NOTE II.

The Lebesgue integral in abstract spaces

by
Stefan Banach.

Introduction.

In this note we intend to establish some general theorems
concerning the Lebesgue integral in abstract spaces. This subject
has been discussed by several authors (for the references see this
volume, pp. 4, 88, 116, 156 and 157). Our considerations differ from
those of other writers in that they are not based on the notion
of measure.

Let us fix a set of arbitrary elements H as an abstract space.
We shall denote real functions (i.e. functions which admit real
values) defined in H by w(t), y(t), 2(t),... where te H, or simply by
ZyYy2,.... A set £ of real functions defined in H will be called linear
if any hnear combination, with constant coefficients, of two ele-
ments of £, also belongs to L.

Let £ be a linear set of funections defined in H. A functional F
defined in £ is termed additive if for any pair of elements x and ¥
of £ and any real number «, we have F(x+y)=F(x)+F(y) and
F(ax)=a-F(x). The functional F is non-negative if F(x)>>0 for any
non-negative function xeg.

We say that a functional F defined in € is a Lebesgue integral
(£-imtegral) in £ if the following conditions are satisfied:

A) The set £ is linear;
B) the functional F is additiveﬂ and non-negative;
) if 1° {2, CL and M eQ, 20 |z,(t) K;,M(a;) for n=1,2,... and
te H, and 3°lim z,(t)=2(t) for te H, then z¢ H and limF (z,)=F(z);
n e n
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D) if €8, F(2)=0 and |y(t)<z(t) for te H, then ye¢ and
F(y)=0;
)

E) if 10 {2,)C8, 2,({)<<Rusa(t) for mn=1,2,..., 2° lim 2,(¢)=2(t)

n

for te H, and 3°1lim F(z,)<<}+ oo, then z¢® and lim F(2,) = F (z).

The Lebesgue integrals considered in this note will moreover
satisfy the condition:

R) If 2¢8, then |z|e¥.

In Part I, a condition is established under which an additive
and non-negative functional defined in a linear set of functions G,
may be extended to an f-integral on a certain set £ containing €.
The f£-integral and the set £ will be explicitly defined.

In Part II we admit that H is a metrical and compact space.
We consider an f-integral defined in sets containing all functions
which are bounded and measurable in the Borel sense. It is shown
that each f-integral of this kind is determined by the values which it
admits for continuous functions. Conversely, any additive and non-
negative functional defined for all continuous functions may be
extended as an f-integral to the class of functions measurable (B).
We thus obtain the most general f-integral defined for all functions
bounded and measurable (B).

In Part III we deal with an analogous problem supposing
that H is the unit sphere of the Hilbert space. In particular, the
integral of a continuous function is expressed by explicit formulae.

I. Abstract sets.
§ 1. We shall employ the following notations:
1. m}y if »(#)=y(t) for every te H; in particular 2>>0 means
that w( )=0 for te H;
2. |e|=lx(t)] is the modulus of x(f) in the ordinary sense;

3. max (z,y)=}(2+y+lr—yl), min(r,y)=5@+y—r—yl);
4. lim &,=2 means that hm Za(t)=2a(t) for t¢ H; the relations

n

lim sup z,=w, lim inf x,=x are deﬁned similarly;
n n

5. a=t(e+|e)), @=1(x—|x]) (cf. Chap. I, p. 13).
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§ 2. For the rest of Part I of this note we shall fix a set € of
real functions defined in H, and a functional f(x) defined for z¢G,
subject to the following conditions:

(i;) The set ¢ is linear;
) it xe€, then |z|eC;
;) the functional f is additive;

(
G
(ii,) the functional f is non-negative;

(iig) if 1° {w,)CE and Me€E 20 |g,|<M for n=1,2,..,

and 3% lim#,=0, then limjf(x,)=0.
n n

It follows immediately from the conditions (i) that for any pair
of elements 2z and y of €, max (x,y), min (z,y), £ and & also be-
long to €. It follows further that the condition (iiy) is equivalent to
the following condition:

(iiy) If 1° {2,)CE and meC, 2° z,>=m for n=12,..,
and 3° liminfx,>0, then liminff(z,)>0.

n n

§ 8. We shall establish the following

Theorem 1. If the set € and the functional | satisfy the con-
ditions (1) and (i), then there exists an L-integral F, defined in a set 8
containing €, such that F(x)={f(x) whenever xe€; moreover, this
integral satisfies the condition R).

