inequalities |o'—a|<1/n, |y'—y|<1/n
and |¢'—2|<1/n imply 2 —z<n-[jz'—a|+|y'—y|] for every
point (2',y’,2') of R. We express, further, each P, as the sum of
a sequence {P,phr—-1,, . of sets with diameters less than 1/n. For every
pair of points (z,v;,2;) and (2,,¥,,2,) of the same set P,,, we thus
have |eg—2|<n-[Jws—a;|+ [y,—u,|], and if we denote by Q.. the
orthogonal projection of P, , on the xy-plane, we easily see that
the set P, ; may be regarded as the graph of a function F, » on @y s.
Plainly |Fu,1(2g o) —Fn 1(2y,y1)| <n-[[23— 2y +y,—4]] for every two
points (xy,y,) and (@,,y,) of Qu . Thus F, , fulfils the Lipschitz con-
dition on @, x and hence (cf. p.304) Ay( Py r)=AxB(Fn r;Qn )} <+oo.
Thus P=) P, is the required expression of the set P.

nk
It remains to discuss the existence of an extreme tangent

plane to R at the points of P. For a fixed pair of positive integers »
and k, the function F,, which fulfils the Lipschitz condition
on the set @,k can be continued at once, by continuity, on to the
closure @, , of this set, and then on to the whole plane by writing
F.. i(x,y)=0 outside @, . On account of Theorem 12.2, the function
F, . is approximately differentiable at almost all the points of Qe
Hence, denoting by @,,, x the subset of @, , consisting of the points
of density of @, » at which F,, is approximately differentiable, we
see that lQ,,,k—E),,,;J:O and hence, that AQI{B(F,I,k;Q,,,k——E),,,k)}:0.
We need, therefore, only show that R has an extreme tangent plane
at each point of B(F. Q. ), and that, further, the half-line with
the direction of the positive semi-axis of z is contained in the
empty side of this plane.

Let (£, 70,Co) be any point of B(Fu;@Qnr) and let {4g,B)
be the approximate differential of F, at the point (&;,7,). Let
e<1 be any positive number, and let E, be the set of the points
(x,y) €@Qnr such that
| B, i@y y)— F, 1 Eqy Mo)— Ao (0 —Eo)— By (y—mno)| < e[| 4 [y —nql -
Since the function F, , is measurable, (&, 7,) is (¢f. Chap. VII, § 3)
a point of outer density for the set E.. Hence we can make cor-
respond to each point (&,7,), sufficiently near to (&, 1y, Cy), & point
(&,n')e B, such that:

S. Saks. Theory of the Integral. 20
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(13.2) ' —&l<[E—&|  and  n'—nol<K[n—ndl,
(13.3) ' —E<elé—&|  and  |p'—my<e [l

Remembering that C,=F, (&, 7,), we now write for brevity
Do (&0 )=Fn &, n")—Lo— A (§'—E&)— By (n'—mn,). We thus have

L—Lo—Ap (§—&o)—By (n—no)=
= Dn (&', 0" )+~ Fn &, 0 )] +[Ao.(§'—E)+ By (n'—n)].
This being so, let (&,%,) be a point of K such that each of
the differences |£—&|, |p—mno and [£—C, is less than, or equal
to, 1/4n%. Then by (13.3), we have |&—&<1/n and |p'—n|<1/n,
while, by (13.2), |[Fus(&', 7)o <ne[|§'—Zol+1n'—n|1<1/2n, and so
[P k(& 7' )—C|<1/n. Since the point (&, 7', Fui(&',n’)) belongs to
B(F;E.)C P,, it follows that (—F, (&, n)<n-[|E—&+ln—n'l],
and, again making use of (13.3), we deduce from (13.4) that
—Co— Ao (§—&4)— By (n—m) <
(13.5) KD, &5 1) |+ (0| Ag|)- & —E|+ (4| Bo|)- |0 =] <
KIDu &y ') - (|A o[ Bol+ ) [E—&l+ [ 7—no]].
We now observe that, since (£',7%')e F,, (13.2) implies

Do, &' 0 WLE—&ol +n—n0l1 < [ Do, &5 0" [[1E'— ol +

(13.4)

7' —nol] < e.

