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INTRODUCTION

The purpose of this survey is to present some results in the fields
of the theory of Banach spaces which were initiated in the monograph
Théorie des operations linéaires. The reader interested in the theory of
functional analysis and the development of its particular chapters is referred
to the Notes and Remarks in the monograph by Dunford and Schwartz [1],
and to the Historical Remarks of .Bourbaki [2] (*).

The extensive bibliography at the end of this survey concerns only
the fields which are discussed here, but even in this respect it is not
complete. Large bibliographies of various branches of functional analysis
can be found in the following monographs: Dunford and Schwartz [1],
Kothe [1], Lacey [1], Lindenstrauss and Tzafriri [ 1], Semadeni [1], Singer [1].

Banach’s monograph Theorie des opérations linéaires is quoted in this
survey as [B]. When writing, for instance, [B], Rem. V, §2, we refer to
“Remarques” to Chapter V, §2 of the monograph.

Some recent information is contained in the section “Added in proof”.

Notation and terminology. We attempt to adjust our notation to that
which is now commonly used (e.g. in Dunford and Schwartz [1]) and which
differs to some extent from the notation of Banach.

We use the symbols I?, I?, C, ¢, c¢,, s instead of Banach’s: (LP),
(I, etc. Also we write L* and [° instead of (M) and (m). We shall often
deal with the following natural generalizations.

1. Let 1 < p < 0. Let u be a non-trivial measure defined on a sigma-
field X of subsets of a set S. For any u-measurable scalar-valued function
f defined on S, we let

If 1, = (glf(S)I"u(dS))”” for 1<p<o0;

1 Wl = ess sup [/ (s)]-

(*) Numbers in brackets refer to the “Bibliography” as well as to the “Additional
bibliography”.
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I?(w) is the Banach space (under the norm |- || p) of all classes of almost
everywhere equal functions f defined on S such that | S, < co.

If S is an arbitrary non-empty set and p is the measure defined for
all subsets A of S by letting u(4) = oo if A is infinite and 1(A) = the
cardinality of 4 otherwise, then the resulting space IP(u) will be denoted
by 7(S).

In the case where S is finite and has n elements, the space IP(S)
will be denoted by IP.

2. By ¢, (S) we denote the closed linear subspace of I™(S) consisting
of points fel™(S) such that, for every 6 > 0, the set {seS:|f(s)| > o}
is finite.

3. By C(K) we denote the Banach space of all continuous scalar-valued
functions defined on a compact Hausdorff space K, with the norm

= sup Lf (Bl

We shall be concerned with the Banach spaces over the fields of both
real and complex scalars.

By a subspace of a Banach space X we shall aways mean a closed
linear subspace of X. :

For any Banach space X, we denote by X* and X** the dual (conju-
gate) and the second dual (second conjugate) of X. If T: X—>Y is a con-
tinuous linear operator, then T* and T** denote the conjugate and the
second conjugate operator of T.

In the sequel we shall use the phrases “linear operator”, “continuous
linear operator” and “bounded linear operator” as synonyms; the same
concerns “linear functionals”, etc. :

The phrase “opération linéaire totalement continue” is translated as
“compact linear operator”.

By a projection on a Banach space X we shall mean a bounded linear
projection, ie. a bounded linear operator P: X —X which is an idempotent.
A subspace of X which is a range of the projection is said to be comple-
mented in X.



CHAPTER 1

/

§ 1. Reflexive and weakly compactly genmerated Banach spaces
Related counter-examples

Théoréme 13 in [B], Chap. XI, was a starting point for many investi-
gations. In order to state the results let us recall several, already standard,
definitions.

The weak topology of a Banach space X is the weakest topology in
which all bounded linear functionals on X are continuous. A subset W< X
is said to be weakly compact if it is compact in the weak topology of X;
W is said to be sequentially weakly compact if, for every sequence of elements
of W, there is a subsequence which is weakly convergent to an element of W.
The map »: X—-X** defined by (xx)(x*) = x*(x) for xe X, x*e X* is called
the canonical embedding of X into X**. A Banach space X is said to be
reflexive if »(X) = X** Banach’s Théoréme 13, which we mentioned at the
beginning, characterizes reflexive spaces in the class of separable Banach
spaces. The assumption of separability turns out to be superfluous. This is
a consequence of the following fundamental fact, discovered by Eberlein [1]
and Smulian [1].

1.1. A subset W of a Banach space X is weakly compact if and only
if it is sequentially weakly compact.

A simple proof of 1.1 was given by Whitley [1]. For other proofs and
generalizations see Bourbaki [1], K6the [1], Grothendieck [1], Ptak [1],
Pelczyniski [1].

From 1.1 we obtain the classical characterization of reflexivity genera-
lizing Théoréme 13 in [B], Chap. XI.

1.2. For every Banach space X the following statements are equivalent:

(i) X is reflexive.

(1) The unit ball of X is weakly compact.

(iii) The unit ball of X is sequentially weakly compact.

(iv) Every separable subspace of X is reflexive.

I3 — Oeuvres t. il
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(v) Every descending sequence of bounded nonempty convex closed sets
has a nonempty intersection.

(vi) X* is reflexive.

Many interesting characterizations of reflexivity have been given by
James [4], [5]. One of them, James [3], is theorem 1.3 below (see James [6]
for a simple proof). For simplicity we shall state this theorem only for
real spaces.

1.3. A real Banach space X is reflexive if and only if every bounded
linear functional on X attains its maximum on the unit ball of X.

It is interesting to compare 1.3 with the following theorem of Bishop
and Phelps [1] (see also Bishop and Phelps [2]).

14. For every real Banach space X, the set of bounded linear Sfunctionals
which attain their least upper bounds on the unit ball is norm-dense in X*.

The reader interested in other characterizations of reflexivity is referred
to Day [1], to the survey by Milman [1], to K&the [1] and the refe-
rences therein. ‘

James supplied counter-examples showing that the assumptions of
Theoréme 13 in [B], Rem. XI, in general cannot be weakened and answering
questions stated in [B], Rem. XI, §9.

ExampLe 1 (James [2]). Let J be the space of real or complex sequences
X = (x(j))1<j<~ such that liﬁn x(j) = 0 and

1xll = sup (1x (p1) =X (p2) 1> +... +[x (= 1) — X (P> +1x (p) — x (P22 < o0,

where the supremum is extended over all finite increasing sequences of indices
Pp<pp<..<p,(m=1,2,.)

It is easily seen that J under the norm |-|| is a separable Banach
space.

1.5. The space J has the following properties:

(a) J is isometrically isomorphic to J**.

(b) %(J) has codimension 1 in J**, i.e dim J**/x(J) = 1.

(c) There is no Banach space X over the field of complex numbers

which, regarded as a real space, is isomorphic to the space J of real
sequences (Dieudonné [1]).

(d) The space JxJ is not isomorphic to any subspace of J (Bessaga
and Pelczynski [1]).

(e) J is not weakly complete but has no subspace isomorphic to Co-

Statement (d) answers a question in [B], Rem. p. 214. Other examples
of Banach spaces non-isomorphic to their Cartesian squares have been
constructed by Semadeni [1] (cf. 11.20 in this article) and by Figiel [1].
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Figiel’s space is reflexive, while the dual of Semadeni’s space is isomorphic
to its Cartesian square.

In connection with question 1° in [B], Rem. XII, p. 215, we shall
mention that all subspaces of codimension one (ie. kernels of continuous
linear functionals) of a given Banach space are isomorphic to each other
but it is not known whether there exists an infinite-dimensional Banach
space which is not isomorphic to its subspace of codimension one. However,
there exist infinite-dimensional normed linear spaces (Rolewicz [1] and Du-
binsky [1]) and infinite-dimensional locally convex complete linear metric
spaces (Bessaga, Pelczynski and Rolewicz [1]) with this property.