The proof will result from several lemmas.

§4. We denote by €* the set of all functionals z(t) defined
in H for each of which there exist two sequences {x,)CC, {y.,}CGCE
such that
(1) liminfe, >2>limsupy, .

It is easily seen that the set £* is linear and that ECg*.

Given a function ze¢%*, we shall term upper L-integral of 2
the lower bound of all (finite or infinite) numbers ¢ for each of which
there exist a function me€ and a sequence of functions {x,} be-
longing to ¢ such that x,=m for n-=1,2,..., liminfx,>z and
g = liminf f(x,).

The definition of the lower £-integral is analogous to that of
the upper f£-integral. The upper and lower f£-integrals of a function
zef* will be denoted by p(z) and ¢(z) respectively. We obviously
have ¢(z)=—p(—=z).
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§5. The sequence {f(x,)} in the above definition of the upper
fL-integral, may obviously be supposed convergent (to a finite limit
or +o0). Further, if {x,;CEC, meE, 220, z,=>m for n=1,2,... and
liminfw,>2, then lim#,=0 and consequently, by the condition

n

(iiy), §2, Hm f(x.,)=0. Hence, if 2¢8% 2>=0 and p(z)<P<+oo,

n
there always exists a sequence of non-negative functions {x,) belonging
to € such that liminfx,>=2 and f(x,)<P for n=12,...
n
Lemma 1. For any function xe G we have p(x)=f(x).
Proof. Writing x,=2 and m=x, we have

(1) liminfz,>2x and x,=2m for n=1,2,..,

whence p(x)<<f(x). On the other hand, if u,x,, ... and m are
any functlons Wthh belong to € and satisfy the relations (1), then
liminf (x,—«)>=0 and z,—x>m—az for n=1,2,.... It follows from

n

(ii3), § 2, that lminff(x,—x)>0, i.e. liminff(x,)>f(x). Thus
p(x)=f(x), and finally p(x)=f(»).

Lemma 2. 'If 2,¢8%, 2,¢8* and if, moreover, p(z)<<4oo,
P(2a) <420, then p(21+2,)<<p(21)+p(2,)-

Proof. Let P, and P, be arbitrary numbers such that p(z)<P;
and p(zy)< P, There exist two sequences {a)}, {27} of functions
belonging to ¢ and two functions m,eE€ and m,e¢E such that

liminf #’>2; and hmf (#Y<P; for j=1,2 and such that &>m;

n
for j=1,2 and nfl,z,... . Therefore, writing x"—x§3)+xﬁ2) and
Mm==m+Mmy, We have liminfx,>z+2, and z,>m for n=1,2,.... Con-

sequently p(z, {—‘2)<hmf &) =1limf () +lim j (2} < P, + P,, whence
P(zl+z2)<p(z1)+p(22)-
Lemma 3. For any function z¢L*, we have p(z)>=q(2).
Proof. Sinee ¢(2)=—p(—=2) (cf. § 4), the inequality p(2)>=q(2)
is obvious if one of the numbers p(z) or p(—=z) is +oo; while, if
p(z)<<4oo and p(—e2)<too, it follows immediately from Lemma 2.
21*
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Lemma 4, If z¢2% p(r)<too, then also p(z)<<+oo and
P(2)=p(2)+p(?).
Proof. Given an arbitrary finite number P>p(z), there exist

a function meE and a sequence {x,} of functions belonging to €
such that x,>m for n=1,2,..., liminfx,>2 and hmf xn)<<P. Note

that 2,>m, and consequently f(&.)<f(x,) f(m), for n=1,2,...,
whence p(2)<liminff(&,)<-+oo. Again

n

P>lim f(x, >11m1nff +11m1nff(w,,)>p(z)+p( 2),

n

and therefore p(2)>=p(2)+p(z); whence, in virtue of Lemma 2,
p(2) = p(2)+ p(2).

