An example of an orthogonal development
whose sum is everywhere different
from the developed function®

The purpose of this note is to give an example of a Fourier-like
development

f~eptep,+...

of a summable function f(¢) defined in (a, b), {y,(f)} being a complete
set of functions normalised and orthogonal in (a, b), such that

(i) the series ' ¢,y,(t) converges throughout (a, b), but
N=1

(ii) the sum of the series differs from f(¢) in every point ¢ of (a, b).
The ¢, are to be understood here as the Fourier constants of f, i.e.

b
(1) o= [fOpaD)dt  (n=1,2,..),
and we shall choose our functions as to assure the existence of the in-
tegrals (1).
THEOREM. Suppose that (i) f(t) is defined throughout (a, b), (ii) f(f) is
positive, so that

(2) fA) >0 (a<t<b),

(iii) f(¢t) is summable in (a, b), and (iv) f*(t) is not summable. Then we
can determine a complete, orthogonal, and normalised set of functions
{vn (1)}, defined and swmmable in (a, b), such that

b

(3) [fOpaydt =0 (n=1,2,...).

a

* Commenté sur p. 318.
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Tt is evident that our theorem implies the existence of the required
example, because equations (3) and definitions (1) give immediately

(4) ch% =0 (a<t<b),

and from (2) and (4) it follows that

(5) > capnll) (@ <E<D)-

Proof. Let {p,({)} be the ordinary complete and normalised trigono-
metrical set corresponding to (a, b) (*) and put

b
,{ F(®) g (t)dt

n=12..0.

(6) Og == — b
[fwar
Then
b
(7) [lant+ea®Ifdt =0 (0 =1,2,...).

The set {a,-+ga(t)} is complete; in fact, let y(t) a function integrable
together with its square in (a, b), and let us suppose

b
(8) Sloate®lymdt =0 (n=1,2,...),

b
(8" [rya>o.

The so-called “Parseval-relation” holds for the trigonometrical seb
{p.(1)} and gives
b

o b
(9) Mg = [roa,

a

which, compared with (8) and (8'), implies

(10) 2 f jy )t > 0.
= sy =V [ o =V [ e
()9’71:1/0) a),‘Pg.— b—u SlnTC = " a o8 Tr:b a0

(2) The denominator is positive, by (2).




Example of an orthogonal development 65
b
It follows that [y (f)dt + 0, and so that the series
a

(11) Ya
n=1

is convergent. But this implies, by (6), the convergence of
b

([ FO)gutt)ar)’,

1 a

(12)

D2

n

b
and so the existence of f f2(t)dt, which must be equal to (12). This is
a

f

contradictory to our hypotheses; and this contradiction shows that the
assumptions (8) and (8’) are incompatible, and so that the set {a, ¢, ()}
is complete.

Put

(13) Op+@n(l) = yu{t) (n=1,2,...).

Then {x,(?)} is a complete set of continuous functions, and we have, by
(7) and (13),

b
(14) ff(t)xn(t)dt =0 (n=12...).

We have now only to derive from {y,(t)} a new set {,({)} by the
“orthogonalisation method” of Mr. E. Schmidt to get a complete, ortho-
gonal and normalised set possessing the property (3). The v, are linear
finite forms in y,, and thus our set is composed of trigonometrical poly-
nomials.
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