Now we shall discuss another example of James [8].

ExampLE 2. Let I = {(n, )n=20,1,2,..;0<i< 2"}. Call a segment
any subset of I of the form (n,i,),(n+1,1i,),...,(n+m,i,) such that
0<iy,—2p <lfork=1,2,...,m—1 (n,m=0,1,...). Let F denote the
space of scalar-valued functions on I with finite supports. The norm on F
is defined by the formula

Ixl =sup (Y | ¥ x|},

g=1 (n,i)eSq

with the supremum taken over all finite systems of pair-wise disjoint
segments S;,S;,...,S,. The completion of F in the norm |-| will be
denoted by DJ.
1.6. The Banach space DJ has the following properties (James [8]):
(@) DJ is separable and has a non-separable dual.

(b) The unit ball of DJ is conditionally weakly compact, i.e. every bounded
sequence (x,) of elements of DJ contains a subsequence (x,) such that
lim x*(x, ) exists for every x*e(DJ)*.

(c) Every separable infinite-dimensional subspace E of the space (DJ)*
contains a subspace isomorphic to the Hilbert space I°.

(d) No subspace of DJ is isomorphic to I'.

(¢) If B is the closed linear subspace of (DJ)* spanned by the functio-
nals f, for 0<i<2 n=0,1,..., where f,;(x) = x(n,i) for xeDJ, then
B* = DJ and the quotient space (DJ)*/B is isomorphic to a non-separable
Hilbert space (Lindenstrauss and Stegall [1]).

Property (b) of the space J and property (e) of DJ suggest the fol-
lowing problem: Given a Banach space X, does there exist a Banach
space Y such that the quotient space Y**/x(Y) is isomorphic to X?
This problem is examined in the papers by James [7], Lindenstrauss [5],
Davis, Figiel, Johnson and Pelczyfiski [1]. The results already obtained in
this respect concern an important class of WCG Banach spaces.

A Banach space X is said to be WCG (an abbreviation for weakly
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compactly generated) if there exists a continuous linear operator from a re-
flexive Banach space to X whose range is dense in X (cf. Amir and Linden-
strauss [1], Davis, Figiel, Johnson and Pelczynski [1]). Obviously, every
reflexive Banach space is WCG; also, it is easy to show that every separable
space is WCG. We know that (Davis, Figiel, Johnson and Pelczynski [1]).

1.7. For every WCG Banach space X there exists a Banach space Y such
that the quotient space Y**/x(Y) is isomorphic to X.

Setting Z = Y*, we obtain
1.8. If X is a WCG Banach space, then there exists a bounded linear
operator Z: Z* — X such that Z** is a direct sum of %(Z) and the subspace

T*(X) which is isometrically isomorphic to X*.

Moreover, if X is separable, then the space Z above can be so constructed
that Z* is separable and has a Schauder basis (Lindenstrauss [5]).

The WCG spaces have been introduced by Amir and Lindenstrauss [1].
They share many properties of finite-dimensional Banach spaces. Amir and
Lindenstrauss [1] proved the following:

1.9. If X is a WCG Banach space, then for every separable subspace E
of X there exists a projection P: X—X of norm 1 whose range P(X)
contains E and is separable.

The last result is a starting point for several theorems on renorming
WCG spaces. Recall that, if E is a normed linear space with the original
norm |||, then a norm p: E—R is equivalent to ||| if there is a constant
a > Osuch that a ' p(x) < [x| < ap(x) for xe X. Troyansky [1] has proved
the following:

1.10. For everv WCG Banach space X there exists an equivalent norm p
which is locally uniformly convex, i.e. for every xeX with p(x) =1 and for
every sequence (x,) in X, the condition lim p(x,) = 27! lim plx+x,) =1
implies lim p(x—x,) = 0. " "

In particular, the norm p is strictly convex, ie. p(x)+p(y) = pix+y)
implies the linear dependence of x and y. '

Assertion 1.10 for separable Banach spaces is due to Kadec [1], 121
The existence of an equivalent strictly convex norm for WCG spaces has
been established by Amir and Lindenstrauss [1].

In connection with 1.10 let us mention the following result of Day [2]:

L11. The space 1*(S) with uncountable S admits no equivalent strictly
convex norm.

More information on renorming theorems can be found in Day [1]
and papers by Asplund [1], [2], Lindenstrauss [6], Troyansky [1], Davis
and Johnson [1], Klee [1], Kadec [2], Kadec and Peiczynski [2], Whitfield
[1], Restrepo [1].
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In contrast to the case of separable and reflexive Banach spaces we
have (Rosenthal [1])

1.12. There exists a Banach space X which is not WCG but is iso-
morphic to a subspace of a WCG space.

Concluding this section, we shall discuss one more example.

ExampLe 3 (Johnson and Lindenstrauss [1]). Let S be an infinite family
of subsets of the set of positive integers which have finite pair-wise inter-
sections (cf. Sierpinski [1]). Let E, be the smallest linear variety in [*
containing all characteristic functions y, for 4e§ and all sequences tending
to zero. It is easily seen that the formula

iyl = “X+ Z Ca; Al « +( Z ICA,-|2)1/2 for y= z Ca; X4;
j=1 Jj=1 j=1

where xecy and A4,,...,4,€S (n=1,2,..)), defines a norm on E,. The
coefficient . functionals ¢,(y) = y(k) for yeE, are continuous in this norm.
Let E be the Banach space which is the completion of E, in the norm
IIl- Il and let f, be the continuous linear functional on E which extends g,
(k=1,2,...). Then

1.13. The space E has the following properties:

(a) The linear functionals f,,f,, ... separate points of E.

(b) E is not isomorphic to a subspace of any WCG space, in particular
E is not isomorphically embeddable into [*.

(c) E* is isomorphic to the product I' x12(S), hence it is WCG.



CHAPTER 1II

Local properties of Banach spaces

§ 2. The Banach-Mazur distance and projection constants

The distance between isomorphic Banach spaces introduced in [B],
Rem. XI, §6, p. 212, plays an important role in the recent investigations
of isomorphic properties of Banach spaces, and in particular in the study
of the properties of finite-dimensional subspaces of a given Banach space X,
which are customarily referred to as the “local properties” of the space X.

Let a > 1. Banach spaces X and Y are said to be a-isomorphic if
there exists an isomorphism T of X onto Y such that IT- 1T~ < a.
The infimum of the numbers a for which X and Y are a-isomorphic is
called the Banach-Mazur distance between X and Y and is denoted by
d(X,Y). Obviously l-isomorphisms are the same as isometrical isomor-
phisms.

2.1. There exist Banach spaces Xo, Xy with d(X,,X,) =1 which are
not isometrically isomorphic.

Proof. Consider in the space c, two norms

Ix]; = sup Ix(]')|+(21 7%+ for  x = (x(j)); i=0, 1.

J J= -
For i=0,1, let X; be the space ¢, equipped with the norm I-1;. For
n=12,.,let T,: Xo—X, be the map defined by

(x(1), x(Q2),...) > (x(m), x(1), ..., x(n—1), x(n+ 1), )

Then each T, is an isomorphism of X, onto X ; and lim | T, ) |77 = 1.

Hence d(X,, X,;) = 1. On the other hand, the norm || - o is strictly convex
(for the definition see. section 1 after 1.10) while | - ||, is not. Therefore X,
is rot isometrically isomorphic to X, .

Let us mention that d(c, c,) = 3, which is related to a question in [B],
Rem. XI, § 6, pp. 212-213. Interesting generalizations of this fact are due to
Cambern [1] and Gordon [1]; see also 10.19 and the comment after it.
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From the compactness argument it follows that, for arbitrary Banach
spaces X, Y of the same finite dimension, there exists a d(X, Y)-isomorphism
of X onto Y. ‘

The following important estimation is due to John [1]:

2.2. If X is an n-dimensional Banach space, then d(X,1}) < ﬁ .

Since d(I*, I?) = \/; (cf. 2.3), the estimation above is the best possible.
The exact rate of growth of the sequence (d,), where d, = sup {d(X,Y):
dim X = dim Y = n}, is unknown. From 2.2 and the “triangle inequality”
d(X,Z) < d(X,Y)-d(Y, Z) it follows that ﬁ <d, <nforn=1,2,..