Finally, we mention two propositions which are directly obvious:
Lemina 5. If 2,8, 2,68 and 2,<z,, then p(2)<p(2,); 0
particular, if zeL* and 220, then p(z )>0

Lemma 6. If ze2* then p(A2)=L1-p(z) for any non-negative
number A.

§ 6. We shall now denote by ¥ the set of all functions ze¥*
tor which p(z)=¢(2)==occ. The following proposmon is an immediate
consequence of Lemmas 2 and 6:

Lemma 7. If 2z e¥ and z2,¢8, then (A2, + Ay2,)ed and

P(A 21+ AgRs) == P (21) + A5 P (25) for any pair of finite numbers A, and A,.

Lemma 8. If zef, then |2|¢&.

Proof. Since |:|=¢—z, it is enough to prove that ze% and
zef. To this end, let us remark that, in virtue of Lemma 4,
p(g)<+oo, p(g)>—oco and p(:)=7p(2)+ p(z); by symmetry,
q(2)>—00, q(&)<+oo and g¢(z)= (°)+ q(%)- Since, by hypothesis,
p(2)=q(z), it follows that [p(2)—q(z)]+[p(z (#)]=0, and so
by Lemma3, p(f)=¢(#)=co and pm m#oo

Lemma 9. If z is the limit of a non-decreasing sequence {2}
of functions belonging to £ and limp(z,)<+too, then 22 and
p(2)=lmp(z). "

Proof. We can clearly assume (by subtracting, if necessary,
the function z, from all functions of the sequence {2,}) that z,=0.
Writing w,=2,+1—2, for n=1,2,...,, we shall now follow an argu-
ment similar to that of Theorem 12.3, Chap. I. First, we have 2>z,
and p(z,)=q(2,) for every n, and so
(1) q(z)=limq(z,) = hmp(z,,)

n
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To establish the opposite inequality, let &« be an arbitrary
positive integer and let us associate (cf. the remark at the begin-
ning of § 5) with each funection w, a sequence {wf,k)}kzl,g“_, of non-negative

functions belonging to € such that
(2)  liminfz®>w, and (3)  F@P)y<p(wa)+ /2"
k

k
Let us write y,=>x®. The functions y, clearly belong to ¢ and,
n=1

by (2), we have liminf ;1/,> Tu x=#%. On the other hand, in virtue
. .

of (3), we find f(;z/k)-gz‘p(w“)+ e<<yp (k+1)+“<hmp( )+ e for

=1
k= 1,2,.... Therefore, p(z)<liminff(y,)<limp(z,)+¢ and
I3 k
since ¢ i3 an arbitrary positive number, this combined with (1) gives
0<p(z):q(z):lim P (2x)<<+ o0, which completes the proof.

Lemma 10 If M €2 and {z,) is a sequence of functions belonging
to € such that |z <M for n=12,..., then, putting g=liminfz, and
h=limsupz,, we have ge&, he 9, (md "

n

p(¢g)<liminf p(z,)<<lim sup p (z.)<p(h).

Jonsequently, if the scquemce {2, is convergenti and z=1lim z,,
then p(z)=lim p(z,). "

Proof. The lemma corresponds to Theorem 12.11, Chap. I,
and its proof is analogous to that of the latter. Let us write, for
each pair of integers ¢ and j>=4, 9= = Min (2,2, - 2 The se-
quence \g”,l 441, 18 non-increasing, and consequcntly the sequence
M — -‘"U,/ﬂz,zﬂ.... is non- decreasing. Let ¢;=limg;. Since the func-

I
tions ¢, clearly belong to £, it follows from Lemma 9 that
M—g.e2 and p(M - q)_hmp(M G, L.e. g,e¥ and p((/)*llmp(q ).
Hence, applying again Lcmma 9 to the non-decreasing sequence .

which converges to g, we obtain ¢ge® and

p(g)=lim p(g,)<liminf p(2,).

By symmetry we have the analogous result for A and the
proof is complete.