Hence, ¢ being an arbitrary positive number, we derive from (13.5)

3.
(13.6) Iim Sup, [C“Co'_Ao‘(5“50)_30‘(”]**’70)]/[[‘5”“50|+|77—770] <0.
(&, 9, O>(&, 10, Bo)

Moreover, since {4,, B,' is the approximate differential of the func-
tion F, . at (&,,7,) and since the point (£, n,) is a point of outer
density for the set @, , the plane z—{;— Ay (x—&)—By-(y—ny)=0
is certainly an intermediate tangent plane (cf. § 2, p. 263) of R at
the point (&, 5y, &y)- It is therefore, by (13.6), an extreme tangent
plane at this point, with an empty side consisting of the half-space
e—Lo= Ay (1—E&y)+ By (y—no). This completes the proof.

We shall employ in space a terminology similar to that of the
plane (cf. § 3, p. 264) and agree to say that the contingent of a set
EC R, at a point ¢ of E is the whole space if it includes all the
half-lines issuing from the point @; and again, that the contingent
of E at a point ¢ of ¥ is a half-space, if E has an extreme tangent
plane at ¢ and if contg, a consists of all the half-lines issuing from «
which are situated on one side of this plane. We make use of
these terms to state the analogue of Theorem 3.6:
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(13.7) Theorem. Given a set R in Ry, let P be a subset of R ai
no point of which the contingent of R is the whole space. Then (i) the
set P is the sum of an enumerable infinity of sets of finite area and
(i) at every point of P, except at those of a set of area zero, either the
set R has a unique tangent plane, or else the contingent of R is a half-space.

The proof of this statement, which follows directly from
Lemma 13.1, is quite similar to that of Theorem 3.6. We need only
replace, in the proof of the latter, the terms length, tangent and
half-plane by area, tangent planeand half-space, respectively.

It only remains to extend to space, Theorem 3.7. This ex-
tension, in the form (13.11) in which we shall establish it, 18 essen-
tially little more than an immediate, and almost trivial, conse-
quence of Theorem 3.7. Its proof requires however some subsidiary
considerations of the measurability of certain sets.

(13.8) Lemuma, If @ is a set (§,5) in Ry, its orthogonal projection
on the xy-plane is a measurable set.

Proof. Let us denote generally, for every set K situated in R,,
by I'(E) its projection on the xy-plane. In order to establish the
measurability of the set 77(Q), it will suffice to show that for each
¢>0 there exists a closed set PCI'(Q) such that [P =|T(Q)]|— e.

We express @ as the product of a sequence {Q,},—is . of
sets (). It may clearly be assumed that the set ¢) is bounded and
that, moreover, all the sets @, are situated in a fixed closed sphere 8.

We shall define in R,, by induction, a sequence {F,}.— 1 ..
of closed sets subject to the following conditions for n=1,2,..:
(i) F,CF.y, (ii) F,CQ, and (iii) L(F- Q)= (Fa Q) —e/2",

For this purpose, we choose Fy= 8, and we suppose that the
next r—1 sets F, have been defined. We have QC¢,, and so
Fry-QrQ=F,_1-Q, and since F, -Q, is, with @,, a set (§,), there
exists a closed set F,CF, (-Q, such that |I'(F,-Q)=|I'(F, 1-Q)—e/2".
This closed set F, clearly fulfils (i), (ii) and (iii) for n=1.

Now let F=IIF, = lim F,. It follows from (ii) that #C@, and

therefore that I'(F)CI'(Q). Further, I'(F) is a closed set, for, since {#,}
18 a descending sequence of closed and bounded sets, we easily see
that I'(F)=Llim I’(¥,). Finally this last relation coupled with (iii) shows

n

that  [I(F)| = lm |I(F,-Q)| = [I'(Fy-Q)|—e=|'(Q)|—e, which com-

pletes the proof.
20*
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It would be easy to prove that the projection of a set (F,s) is the nucleus
of a determining system formed of closed sets and thus to deduce Lemma 13.8
trom Theorem 5.5, Chap. II. We have preferred, however, to give a direct ele-
mentary proof, based on a method due to N. Lusin [3]. The same argument
shows that any continuous image of a set () is measurable.

It has been proved more generally (vide, for instance, W. Sierpinski
[II, p. 149], or F. Hausdorff [II, p. 212]) that any continuous image of an
analytic set (in particular, of a set measurable (P)) situated in I, is an analytic
and, therefore, measurable set.