The computation of the Banach-Mazur distance between given isomor-
phic Banach spaces is rather difficult. Gurarii, Kadec and Macaev [1], [2]
have found that

23. If either 1 < p<g<2o0r2<p<gqgs< w0, then
A, 19 =n'?"Y  (n=1,2,..);
fl1<p<2<gq< 0, then '
(f——l)d(l" 19 < max (nl/P~ 12 pl2-1e) \/id(lﬁ, B mw=1,2,..).

For generalizations of 2.3 to the case of spaces with symmetric bases
and some matrix spaces see Gurarii, Kadec and Macaev [2], [3], Garling
and Gordon [1].

Estimations of the Banach-Mazur distance are related to the computa-
tion of so called “projection constants”. Let a > 1 and let X be a Banach
space. A subspace Y of X is a-complemented in X if there exists a linear
projection P: X =Y with |P| € a. The infimum of the numbres a such

that Y is a-complemented in X will be denoted p(Y, X). For any Banach
space E we let

p(E) = sup p(i(E), X),

where the supremum is extended over all Banach spaces X and all iso-
metrically isomorphic embeddings i: E—~X. The number p(X) is called the
projection constant of the Banach space E.

In general, if dim E = co, then p(E) = co. No characterization of the
class of Banach spaces E with p(E) < co is known (cf. section 11). The
projection constant of a Banach space E is closely related to extending
linear operators with values in E.

2.4, Let E be a Banach space. If p(E) < oo, then, for every triple
(X, Y, T) consisting of a Banach space X, its subspace Y and a continuous

linear operator T: Y—E and for every ¢ > 0, there exists a linear operator
T: X—E such that

(%) Textends T and |T| < C-|T|
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with C = p(E)+e¢. Conversely, if for every triple (X, Y, T) there is a T
satisfying (x), then p(E) < C. We have P(E) = oo if and only if there exists
a triple (X, Y, T) such that T admits no extension to a bounded linear
operator defined on the whole of X.

Using the theorem of John 2.2, Kadec and Snobar [1] have shown that

25. If dim X = n, then p(X) < /n (n = 1,2,..).

The estimation 2.5 gives the best rate of growth. We find that
(Griinbaum [1], Rutowitz [1], Daugavet [1])

26. p(2) = -2 pr <%)/r<"*2'1> ~ 2 (= 2,3,..).

Rutovitz [1] and Garling and Gordon [1] estimated projection con-
stants of the spaces I?.

27.If 2 < p < 0, then p(I) = n'®o (n), where 1/\/5 < o, < o, m)
=1l (=12.) If 1<p<2, then p(I") = n'Zo,(n), where 1 > a, (n)
~1

> <sinh %) n=1,2,..).

Remark. Theorem 2.7 concerns real spaces 7, however, in the complex
case the rate of growth is the same.

For generalizations of 2.7 to spaces with symmetric bases see Garling and
Gordon [1] and the references therein.

By 2.7 we have in particular pl?) =1 for n=1,2,...; the last pro-
perty isometrically characterizes the spaces [’ in the class of finite-dimen-
sional Banach spaces (see Nachbin [1] and 10.15).

It is easy to show that p(X) < d (X, I?) for every n-dimensional Banach
space X. It is not known whether the quantities p(X) and d(X, [*) are of
the same rate of growth, ie. whether there exists a constant X > 0
independent of n and such that d(X, 1Y) < Kp(X) for every n-dimensional
Banach space X. Also, the numbers

¢, =sup {p(X): dimX =n} for n=2,3,..

have not been computed. Some results concerning the last problem are
given in Gordon [2].

The Banach-Mazur distance and projection constants are connected
with other isometric invariants of finite-dimensional Banach spaces. The
asymptotic behaviour of these invariants in some classes of finite-dimen-
sional Banach spaces with the dimensions growing to infinity gives rise to
isomorphic invariants of infinite-dimensional Banach spaces. These problems
have many points in common with the theory of Banach ideals. The inte-
rested reader is referred to Grothendieck [5], [6], Lindenstrauss and Pel-
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czyniski [1], Pietsch [1] with references, Gordon [2], [3], [4], Garling and
Gordon [1], Gordon and Lewis [1]. Gordon, Lewis and Retherford [1],
[2], Snobar [1], Pietsch [1], Milman ‘and Wolfson [1], Figiel, Lindenstrauss
and Milman [1].

§ 3. Local representability of Banach spaces

The following concept, introduced by Grothendieck [6] and James [10],
originates from the Banach-Mazur distance.

Let a > 1. A Banach space X is locally a-representable in a Banach
space Y, if for every b > a every finite-dimensional subspace of X is
b-isomorphic to a subspace of Y. If X is locally a-representable in Y and
Y is locally a-representable in X, we say that X is locally a-isomorphic
to Y. The space X is said to be locally representable in Y (locally iso-
metric to Y) if X is locally 1-representable in Y (locally 1-isomorphic
to Y).

First, we shall discuss the problem of finding Banach spaces with
are locally representable in the spaces /7 (1 < p < ) and ¢,. We know
(Grothendieck [5], Joichi [1], cf. also 9.7) that

3.1. A Banach space X is locally a-representable in > if and only if
X is a-isomorphic to 2.

Theorem 3.1 can be generalized to the case of /P with 1 < p<
(Bretagnolle, Dacunha-Castelle and Krivine [1], Bretagnolle and Dacunha-
Castelle [1], Dacunha-Castelle and Krivine [1], Lindenstrauss and Pel-
czynski [1]) as follows:

32 Let1 < p < ooandleta> 1. A Banach space X is locally a-repre-
sentable in [P if and only if X is a-isomorphic to a subspace of a space
L (u) (in particular to a subspace of IP when X is separable).

Thus, by the results of Schoenberg [1], [2], the local representability
of a Banach space X in some /7 for 1 < p < 2 can be characterized by
the fact that the norm of X is negative definite. For 2n < p < 2n+2
(n = 1,2,...) more sophisticated conditions have been found by Krivine [1].

The last theorem is also valid for p = oo. In fact, we have

3.3. (1) For every cardinal n = N,, there is a compact Hausdorff space
K such that the topological weight of the space C(K) is n and every Banach
space whose topological weight is < n is isometrically isomorphic to a subspace
of the space C(K).

(i1) Every Banach space is locally representable in the space c,.

Statement (i) generalizes the classical Banach-Mazur theorem ([B],
Chap. XI, Théoréme 9), which says that every separable Banach space
is isometrically isomorphic to a subspace of C. The proof of (i) is almost
the same as-that of Théoréme 9 but, instead of using the fact that every
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compact metric space is a continuous image of the Cantor set, it employs
the theorem of Esenin-Volpin [1] (which was proved under the continuum
hypothesis), stating that for every cardinal n > N, there is a compact
Hausdorff space K of the topological weight n suach that every compact
Hausdorff space of topological weight < n is a continuous image of K.

Statement (i) follows from the fact that every centrally symmetric
k-dimensional polyhedron with 2n vertices is affinely equivalent to the
intersection of the cube [—1,1]" (the unit ball of the space [°) with
a k-dimensional subspace of I? for k = 1,2,....n >k (Klee [2]).