We shall conclude this § by mentioning the following lemma
which 1s an immediate consequence of Lemma 5:

Lemmma 11. If 2¢8, 220 and p(z)=0, then any function x
such that |x|<Cz belongs to & and for any such function x we have p(x)=-0.




326 Stefan Banach:

§7. Let F(x)=p(x) for re¥l. The lemmas of the preceding
sections show that the set £ and the functional F(z) satisfy the
theorem stated in §3. Theorem 1 is thus proved.

It is easily seen that if an f-integral F, defined in a linear
set €, D¢ satisties the condition f(r)=F,(x) for ze€, then
F(x)=F,(z) for all ze¢¥. Consequently the functional f determines
completely an £-integral in the set £.

II. Metrical compact sets.

§ 8. Let now H be a complete and compact metrical space.
We shall specify € as the set of functions continuous in H.

The set € satisfies evidently the conditions (i), § 2. It may
be shown that any additive and non-negative functional f defined
in ¢ satisfies the condition (iiy) ).

Theorem 1 permits to define a Lebesgue integral F(x) for all
functions » belonging to a certain set £DE, in such a manner that
the condition R), p. 321, is satisfied and that F(x)=f(z) for xeC.

Evidently, every function «(¢) which is constant on H belongs
to €. It follows by condition C), p. 320, that every bounded function
measurable in the sense of Borel belongs to €.

We have thus proved the following

Theorem 2. Every additive and non-negative functional, defined
for all functions which are continuous in a complete compact space H,
may by extended to an L-integral defined in a certain linear set (con-
tatning all bounded functions measurable in the semse of Borel) so
that the condition R) be satisfied.

The values of this £-integral for functions bounded and meas-
urable (B) are, of course, determined by the given functional f.
Hence the most general £-integral defined for this class of functions
may be obtained by choosing an arbitrary additive non-negative
functional defined for all functions which are continuous in H and
by extending this functional by means of the method described in
Part I of this note.

1) A functional of this kind is necessarily linear. Every linear functional
defined in € satisfies the condition (ii;). See S. Banach [I, p.224].
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Any linear functional f(x) defined in the set F is the difference
of two additive non-negative functionals f;(z) and f,(x) (ef. S. Ba-
nach [I, p. 217]). Extending these functionals by means of Theorem L
over two sets, €, and £, say, respectively, we see that it is possible
to extend the functional f(x) over the linear set £=%;-&, This set
will eontain all bounded functions measurable (B). The extended ad-
ditive functional F(x) evidently satisfies the conditions C) and R),
p. 321, and is non-negative.

III. The Hilbert space.

§9. We shall now understand by H the unit sphere of
the Hilbert space, i.e. the set of all sequences {#; for which

(ee]

9:<1. The distance of two points t={9; and t'={(d is defined,

i=1

as usually, by the formula

e(t,t'>=[_§wi—ﬁ;)2ﬁ.

With regard to this definition of distance the space H is
not compact and therefore we cannot apply Theorem 2 directly.

Let €, be the set of functions x=wx(t)=x(J,, 9,,...) which are
continuous in H and whose values depend only on the first n co-
ordinates ¥;, so that a(d,dy...)=x(d, 8.0, 0,0,...) for any
t={0} e . Clearly €,CCni1.

It is easily seen that the set €= D¢, satisfies the conditions

n=1

(i), § 2. Any functional f defined in € for which the conditions (ii)
hold may be extended to an f-integral defined in a certain set 8

containing €.

Lemma 12. The set £ contains all bounded functions mesurable
(B) defined in H.

Proof. Let & be a bounded continuous function defined in H.
For any point t= (9,8, ...,0n...) and any positive integer n, we
write @a(t)=2(%,...,0n,0,9,...). Evidently x,eC€ and limz,=z. It

M is the upper bound of |z(t)] for te H, then |v,|< M. Since the
constant funetion 2= M certainly belongs to €, it follows from the
condition C), p. 320, that xe%.
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Consequently every bounded and continuous funection belongs
to £ and by the condition C) the same is true of any bounded funec-
tion measurable (B).

Lemma 13. Every additive and non-negative functional f(x)
defined in € satisfies the condition (iig), §2.