(13.9) Lemma. Given a set R in g, let Q be the set of the points
(& n,0) of R which fulfil the condition:

(A) the part of the contingent of R at the point (&,n,L), which
is situated in the plame v=E, is wholly contained in one or other of
the two half-spaces y=n and y<7.

Then the orthogonal projection of the set @ on the xy-plane 18
of plane measure zero.

Proof. We may clearly suppose that the set R is closed (for
the contingent of any set R coincides, at all points of R, with that
of the closure of R).

Let us denote generally, for any set E in R, and any number &,
by E" the set (E)[(E,y,z)eE’]. It follows from Theorem 3.6 that,

i,z

for every &, the plane set K" has an extreme tangent, parallel to
the z-axis at every point of Q'gl except those of a set of length zero.
Hence, by Theorem 3.7, the projection of @ on the xy-plane is of
linear measure zero on each line x=¢ of this plane, and, in order
to prove that this projection is of plane measure zero, we need
only show that the latter is measurable.

Let us denote, for each pair of positive integers k and n, by
Apn the set of the points (§,2,{) of R such that the inequalities

(13.10) |8+ ly—nl+le—ti<lin  and |o—&<[y—nl-+l—C]n
imply, for any point (x,y,2)e K, the inequality y—n<[le—&+lz—C|1/k
Similarly, we shall denote by Bg, the set of the points (&, #,{)
of R for which the inequalities (13.10) imply, for every point
(¢, y,2) of R, the inequality y—n=—{le—&+ lz—L[1/k. Writing

A=[]> A . and B=[]2Bs.r,
k n

k n
we find that Q=A+ B. On the other hand, since the set R is, by
hypothesis, closed, we ohserve at once that each set A4, ,, and like-
wise each set Py ,, is closed. The sets A and B, and so the set @
also, are thus sets (§,,), and in view of Lemma 13.8, the projection
of  on the xy-plane is a measurable set.
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(13.11) Theorem. Given a set K in R, let P be a subset of B at every
point of which the set R has an extreme tangent plane parallel to o fixed
straight line D. Then the orthogonal projection of P on the plane per-
pendicular to D is of plane measure zero.

Proof. We may clearly suppose that the straight line D is
the z-axis. Let us denote by P, the set of the points of P at which
the extreme tangent plane, parallel, by hypothesis, to the z-axis
is not, however, parallel to the yz-plane. Similarly, P, will denote
the set of the points of P at which the extreme tangent plane is
not parallel to the xz-plane. We then have P= P, P,.

Now we observe at once that each point (&, %,{) of P, fulfils the
condition (A) of Lemma 13.9. It therefore follows from this lemma,
that the projection of P; on the xy-plane is of plane measure zero.

By symmetry, the same is true of the projection of the set P,.
The proof is thus complete.

§ 14. Extreme differentials. Let F be a finite function
of two real variables. A pair of finite numbers {4, B} will be called
upper differential of F at a point (zy,y,) if, when we write 2,=F (24, ¥,),
(i) the plane z—z,=A-(x—x,)+ B-(y—y,) is an intermediate tan-
gent plane of the graph of the function F at the point (x,¥,,2,) and

) i sup 0 —F oy y0)— Ao —20) = B-ly—y0)

Ce > Gon) le— 0| +y—Yol
These conditions may clearly be replaced by the following: (i,) the plane
z—2zy=A-(t—x,)+ B-(y—y,) i3 an extreme tangent plane of the graph
of F at (xy,Y,,2,) With the empty side z—=z,2A-(z—xy)+ B (y—7¥Yo),

and (ii,) lim sup F(x,y)<F(2y,Y,).
,)~>(x0,10)
The definition of lower differential is similar, and the two

differentials, upper and lower, will be called extreme differentials.

If a function F has a total differential (cf. § 12, p. 300) at a point,
this differential is both an upper and a lower differential of F at
the point considered. Conversely, if a function F has at a point
(29,y,) both an upper and a lower differential, these are identical
and then reduce to a total differential of F at (xz,,y,).