Next consider the problem: Given pe[1, o], characterize Banach spaces
in which 7 is locally representable. We present answers for p = 1,2, 0.
(The case of arbitrary p, due to Krivine [2] (cf. also Maurey and Pisier [3],
Rosenthal [9]) is much more difficult.) The following beautiful result is due
to Dvoretzky [1]:

34. The space I* is locally representable in every infinite-dimensional
Banach space.

This result is a simple consequence of the following fact concerning
convex bodies:

3.5 (Dvoretzky’s theorem on almost spherical sections). For every ¢ > 0
and for every positive integer k, there exists a positive integer N = N (k, ¢)
such that every bounded convex body (= convex set with non-empty interior)
B in the real or complex space I3 which is symmetric with respect to the
origin admits an intersection with a k-dimensional subspace Y which approxi-
mates up to & a Euclidean k-ball, i.e.

sup {|[x||: xe Y nK}/inf {||x|: xe Y'\K} < 1+e.

The proof of the real version of 3.5 is due to Dvoretzky [2] (previously
it was announced in Dvoretzky [1]). Some completions and simplifications
can be found in Figiel [2]. An essentially simpler proof, based on a certain
isoperimetric theorem of P. Levy, has been given by Milman [2], cf. also
Figiel, Lindenstrauss and Milman [1]. The proof of Figiel [5] basing on an
idea of Szankowski [1] is short and elegant.

Banach spaces with unconditional bases (for the definition see §7)
have the following property (Tzafriri [1y:

3.6. If X is an infinite-dimensional Banach space with an unconditional
basis, then there exsist a constant M, a sequence of projections P,: X—X with
1Pl < M for n=1,2,... and a pe{1,2, w0} such that sup d(P,(X), ) < M.

The proof of 3.6 is based on the Brunel-Sucheston [1] technique of
constructing sub-symmetric bases, which employs a certain combinatorial
theorem of Ramsey [1]. A similar .argument yields also the following
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weaker version of Dvoretzky’s theorem: For every infinite-dimensional Banach
space X there is an a > 1 such that I* is a-representable in X.

Characterizations of Banach spaces in which ¢,, equivalently [, is locally
represented are connected with the theory of random series. Recall that
a measurable real function ¥ on a probabilistic space (2, y) is called
a standard Gaussian random variable if

2
e 2 gs.

1
pl{weQ: f(w) <t} =
</ 2n P
The Rademacher functions (r))1<j<~ are defined on the interval [0, 1] by
the formula '
ri(t) = sgnsin Ve, j=1,2,..
We have

3.7. For every Banach space X the following statements are equivalent:

(i) The space c, is not locally a-representahle in X for any a > 1.

(ii) The space c, is not locally representable in X.

(iii) The space ¢, is not locally representable in the product space
(XxXx..)p for any pe[l, o).

(iv) There are a qe[2, ) and a constant C > 0 such that

n 1 n
(X Ixpe< | 3 r@x]de
j=1 0 j=1

or arbitrary x,,....,x,eX and n =1,2,...
y 1 n

(v) For every sequence (x,) of elements of X and for every sequence of
independent standard Gaussian random variables, the series ) f, (w)x, converges

almost everywhere iff so does the series. Y. r,(t)x,.
n

The equivalence between (i) and (ii) has been proved by Giesy [1].
The other implications in 3.7 are due to Maurey and Pisier [2]. Other
equivalent conditions, stated in terms of factorizations of compact linear
operators, can be found in Figiel [3].

The next theorem characterizes Banach spaces in which the space [,
is not locally representable.

3.8. For every Banach space X the following statements are equivalent:
(i) The space 1' is not locally a-representable in X for any a > 1.
(i) The space I' is not locally representable in X.

(iii) The space I' is not locally representable in the product space
(X x X x..)p for any pe(l, o).
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(iv) There are a qe(1, 0©) and a constant C > O such that

H| Z ri() x| de < Z Ixil o)

for arbitrary x,,...,x,€X and n=1,2,...
(v) There are a qe(l1, ©) and a constant C > O such that

1
ess inf [ Z ) x| < Z [l x;14)+
for arbitrary x;,....,x,€X and n = 1,2, ...

The equivalence between (i) and (ii) has been proved by Giesy [1]. The
other implications in 3.8 are due to Pisier [1].

Let us notice in connection with 3.7 and 3.8 that if a Banach space X
has a subspace isomorphic either to I' or to c,, then, for every a > 1,
there is a subspace of X which is a-isomorphic to I' or ¢,, respectively
(James [9]). It is not known whether the spaces P with 1 < p < oo have
an analogous property.

Obviously, if a Banach space X has a subspace isometrically isomorphic
to a space I” or c,, then the space I or c,, respectively, is locally a-repre-
sentable in X for some a > 1. Converse implications are, in general, false.
The spaces I” for 1 < p < o0, p # 2, and ¢, do not contain any subspace
isomorphic to I? (cf. 12.) in contrast to Dvoretzky’s theorem 3.5. Even more
“pathological” in this respect is the example due to Tzirelson [1]. Below we
present a modified version of this example given by Figiel and Johnson [2].

ExampLE. Let E, be the space of all scalar sequences having at most
finitely many non-zero coordinates and let (|| - ||,) be the sequence of norms
on E, defined by

Ixllo = sup lx @),

vU)
Ixln+y = max (Ixll,, 3 Z | Z
i=v({i-1)+1
where ¢; = (0,0, . peees 1 ) and the supremum is extended over all increas-
the zt pace

ing finite sequences of indices v(0) < v(1) < ... < v(m) such that v(0) > m
Let

x| = lim ||x||, for xek,.

It is easy to show that the limit above exists. Let E be the completion
of E, in the norm | -||. Then

3.9. E is a separable Banach space with an unconditional basis which does
not contain isomorphically any space I (1 < p < o) or c,.
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Concluding this section, we shall state a theorem of general nature
indicating the difference between the local and the global structure of Banach
spaces. '

3.0 (The Principle of Local Reflexivity). Every Banach space is locally
isometric to its second dual.

This fact is a consequence of the following result. (For simplicity we
identify the Banach space X with its canonical image »(X) in X **)

3.11. Let X be a Banach space, let E and G be finite-dimensional sub-
spaces of X** and X*, respectively, and let 0 < ¢ < 1. Assume that there
is a projection P of X** onto E with |P|| < M. Then there are a conti-
nuous linear operator T: E — X and a projection P, of X onto T(E)
such that

(@) T{e) = e for eeEnX.

(b) f(Te) = e(f) for ecE and feG.

© ITI- 1T < 1+e.

@) [Poll < M(1+2).

Moreover, if P = Q* where Q is a projection of X* into X*, then the
projection P, can be chosen so as to satisfy (d) and the additional condition

(e) P§*(x**) = P(x**) whenever P(x**)eX.

Theorem 3.10. and a part of 3.11 have been given by Lindenstrauss
and Rosenthal [1]. Theorem 3.11 in the present formulation is due to
Johnson, Rosenthal and Zippin [1]. For an alternative proof see Dean [1].

§ 4. The moduli of convexity and smoothness; super-reflexive Banach spaces
Unconditionally convergent series

Intensive research efforts have been devoted to the invariants of the
local structure of Banach spaces related to the geometrical properties of
their unit spheres. In this section we shall discuss two invariants of this
type: the modulus of convexity (Clarkson [1]) and the modulus of
smoothness (Day [3]). ,

Let X be a Banach space; for t > 0, we set

ox (@) = inf {I=%lIx+yl: Ixl = Iyl =1, |x—yl = 1},
ox(®) = ysup {Ix+yl+lx—yl—2: x| = 1, [yl = .

The functions 6y and gy are called, respectively, the modulus of convexity
and the modulus of smoothness of the Banach space X. The space X is
said to be uniformly convex (resp. uniformly smooth) if éx(¢f) > 0 for t > 0

(resp. limo ox (O/t = 0).
t>
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The moduli of convexity and smoothness are in a sense dual to each
other. We have (Lindenstrauss [8], cf. also Figiel [6]).