Proof. We define in H a distance (¢ 1) of two points
t:{’l()],ﬁ’g, }, tI:{191,?92,...}' by

(1) | alt,V) =

We easily verify that with regard to this distance the set H
is complete and compact.

Let € be the set of all functions defined in H which are
continuous according to the distance defined by the formula (1).
Evidently €CG.

Let f be an additive non-negative funetional detined in €.
Let a,(t)=a(Syy .y $4, 0,0, ...) for xeG and (=(9,,9,,..)e H.

With regard to the distance (1), H is a complete and compact
space, and henee the function x(t) e € is uniformly continuous. It fol-
lows that the sequence {z,} uniformly converges to x. This implies
the convergence of the sequence {f(x,)}1). lLet 7(;1:) = lim f(x,).

If #220, then &,>0 for each n, and consequently 7(;1:)2(). The
functional 7 ), clearly additive, is therefore non-negative. The set H
belng compact, it follows, by what has bheen established in Part II
that f satisfies in H the condltlon (iiy) (vnth € and f replaced by L
and f respectively). Since € C¢ and f(: r)==f(x) for xreE, the
functional f satisfies the condition (iiy) in .

§ 10. Now consider an additive non-negative functional f(x)
defined in €. Let f,(x) denote the functional defined in €, by the
formula

(2) falx) = f(2) for re@,
We obviously have
(3) fal) = fi(x) for ae@,.

1y Indeed if ¢ > 0, there exists a positive integer N such that i e e
whenever p > N, ¢ - N. Since the constant function =1 belongs to €, we have,
for k={(1), the inequality ks\<f(xp) —f(.(;’,)~ ke which proves the convergence

of {f(,)}.
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Conversely, if we choose any sequence \f,(x)} of additive non-
negative functionals, the functional f, being defined in ¢, (where
n=1,2,...) subject to the condition (3), then the formula (2) deter-
mines an additive non-negative functional f(x) in €. We thus obtain
the most general additive non-negative functional f(x) defined in ¢,
and by what has been established in the preceding §, the most
general Lebesgue integral for all functions hounded and measurable ().

The set ¢, may be interpreted as the set of all function of »n
variables J,...,%, which are defined and continuous in the sphere
S+ ...+3?,<1. It is known that the most general additive and non-
negative functional defined in ¢, may be represented by a Stjeltjes
integral.

These general considerations will now be illustrated by the
following example. Suppose that the funectionals f, are given hy
the formula '

(4) fﬂ(x):/. ../x(f)],...,s”, 0,0,..) g, (3,,.n ¥ ) dF, ...d9,
1‘).{,—{—...—#19?'&11

for weE, , where ¢, denotes a fixed non-negative function integrable
in the sphere 3f+n..+19'f,<1. The condition (3) may be written in
the form
i s 92
(pn(ﬂl’ " “}n) = /(pn+ 1 (31 Iy 3117 19‘"%1) (H}n $1°

Viog— o,

"
To satisfy this condition, we may put, for instance, ¢ ,=1/2

and (p"H:g;n/z|/'1—~—3‘f—...—_3‘f1 for n>>1. We thus obtain

1
5 @ (3, )= Lo _ .
) v o9t e e

Let ¢ be an arbitrary function bounded and continuous in H.

We write again @, =2 (3, ..., 3,,0,0,...). If |, <M, where M is

a constant, then lim x,=x, |z,|<<M. N
n
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Now let F be an f-integral which for functions belonging
to € coincides with the functional f subjeet to (2). We then have
F(z)=1im F(x,) = lim f,(x,). If further f, is represented by the

n n

formula (4), then

~hm/ / 90,0, ) p (9, 00y ¥ )d9, ... S

RS LS|

and, in particular, if ¢ is given by (5),

d19 ...(l&,,
__l1mj f (B 1y 0y Fay 0,05 00) —mes E - —.
e IR R R C

S92

This formula defines explicitly a certain f-integral for all func-
tions bounded and continuous in H.

The above considerations may be extended to certain spaces
of the type (B) (c¢f. S. Banach [, Chap. V]), e. g. the spaces 17,
L' with p>1.