For a finite function of one real variable F, the existence of an upper dif-
ferential at a point x, is to be interpreted to mean that F*(xo):lj‘_(wo)#oo (in
which case the number F1(x,)=F (x,) may be regarded as the upper differential
of F at z,). There is a similar interpretation for the lower differential of functions
of one variable. This interpretation brings to light the relationship hetween the
theorems of this § and those of § 4.
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We propose to give an account of researches concerning the existence
almost everywhere of total, approximate, or extreme differentials. These re-
searches were begun by H. Rademacher [3], who established the first general
sufficient condition in order that a continuous function be almost every-
where differentiable. W. Stepanoff [1;3] later removed from Rademacher’s
reasoning certain superfluous hypotheses, and obtained a more complete result,
valid for any measurable function: In order that a function F which is meas-
urable on a set B, should be differentiable almost everywhere in E, it is necessary and
sufficient that the relation (lin)l s(ltlp)[,F(w,y)—F(§,17)|/[]w~——§]—|—|y—n]]<+oo should

x> En

hold at almost all the points (£,%) of E. (Certain details of Stepanoff’s proof, par-
ticularly those concerning measurability of the Dini partial derivates, have been
subjected to criticism (cf. J. C. Burkill and U. §. Haslam-Jones [1].) U. 8.
Haslam-Jones [1] extended further the result of Stepanoff, and by introducing
the notion of extreme differentials (which he called upper and lower derivate
planes), obtained theorems analogous to those of Denjoy for functions of one
variable. The researches of Haslam-Jones have heen continued and completed
by A. J. Ward [1;4] who, in particular, removed the hypothesis of measur-
ability in certain of Haslam-Jones’s theorems.

We shall derive the results of Haslam-Jones from the theorems of the
preceding § (cf. F. Roger [3]; direct proofs will be found in the memoirs of
Haslam-Jones and Ward referred to, and in the first edition of this book).

In what follows, we shall make use of some subsidiary con-
ventions of notation. If F is a function of two real variables and ¢
denotes a point (z,y) of the plane R, we shall frequently write
F(t) for F(x,y). If ¢,=(2,y,) and t,=(x,,¥,) are two points of the
plane, [t,—t,| will denote the number |v,—x,|+ |[yo—u-

Given in the plane two distinet half-lines issuing from a point ¢,,
each of the two closed regions into which these half-lines divide
the plane will be called angle. The point ¢, will be termed vertex
of each of these angles.

We shall begin by proving a theorem somewhat analogous
to Theorem 1.1 (ii).

(14.1) Theorem. Let F be a finile function in the plane R, and

let E be a plane set, each point © of which is the vertex of an angle A(r)

such thot limsupaqF (1)<<lim sup F'(t). Then the set E is of plane
t—>r t—>1

measure zero.

Proof. Let us denote, for each pair of integers p and ¢, by E,,
the set of the points = of K at which lim supA(,)F(t)<p/q<]int1 sup F(t).
t>1 1

For fixed p and ¢, we observe that no point vekE,, is a point of
accumulation for the part of the set E,, contained in the interior of
the corresponding angle A (r). Hence, no point of the set E,, can
be a point of outer density for this set. Each of the sets E,, is
thus of plane measure zero, and the same is therefore true of the
whole set E.
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As we easily see, in virtue of Theorem 3.6, each set Epq, and consequently
the whole set E, is the sum of a sequence of sets of finite length (this of
course, implies that F is of plane measure zero). Cf. A. Kolmogoroff and
J. Veréenko {l1].

(14.2) Theorem. Let F be a finite function in the plame. Then

(i) if P is a plane set each point v of which is the vertex of an
angle A(t) such that

(14.3) lgnA(z) \F(t)—F (1) /]"t_r‘:'{'oo’

the set P is necessarily of plane measure 2ero;

(i) if Q is a plane set each point v of which is the vertex of an
angle Ay(t) such that

(14.4) lim supao [F(¢)—F ()] ] |t—7| < +o0,
>1

the function F necessarily has an upper differential at almost all the
points of Q;
(iii) if R is a plane set each point v of which is the vertex of two
angles A (v) and Ay(t) such that
lim sup. e [ (t)—F ()] /t—7|<+ o0
f>1

and
lim infa [F(t)—F ()] [[t—7|> —o0,
=t

the function F is totally differentiable at almost all the points of R.