4.1. For every Banach space X, gx+(t) = sup (ts/2—x(s)).
0$322

The next result characterizes the class of Banach spaces for which
one can define an equivalent uniformly convex (smooth) norm.

4.2. For every Banach space X the following conditions are equivalent:

(@) X is isomorphic to a Banach space which is both uniformly convex
and uniformly smooth.

(b) X is isomorphic to a uniformly smooth space.
(¢) X is isomorphic to a uniformly convex space.

(d) Every Banach space which is locally a-representable in X, for some
a > 1, is reflexive.

(¢) Every Banach space locally representable in X is reflexive.

(fy The dual space X* satisfies conditions (a)—(e).

A Banach space satisfying the equivalent conditions of 4.2 is said to
be super-reflexive.

Theorem 4.2 is a product of combined efforts of R. C. James [10], [11]
and Enflo [2]. The implication: “(b) and (c) = (a)” has been proved by
Asplund [2]. For the characterizations of super-reflexivity in terms of
“geodesics” on the unit spheres see James and Schaffer [1], and in terms
of basic sequences, see V. I. Gurarii and N. I. Gurarii [1] and James [12].

If X is a super-reflexive Banach space, then by (e) neither I' nor ¢,
is locally representable in X. Therefore the product

IxBxBix..)p

is an example of a reflexive Banach space which is not super-reflexive.
A much more sophisticated example is due to James [13], who proved that

4.3. There exists a reflexive Banach space RJ which is not super-reflexive
but is such that 1' is not locally representable in RJ.

Clarkson [1] has shown that, for 1 < p < oo, the spaces I” and I are
uniformly convex. The exact values of dx(f) for X = I”,I° have been
computed by Hanner [1] and Kadec [5]. Their results together with 4.1
yield the following asymptotic formulas:

4.4. If X is either I” or I’ with 1 < p < oo, then
Ox(t) = a,t*+o0(t", ox(t) = b,t"+0(t™),

with k = max (2, p), m = min (2, p), where a, and b, are suitable positive
constants depending only on p. Moreover, if Y is a uniformly convex (resp.
uniformly smooth) Banach space which is isomorphic to IP or [P, then, for
small positive t, we have 6y (t) < 6,0(t) (resp. gy (t) = 012 (2).
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Orlicz spaces (ie. the spaces (o) and (O) in the terminology of [B],
pp. 202-203) admit equivalent uniformly convex norms iff they are reflexive
(see Milnes [1]).

The moduli of convexity and smoothness are connected with the pro-
perties of unconditionally convergent series in the space X. Let us notice
that the property: “the series Y €,x, of elements of a Banach space X

is convergent for every sequence of signs (€,)” is equivalent to the uncondi-
tional convergence of the series in the sense of Orlicz [3], cf. [B],
Rem. IX, §4.

We have

4.5. If ¥ e,x, with x,’s in a uniformly convex Banach space X is

n ©

convergent for every sequence of signs (g,), then Z Ox (IIx,l) < 0.

If Y e,x, with x,’s in a uniformly smooth Banach space X is divergent
n=1

for every sequence of signs (g,), then Z ox ([ x,1) = 0.

The first statement of 4.5 is due to Kadec [5], the second to Linden-
strauss [8&].
Combining 4.4 with 4.5, we obtain (Orlicz (1] [2D)

46. Let 1 <p < . If z f, is an uncondltlonally convergent series in

the space [P (or more generally, in IF(w), then Z | £1€P < oo, where
¢(p) = max (p, 2). "

The last fact is also valid for the space L!, which is non-reflexive,
and hence is not uniformly convex. We have (Orlicz [1])

4.7. If in the space L' the series Z Jn is unconditionally convergent,
then Z Ifll? < 0.

The exponents c(p) in 4.6 and 2 in 4.7 are the best possible. This
can easily be checked directly for p > 2; for 1 < p < 2 it follows from the
crucial theorem on unconditionally corvergent series due to Dvoretzky and
Rogers [1] (cf. also Figiel, Lindenstrauss and Milman [1]).

4.8. Let (a,) be a sequence of positive numbers such that Y a < oo.

n=1
Then in every infinite-dimensional Banach space X there exists an uncondi-
tionally convergent series ) x, such that |x,|| = a, for n=1,2,... In par-

n
ticular, in every infinite-dimensional Banach space there is an unconditionally

convergent series Zx such that Y |x,| = co.

n=1

Combining 48 with 4.5, we get
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4.9. For every Banach space X there exist positive constants a and b
such that 6x(t) < at* and 9x(t) = bt* for small t > 0.
Concluding our discussion, we shall state another theorem on uncondi-

tionally convergent series, which generalizes the theorem of Orlicz [1]
(mentioned in [B], Rem. IX, § 4, p. 211).

4.10. For every Banach space X the following statements are equivalent:

¢
(@) For every series ) x, of elements of X, if Y |x*(x,)| < oo for every
n n=1
x*e X*, then the series ) x, is unconditionally convergent.
n

(b) For every series Y x, of elements of X the condition
n

sup Hk;l n(®x| <

almost everywhere on [0,1] implies the unconditional convergence of the

series ) x,. (Here r, denotes the n-th Rademacher function for n = 1,2, )
n

(¢c) No subspace of X is isomorphic to c,.

The equivalence of conditions (a) and (c) is proved in Bessaga and
Pelczynski [3]. The equivalence of (b) and (c) is due to Kwapien [2].

There is ample literature concerning the moduli of convexity and smo-
othness and other related invariations of Banach spaces. In addition to
the references already given in the text, the reader may consult books by
Day [1], Chapt. VII, §2, Lindenstrauss and Tzafriri [1], [2], the surveys
by Milman [1], Zizler [1], Cudia [2], Lindenstrauss [4], [6] and papers by
Asplund [1], Bonic and Frampton [1], Cudia [1], Day [4], Day, James and
Swaminathan [1], Figiel [1], Figiel and Pisier [1], V. I. Gurarii [2], [3], [4],
Henkin [1], Lovaglia [1], Nordlander [1], [2].

The theory of unconditionally convergent series is related to the
theory of absolutely summing operators, originated by Grothendieck, and
radonifying operators in the sense of L. Schwartz, which is a branch of
measure theory in infinite-dimensional linear spaces. The interested reader
is referred to the following books and papers: Grothendieck [1], [2],
Pietsch [1], [2], [3], Persson and Pietsch [1], Lindenstrauss and Pelczyn-
ski [1], Maurey [1], Kwapien [1], L. Schwartz [1], [2].

For further information see “Added in proof”.



CHAPTER I

The approximation property and bases

There are many instances in operator theory where it is convenient to
represent a given linear operator as a limit of a sequence of operators with
already known properties. The best investigated classes of operators are finite
rank operators and compact operators, therefore it is natural to ask whether
every continuous linear operator can be approximated by linear operators
from these classes. Such a question was raised in [B], Rem. VI, § 1, p. 209.
Banach, Mazur and Schauder have already observed that the approximation
problem is related to the problem of existence of a basis, and to some
questions on the approximation of continuous functions (cf. Scottish Book
[1], problem 157). A detailed study by Grothendieck [4] published in the
middle fifties explained the fundamental role of the approximation problem
in the structure theory of Banach spaces, and that this problem arises
in various contexts (for instance, if one attempts to determine the trace of
a nuclear operator). Substantial progress was made in 1972 by Enflo [3],
who constructed the first example of a Banach space which does not have
the approximation property.

§ 5. The approximation property

We begin with some notation. By an operator we shall mean a con-
tinuous linear operator. For arbitrary Banach spaces X and Y, we denote

B(X, Y) = the space of all operators from X into Y,

K(X, Y) = the space of all compact operators from X into Y,

F(X, Y) = the space of all finite rank operators from X into Y.
For any TeB(X,Y), we let |||T||| = sup {||Tx|: |x| <1}, the operator
norm of T.

