Sur une propriété caractéristique des fonctions orthogonales*

Soit \(\{f_n\} \) une suite complète de fonctions continues, normales et orthogonales. Soit \(\{a_n\} \) une suite des coefficients d'une fonction continue \(\varphi \), obtenus par l'intermédiaire de la suite \(\{f_n\} \). Soit enfin \(E \) l'ensemble de toutes les suites \(\{a_n\} \) correspondant à toutes les \(\varphi \) continues possibles. Il est clair que deux suites \(\{f_n\} \) et \(\{\varphi_n\} \) peuvent engendrer le même ensemble \(E \). Nous voulons pourtant démontrer que la seule connaissance de l'ensemble \(E \) et de la suite \(\{\alpha_n\} \) suffit pour établir si la série \(\sum \alpha_n f_n \) converge uniformément, même si la suite \(\{f_n\} \) n'est pas connue, pourvu qu'elle engendre l'ensemble \(E \). C'est-à-dire que les séries \(\sum \alpha_n f_n \) et \(\sum \alpha_n \varphi_n \) sont en même temps convergentes uniformément ou non pourvu que les suites \(\{f_n\} \) et \(\{\varphi_n\} \) engendrent le même ensemble \(E \).

Des théorèmes parfaits sont encore valables dans d'autres champs fonctionnels d'un caractère plus général.

1. Considérons une fonctionnelle \(U(x) \) qui, à chaque fonction continue \(x(t) \), fait correspondre une fonction continue \(y(t) \). La fonctionnelle \(U(x) \) est continue si, en posant \(||x|| = \max |x(t)|, \lim_{n \to \infty} ||x_n - x|| = 0 \) entraîne \(\lim_{n \to \infty} ||U(x_n) - U(x)|| = 0 \). La fonctionnelle est dite linéaire si l'on a \(U(x_1 + x_2) = U(x_1) + U(x_2) \) quels que soient \(x_1 \) et \(x_2 \).

On peut démontrer le théorème suivant:

Théorème I (1). Si \(U(x) \) est une fonctionnelle linéaire et si \(\lim_{n \to \infty} ||x_n - x|| = 0 \) \(\implique \lim_{n \to \infty} \|U(x_n)|| \geq \|U(x)|| \), la fonctionnelle \(U(x) \) est continue.

Le même théorème est vrai, en supposant que \(x(t) \) et \(y(t) \) sont des fonctions de la \((1+p)\)ème puissance sommable \((p \geq 0) \) et en posant

\[
||x|| = \sqrt[p]{\int_0^1 |x(t)|^{1+p} \, dt}.
\]

* Commenté sur p. 330.

(1) Ce théorème est démontré dans ma Thèse [7].
Théorème II. Si \(\{q_n\} \) et \(\{r_n\} \) sont deux suites complètes de fonctions continues, orthogonales et normales et si, à chaque fonction continue \(x(t) \), on peut faire correspondre une fonction continue \(y(t) \) telle que pour tout \(n \)

\[
\int_0^1 x(t) q_n(t) \, dt = \int_0^1 y(t) r_n(t) \, dt,
\]

la convergence uniforme de la série

\[
\sum_{n=1}^a a_n q_n(t)
\]

entraîne celle de la série

\[
\sum_{n=1}^a a_n r_n(t),
\]

quelle que soit la suite de nombres \(\{a_n\} \).

Démonstration. Posons \(y(t) = U[\{x(t)\}] \). Il est clair que la fonctionnelle \(U \) est linéaire. Puisque \(q_n = U(r_n) \),

\[
\int_0^1 [x_1 - x_2]^2 \, dt = \int_0^1 [U(x_1) - U(x_2)]^2 \, dt.
\]

Donc, si \(\lim_{n \to \infty} ||x_n - x|| = 0 \), on a

\[
\lim_{n \to \infty} \int_0^1 [U(x_n) - U(x)]^2 = 0
\]

et par conséquent

\[
\lim_{n \to \infty} ||U(x_n)|| \geq ||U(x)||.
\]

Or cette inégalité, d'après le théorème I, prouve que \(U \) est continue. Puisque

\[
U \left(\sum_{i=1}^n a_i q_i \right) = \sum_{i=1}^n a_i r_i,
\]

la convergence uniforme de la série \(\sum_{n=1}^\infty a_n q_n \) entraîne celle de la série \(\sum_{n=1}^\infty a_n r_n \). Le théorème est donc démontré.

2. Soit \(\{r_n\} \) une suite complète de fonctions orthogonales, normales, sommable de la \((1 + p)\)ème puissance \((p > 0)\). Supposons en outre que chaque fonction \(f \) sommable de la \((1 + 1/p)\)ème puissance soit presque
partout nulle, si l'on a pour tout \(n, \int_0^1 f_{n} \varphi = 0 \). En s'appuyant sur un
théorème de M. F. Riesz (1), on peut maintenant démontrer le lemme
suivant:

*Si la fonction \(f \) et les fonctions d'une suite \(\{f_n\} \) sont des fonctions som-
miables de la \((1+1/p)\)\(ième \) puissance, et si l'on a, pour tout \(i \),
\[
\lim_{n \to \infty} \int_0^1 f_n \varphi_i = \int_0^1 f \varphi_i,
\]
alors
\[
\lim_{n \to \infty} \int_0^1 |f_n|^{1+1/p} = \int_0^1 |f|^{1+1/p}.
\]

En s'appuyant sur le lemme précédent, on peut maintenant dé-
montrer, de la même manière que le théorème II, le théorème suivant:

*Si \(\{\varphi_n\} \) et \(\{\psi_n\} \) sont deux suites qui remplissent les condi-
tions du lemme et si à chaque fonction \(\phi(t) \) sommable de la \((1+1/p)\)\(ième \) puissance, on peut
faire correspondre une fonction \(\psi(t) \) sommable de la \((1+1/p)\)\(ième \) puissance
telle que pour tout \(n \)
\[
\int_0^1 \phi(t) \varphi_n(t) dt = \int_0^1 \phi(t) \psi_n(t) dt,
\]
la convergence en moyenne par \((1+1/p)\)\(ième \) puissance de la série \[\sum_{n=1}^{\infty} a_n \varphi_n \]
entraîne celle de la série \[\sum_{n=1}^{\infty} a_n \psi_n \].

Remarque. On peut énoncer de pareils théorèmes pour les divers
procédés sommatoires.

\(^{(1)}\) F. Riesz, Untersuchungen über Systeme integrierbarer Funktionen (Math-
ematische Annalen 69 (1910), p. 469-467): si \(p \) et \(M \) sont deux nombres positifs et si
\(\{\varphi_n\} \) est une suite de fonctions telle que \[\int_0^1 |\varphi_n|^{1+p} < M \], il existe une suite partielle
\(\{\varphi_{n_k}\} \) et une fonction \(\varphi \) telle que: 1° \[\int_0^1 |\varphi|^{1+p} < M \]; 2° pour chaque fonction \(f \) de la
\((1+1/p)\)\(ième \) puissance sommable on a
\[
\lim_{k \to \infty} \int_0^1 f \varphi_{n_k} = \int_0^1 f \varphi.
\]