Proof. re (i). By Theorem 13.7 the set B(¥;P) has, at each
of its points except those of a subset of area zero, an extreme tan-
gent plane. The latter is seen to be necessarily parallel to the z-axis.
Hence, by Theorem 13.11, the set P, as the projection of B(F;P)
on the xy-plane, is of plane measure zero.

re (ii). It clearly follows from (14.4) that, at each point v of @,
we have limsupgF (t)<F(r). Hence, by Theorem 14.1, we have

t—>1

51,
lim sup F(#)<<F(r) at all the points = of @, except at most those
=T

of a set @, of measure zero.

Let us now denote by B the graph of the function F (on the
whole plane). Let B, be the set of the points of B(F;¢) at which
the set B has no extreme tangent plane, and B, the set of the points
of B(F;Q) at which such a tangent plane exists, but is parallel to
the z-axis. Finally, let @, and @, be the projections of the sets B,
and B, respectively, on the azy-plane. On account of Theorem 13.7,
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we easily verify that A,(B;)=0, and so, that |Q]=0. Similarly.
it follows at once from Theorem 13.11 that [Q,/=0. Now, if (£,7%)
is any point of @Q—(Q,+@,), the set B has at (& n,F (& 7)) an ex-
treme tangent plane of the form ¢—=M (&, ) (x—&)+ N (&, 3)-(y—2),
where M (&,n) and N(&,%) are finite numbers. We observe further
without difficulty that the half-space

== M (&, n)-(x—&)+ N (& n)-(y—n)

is an empty side of this plane. Hence (cf.p.309), at each point
(£,7) of the set Q—(Qq+Q;+@s), the pair of numbers { M(&, 4), N (£, n)}
is an upper differential of the funection F. This completes the
proof, since |Qo+Q,+Q,=0.

Pinally, (jii) is an immediate consequence of (ii).

In the case in which the function F is measurable, we can complete
part (i) of Theorem 14.2 (which itself generalizes Theorem 4.4). Thus, if F
is any measurable function of two variables, the set of the points (x,y) al which

lim |F(x+h,y)—F (@,y)|/h=-0c0, is of plane measure zero.
>0+

This proposition plainly follows from Theorem 4.4, except for meas-
urability considerations, essential to the proof, which seem to require general
theorems on the measurability of the projections of sets (B) (cf. p. 308).

We conclude with the following theorem (ct. A. J. Ward [1]
and the first edition of this book, p. 234) which, in view of Theo-
rem 14.2 (i), (ii), may be regarded as an extension of Theorem 9.9
to the functions of two wvariables:

(14.5) Theorem. If F is a finite function of two variables, which
18 measurable on a set B and which has an extreme differential at each
point of a set QC E, then this differential is, at the same time, an
approximate differential of F ot almost all the points of Q.

Proof. On account of Lusin’s theorem (Chap. III, §7) we
may clearly suppose that the set F is closed and that the function
F is continuous on E. Let us suppose further, for definiteness, that
the function F has an upper differential at each point of @, and
let us denote, for each positive integer n, by @, the set of the points
t of @ such that, for every point #', ['—t/<1l/n implies the
inequality F(¢')—F(¢t)<n-{t'—t|. Finally, let each set @, be ex-
pressed as the sum of a sequence {Q,i}r—1. . of sets with diameters
less than 1/n. We shall have Q:Z];Q,,,k.
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We see at once that the function F fulfils the Lipschitz con-
dition on each set @, and therefore also on each set @, . Hence,
by Theorem 12.2, the function F has the approximate differential
{Fap, (2, 9), F;py(w,y)} at almost every point (z,y) of each set Q,.,
and therefore at almost every point (xz,y) of the set .

Let us, on the other hand, denote, for each point (z,y) of Q,
by {A(x,y), B(w,y)} the upper differential of F at this point. 1t
follows at once from the definition of upper differential, p. 309, that
F(w,y)=A(2,y)=F! (2,y), and similarly F, (z,y)>B(z,y)>F; (2,9),

at each point (x,y) of . Hence, at each point (z,y) of @ at which
the approximate partial derivates Fa, (x,y) and Fa'pl](w,y) exist,
we have A(x,y)=Fq (2,y) and B(x,y):F;py(x,y). " The upper
differential {4 (x,y), B(x,y)} of the function F thus coincides at
almost all points (x,y) of @ with the approximate differential of F.