Definition. A Banach space Y has the ap (= the approximation property) -
if every compact operator with range in Y is the limit, in the operator
norm, of a sequence of finite rank operators, ie. for every Banach space X

16 — Oeuvres t. Il
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and for every KeK(X, Y), there exist F,e F(X,Y) (n = 1,2,..) such that
lim |[|F,— K]|| = 0.

The approximation property can easily be expressed in intrinsic terms
of Y. We have (cf. Grothendieck [4] and Schaefer [1], Chap. HI, §9)

5.. For every Banach space Y the following statements are equivalent :
(i) Y has the ap,

(ii) given a compact subset C of Y, there exists a finite rank operator
FeF(Y,Y) such that |Fy—y| < 1 for all yeC.

The celebrated result of Enflo [3] on the existence of a Banach space
which fails the ap has been improved by Davie [1], [2], Figiei [4] and
Szankowski [2] as follows:

S5.2. For every p €[1,00], p # 2, there exists a subspace E, of the
space I’ which does not have the approximation property. Moreover, E, < c,.

Davie’s proof is short and elegant. It uses some properties of random
series. Figiel’s proof seems to be the most clementary. For other proofs
of Enflo’s theorem and related theorems see Figiel and Pelczynski [1]
and Kwapien [4]. Kwapien’s result seems to be interesting also from the
point of view of harmonic analvsis. He has shown that

5.3. For each p with 2 < p < o0, there exist increasing sequences (ny)
and (my) of positive integers such that the closed linear subspace of I?
spanned by the functions fi(t) = e"™*™ 4 ™™ (k = 1,2,..)) fails the appro-
ximation property.

It is interesting to compare 5.2 with the observation by W. B. Johnson
[3] that there is a Banach space which is not isomorphic to a Hilbert space
but such that every subspace of the space has ap.

Starting from one example of a Banach space which does not have
the ap, one can construct further examples by passing to the dual space
and taking products, because the approximation property is preserved under
these operations. We have

5.4. Any complemented subspace of a Banach space having the ap has
the ap.

5.5. Let (E;) be a sequence of Banach spaces each having the ap. Then
the product (Eyx E;x...)» has the ap for 1 < p < 0.

3.6 (Grothendieck [4]). If X* has the ap, then so does X.

The last result is an easy consequence of the improved Local Reflexivity
Principle 3.11. »

It is interesting to note that the converse of 5.6 is false. Namely,
from 1.8 it follows that

3.7 (Lindenstrauss [S]). There exists a Banach space which has the ap
(even has a basis) but whose dual does not have the ap.
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W. B. Johnson [1] gave a simple construction of such a space. Let
(B,) be a sequence of finite-dimensional Banach spaces such that, for every
¢ >0 and for every finite-dimensional Banach space B, there exists an
index n, such that d(B, B,)) < 1+¢. Let us set

BJ = (B, xBy+..).

Then the space BJ has the following universality property:

5.8. The conjugate of any separable Banach space is isomorphic to a
complemented subspace of the space (BJ)*.

The space E, of 5.2, being separable and reflexive for 1 < p < 0,
is a conjugate of a separable Banach space. Hence, by 5.4 and 5.8, (BJ)*
does not have the ap. On the other hand, it follows from 5.5 and the
fact that every finite-dimensional Banach space has the ap that the space
BJ has the approximation property.

The next two results do not directly concern the general theory of
Banach spaces; however, they are closely related to theorem 5.2.

5.9. There exists a continuous real function [ defined on the square
[0, 11x [0, 11 which cannot be uniformly approximated by functions of the
form

g(s, 1) = Z a;f(s,t) f(s;, t)

j=1
where a,, ..., a,, are arbitrary real numbers, s, ..., S, ty,..., t,, belong to the
interval [0,1], and n = 1,2,...

5.10. We have

(a) For every real B with 2/3 < B <1 there exists a real matrix
A = (a;)){’j=1 such that

(+) A* =0, ie Y aja,=0 for i,k=1,2,..,
=1

(++) Y. sup la;if < oo,
o

(+++) Y a; # 0.

(b) If a matrix A = (a;;) satisfies (+) and (++) with B = 2/3, then

M8

ai,- = 0.
1

Grothendieck [4] has proved that 59 and 5.10 (@) for f =1 are
equivalent to the existence of a Banach space not having the ap. (The
implication “59=>52 for p = o was already known to Mazur around the

1]

i
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year 1936.) 5.10 (a) for 2/3 < B < 1 was observed by Davie [3]. 5.10 (b) is
due to Grothendieck [4].

Finally note that there are uniform algebras (Milne [1]) and Banach
lattices (Szankowski [3]) which fail to have ap.

§ 6. The bounded approximation property

In general, a proof that a particular Banach space has the approxi-
mation property shows that the space in question already has a stronger
property. Several properties of that type are discussed by Lindenstrauss [1],
Johnson, Rosenthal and Zippin [1], Grothendieck [4] and Pelczynski and
Rosenthal [1]. Here we shall only discuss the bounded approximation
property, and in the next section the existence of a Schauder basis.

Definition. A Banach space Y is said to have the bap (= the bounded
approximation property) if there exists a constant a > 1 such that, for every
& > 0 and for every compact set C — Y, there exists an FeF(X, X) such
that

(%) [Fx—x| <& for xeC and |||F||| < a.

More precisely, we then say that Y has the bap with a constant a.
It is not difficult to show that

6.1. A separable Banach space Y has the bap if and only if there
exists a sequence (F,) of finite rank operators such that

lim |F,y—y|l =0 for all yeY.

From 5.1 we immediately get

6.2. If a Banach space has the bap, then it has the ap.

Figiel and Johnson [1] have shown that the converse of 6.2 is not true.

6.3. There exists a Banach space FJ which has the ap but fails the bap.

The idea of the proof of 6.3 is the following. Let X be a Banach
space with the bap and such that X* does not have the ap, for instance
let X = BJ of 5.8. Next we make use of the following lemma:

6.4. Let Y be a Banach space and let a > 1. If every Banach space
isomorphic to Y has the bap with the constant a, then Y* has the bap.

It follows from 6.4 that, for every positive integer n, there exists
a Banach space X, isomorphic to X and such that X, does not have
the bap with any constant a less than n. We put

FJ = (X;xX,x.. ).

Clearly, every isomorphic image of a space having the ap has the
ap. Thus each X, has the ap. Hence, by 5.5, the space FJ has the ap.
On the other hand, FJ fails the bap. This follows from the fact that
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if a Banach space Y has the bap with a constant ¢ and if Z is a sub-
space of Y which is the range of a projection of norm < 1, then Z
has the bap with a constant < a.

The space FJ also has t\he following interesting property:

6.5. There is no sequence (K,) of compact linear operators such that
lim |K,x—x| = O for all xeFJ.

Indeed, the existence of such a sequence combined with the fact that
FJ has the ap would imply the existence of a sequence (F,) of finite
rank operators such that |||F,—K,||| < 27" for n = 1, 2, ... Hence we would
have li'{n |F,x—x| = 0 for all xeX, which, by 6.1, would contradict the

fact that the space FJ does not have the bap.

The result 6.5 answers in the negative a question raised in [B],
Rem. VI, § 1, p. 209.

Freda Alexander [1] has observed that, for p > 2, there exists a sub-
space X, of the space L, such that F(X,, X,) is not dense (in the norm
topology) in K(X,, X,).

Example 6.3 of Figiel and Johnson contrasts with the following deep
result (Grothendieck [4], c¢f. Lindenstrauss-Tzafriri {1] for a simple proof).

6.6. If a Banach space X is either reflexive or separable and conjugate
to a Banach space and if X has the ap, then X has the bap.

Next observe that the improved Local Reflexivity Principle 3.11 yields
an analogue of 5.6.

6.7 (Grothendieck [4]). If X is a Banach space such that X* has the
bap with a constant a, then X has the bap with a constant < a.

We conclude this section with a result which gives a characterization
of the bounded approximation property in an entirely different language.

Let S be a closed subset of a compact metric space T and let E
and X be closed linear subspaces of the spaces C(S) and C(T), respectively.
The pair (E, X) is said to have the bounded extension property, if, given
¢ > 0, every function fe E has a bounded family of extensions

D(f,e)={fow: W S, Wis open in T} = X

such that |f, w ()] < ¢ whenever te T\W.

6.8. For every separable Banach space Y the following conditions are
equivalent

(1) Y has the bap,

(i) for every closed subset of a compact metric space T, for every iso-
metrically isomorphic embedding i: Y—C(S) and for every closed linear sub-
space X of the space C(T) such that the pair (i(Y), X) has the bounded
extension property, there exists a bounded linear operator L: i(Y)—X such
that (Lf) (s) = f(s) for s€S and fei(Y). ’
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The proof of the implication (i)=-(ii) is due to Ryll-Nardzewski, cf. Pel-
czynski and Wojtaszczyk [1] and Michael and Pelczyfiski [1]. The implica-
tion (ii)= (i) has been established by Davie [2].

§ 7. Bases and their relation to the approximation property

Y

The bounded approximation property is closely connected with the
property of the existence of a basis in the space. Recall that a sequence (e,)
of elements of a Banach space X constitutes a basis for X if, for every
x€X, there exists a unique sequence of scalars (f,(x)) such that

x= 3 fie.

The map x-f,(x) is a continuous linear functional on X called the n-th
coefficient functional of the basis (e,) ([B], Chap. VIIL, §3). Let us set

S, (x) = Zlfm(x)em for xeX;n=1,2,...

Clearly (S,) is a sequence of finite rank projections with the property:
lim [, (x)—x| = 0 for xe X. Thus, by 6.1, we get

7.1. If a Banach space X has a basis, then X is separable and has the
bounded approximation property.

Hence every example of a separable Banach space which fails the bap
provides an example of a separable Banach space which does not have any
basis. No example of a Banach space which has the bap and does not have
any basis is known.

On the other hand, we have also a “positive” result relating the bap
and the existence of a basis.

7.2. A separable Banach space has the bap if and only if it is iso-
morphic to a complemented subspace of a Banach space with a basis.

This has been established by Johnson, Rosenthal and Zippin [1] and
Pelczynski [6].

Let us mention some theorems related to 7.2.

7.3 (Lindenstrauss [5], Johnson [1]). Let X be a separable conjugate
(resp. separable reflexive) Banach space. Then X has the bap if and only
if X is isomorphic to a complemented subspace of a separable conjugate
(resp. reflexive) space with a basis.

Note that, by 6.6, one can replace in 7.3 the “bap” by the “ap”.

7.4. There exists a Banach space UB, unique up to an isomorphism,
with a basis (e,) with the coefficient functionals (f,) such that:

(a) every separable Banach space with the bap is isomorphic to a com-
plemented subspace of UB;
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(b) for every basis (y,) of a Banach space Y, there exist an increasing
sequence (my) of indices, an isomorphic embedding T: Y->UB and a pro-
jection P: UB—T(Y) such that Ty, = |yle, for k=1,2,... and P(x)

= Z S (x) e, for xeUB.

Part (b) has been proved by Pelczynski [8]. (a) follows from (b) via 7.2.
Schechtman [2] gave a simple proof of 7.3 (b). Johnson and Szankowski [1],
completing 7.3 (a), have shown that if E is a Banach space such that every
separable Banach space with ap is isomorphic to a complemented subspace
of E, then E is not separable.

Still open question is “the finite-dimensional basis problem”. For
a basis (e,) with the coefficient functionals (f,), we put ‘

K(e,) = sup Sup. I ;fn(X)enH.

Next, if X is a Banach space with a basis, we let K(X) = inf K(e,) where
the infimum is taken over all bases for X. Finally, we define

K® = sup {K(X): dim X = n}.

The finite-dimensional basis problem is the following: Is it true that
lim K™ = o0.

n

It is easy to show that K® =1 and it is known that K® > 1 for
n > 2 (Bohnenblust [2]). It follows from John’s theorem 1.1 that K® < nl/2,
Enflo [4] has proved that there exists a Banach space X isomorphic to
the Hilbert space [2 and such that K(X) > 1. Using 7.2 it is easy to show
that Johnson’s space BJ of 5.8 has a basis. Thus, by 6.4, we infer that,
for each n, there exists a Banach space X, (isomorphic to BJ) with a basis
and such that K(X,) = n.

In the same way as for the ap and bap we have

7.5 (Johnson, Rosenthal and Zippin [1]). If X* has a basis, then so

does X. Conversely, if X has a basis, X* is separable and has the ap,
then X* has a basis.

On the other hand, it follows from Lindenstrauss [5] that there exists
a Banach space Z with a basis such that Z* is separable and fails the ap,
and hence Z* does not have any basis.

For the most common Banach spaces bases have been constructed.
We mention here two results of this nature.

7.6 (Johnson, Rosenthal and Zippin [1]). If X is a separable Banach
space such that either X or X* is isomorphic to a complemented subspace
of a space E which is either C or I? (1 < p < ), then X has a basis.

Let Q be a compact finite-dimensional differentiable manifold with or
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without boundary. Denote by C*(Q) the Banach space of all real functions
on Q which have all continuous partial derivatives of order < k.

77. The space C*(Q) has a basis.

In particular, for € = [0,1]x[0,1] and k = 1, we obtain a positive
answer to the question ([B], Rem. VI, §3, p. 209) whether the space
C'([0, 1] x [0, 1]) has a basis.

The proof of 7.7 is reduced to the case of concrete manifolds by the
following result of Mityagin [3]:

7.8. For a fixed pair (k,n) of natural numbers, if Q, and Q, are
n-dimensional differentiable manifolds with or without boundary, then the
spaces C*(Q,) and C*(Q,) are isomorphic.

Now 7.7 follows from Ciesielski [1], Ciesielski and Domsta [1], and
independently from Schonefeld [1], [2], where explicit constructions of bases
in C*(Q) are given, for Q being either the n-cube [0, 17" or the n-torus T"
n,k=1,2,.)

Bockariev [1] answering a question of [B], Rem. VII, §3, p. 209, has
shown that the Disc Algebra = the space of [B], Example 10, p. 32 has
a basis.

The theorem of Banach stating that

7.9. Every infinite-dimensional Banach space contains an infinite-dimensio-
nal subspace with a basis; '

-and announced in [B], Rem. VII, § 3, p. 209, has been improved and modified
in several papers (cf. Bessaga and Pelczynski [3], [4], Day [5], Gelbaum [1],
Davis and Johnson [2], Johnson and Rosenthal [1], Kadec and Pelczynski
[2], Milman [1], Pelczyniski [7]). In particular, it has been shown that

7.10 (Pelczynski [7]). Every non-reflexive Banach space contains a non-
reflexive subspace with a basis.

7.11 (Johnson and Rosenthal [1]). Every infinite Banach space which
is the conjugate of a separable Banach space contains an infinite-dimensional
subspace which has a basis and which is a conjugate space.

7.12 (Johnson and Rosenthal [1]). Every separable infinite-dimensional
Banach space admits an infinite-dimensional quotient with a basis.

The separability assumption in 7.12 is related to the open question
whether every Banach space has a separable infinite-dimensional quotient.

There is a huge literature concerning the classification of bases and
their generalizations, and also concerning the properties of special bases.
The reader may consult the books by Day [1], Lindenstrauss and Tzafriri [1],
Singer [1] and the surveys by Milman [1] and McArthur [1], where bases
in Banach spaces are discussed, the book by Rolewicz [2] and the surveys
by Dieudonné [2], [3], Mityagin [1], [2] and McArthur [1], where bases
in general linear topological spaces are treated.
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Concluding this section, we add that the question raised in [B] Rem. VII,
§ 1, p. 209 has been answered by Ovsepian and Pelczynski [1]. We have
(cf. Petczynski [97)

7.13. Every separable Banach space X admits a biorthogonal system (x,, f,)
such that |x,| =1 forn=1,2,..., li’{n I £l =1, and (a) if fe X* and f(x,) =0

for all n, then f =0, and (b) if xeX and f,(x) = 0 for all n, then x = 0.
Moreover, given c¢ > 1 the biorthogonal sequence can be chosen so that
sup [ full < e

It is unknown whether the “Moreover” part of 7.13 is true for ¢ = 1.

§ 8. Unconditional bases

A basis (e,) for a Banach space X is unconditional if
Y 1fi)x*(e)| < oo for all xeX; x*eX*,
n=1

where (f,) is the sequence of coefficient functionals of the basis (e,).

The existence of an unconditional basis in the space is a very strong
property. It determines on the space the Boolean algebra of projections (P,),
where, for any subset ¢ of positive integers, the projection P,eB(X, X)

is defined by

P, (x) = Zﬂfn(X)en,
. and, in the real case, it determines also the lattice structure on X induced
by the partial ordering: x < y iff f,(x) < f,(y) for n = 1,2,...

Several results on unconditional bases can be generalized to an arbitrary
Boolean algebra of projections, and Banach lattices. The reader is Teferred -
to Dunford and Schwartz [1], Part III, Lindenstrauss and Tzafriri [1].

To illustrate the consequences of the existence of an unconditional

basis in a Banach space, we state an already classical result due to
R. C. James [1].

8.1. A Banach space with an unconditional basis is reflexive if and only
if none of its subspaces is isomorphic either to c, or to I'.

From 8.1, 1.5 and 1.6 it immediately follows that the spaces J and DJ
defined in § 1 have no unconditional bases. In fact, these spaces cannot be
isomorphically embedded into any Banach space with an unconditional basis.
Therefore the universal space C ([B], Chap. XI, § 8) has no unconditional
basis.

The existence of unconditional bases in sequence spaces like /#
(1 < p < o), ¢, and in separable Orlicz sequence spaces (= the space (o)
in the notation of [B], Rem. Introduction, § 7, p. 201) is trivial. The next
result of Paley [2] and Marcinkiewicz [1] is much more difficult.
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8.2. The Haar system is an unconditional basis in the spaces I* for
l<p<oo.

For a relatively simple proof of this theorem see Burkholder [1].

The Paley-Marcinkiewicz theorem can be generalized to symmetric
function spaces. A symmetric function space is a Banach space E consisting
of equivalence classes of Lebesgue measurable functions on [0, 1] such that

(@ L < E c L,

(b) if fieE, f, is a measurable function on [0,_1] such that if |f;]| is
equidistributed with |f;|, then f,€E, and | fole = I fillzs.

The following result is due to Olevskii [1], cf. Llndenstrauss and Pel-
czynski {2] for a proof.

8.3. A symmetric function space E has an unconditional basis if and only
if the Haar system is an unconditional basis for E.

Combining 8.2 with the interpolation theorem of Semenov [1], we get

84. Let E be a symmetric function space and let gg(t) = |x0.alle
where x5 denotes the characteristic function of the interval [0,t]. If
1< 11_{13 inf g 28)/ge (1) < 1,]_{% sup gr(2t)/gg(t) < 2, then the Haar system is
an unconditional basis for E.

A corollary to this theorem is the following result, established earlier
in a different way by Gaposhkin [1]:

8.5. An Orlicz function space (= the space (O) in the notation of [B],
pp. 202-203) has an unconditional basis if and only if it is reflexive.

An important class of unconditional bases is that of symmetric bases.

A basis (e,) for X with the sequence of coefficient functionals (f,) is called
symmetric if, for every xe X and for every permutation p(-) of the indices,

the series ) f,(x)e,, converges.
n=1

The next result is due to Lindenstrauss [9].

8.6. Let (y,) be an unconditional basis in a Banach space Y. Then there
exist a symmetric basis (x,) in a Banach space X and an isomorphic embed-
ding T: Y—>X whose values on the vectors y, are

Ty = ¢ x, for k=1,2,...,

nk<n\nk+1

for some scalars ¢, and indices 1 < n; < n, < ...

For every symmetric basis (e,) with the coefficient functionals f,
(n=1,2,...) and for every increasing sequence of indices (n;), the operator
P: X— X defined by

0 r+1

P(x) = kZ ((nk+1_nk)!)_1' z Z fp(j)(x)ej;

=1 pelly j=n;+1
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where II, denotes the set of all permutations of the indices n,+1,..., 14,
is a bounded projection onto the subspace of X spanned by the blocks

Pyt

Y e (k=1,2,..). Hence, by 8.6, we have
j=n+1
8.7 (Lindenstrauss [9]). Every Banach space with an unconditional basis
is isomorphic to a complemented subspace of a Banach space with a sym-
metric basis.

It is not known whether the converse of 8.7 is true or, equivalently,
whether every complemented subspace of a Banach space with an uncon-
ditional basis has an unconditional basis. The question is open even for
complemented subspaces of 7 (1 < p < o0; p # 2).

The next result is similar to 7.4.

8.8. There exists, a unique up to an isomorphism, Banach space US,
with a symmetric basis such that every Banach space with an unconditional
basis is isomorphic to a complemented subspace of US. Moreover, the space
US has an unconditional but not symmetric basis (e,) with the following
property:

(%) for every unconditional basis (y,) in any Banach space Y, there exist
an isomorphic embedding T: Y—US and an increasing sequence of indices ()
such that Ty, = ||yl e,, for k =1,2,...

The existence of an unconditional basis with property () has been
established by Pelczynski [8], see also Zippin [2] for an alternative simpler
proof. Combining () with 8.7 one gets the first statement of 8.8.

In contrast to 7.5, we have

8.9. There exists a Banach space X which does not have any unc\on-
ditional basis, but its conjugate X* does.

An example of such a space is C(w®), the space of all scalar-valued
continuous functions on the compact Hausdorff space of all ordinals < w®,
whose conjugate is /' (cf. Bessaga and Pelczynski [2], p. 62 and Linden-
strauss and Pelczynski [1], p. 297). The existence of a Banach lattice without
ap (Szankowski [3]) yields that (US)* fails to have ap. (However, if X* is
separable and X has an unconditional basis, then X* also has an un-
conditional basis!)

We do not know whether every infinite-dimensional Banach space con-
tains an infinite-dimensional subspace with an unconditional basis (compare
with 7.9).

We shall end this section with the discussion of the “unconditional
finite-dimensional basis problem”, which has been solved by Y. Gordon
and D. Lewis. For an unconditional basis (e,) with the coefficient functionals
(f,), we let

K, (e) = sup {T 14, x* )l Ix] < 1, [x*] < 1.



252 A. Pelczyfiski and Cz. Bessaga

Next, if X is a Banach space with an unconditional basis, we set K, (X)
= inf K, (e,), where the infimum is taken over all unconditional bases for X.
Finally, we define

K = sup {K,(X): dim X = n}.

Let B, = B(I2,I?), the n®> dimensional Banach space of all linear
operators from the n-dimensional Euclidean space into itself.

Gordon and Lewis [1] have proved that

8.10. There exists a C >0 such that C./n < K,(B,) <./n, for
n=1,2,...

In fact, they have obtained a slightly stronger result:

811 If Y is a Banach space with an unconditional basis and Y contains
a subspace isometrically isomorphic to B,, then, for every projection P of Y
onto this subspace, we have

IP-K,(Y) > C/n,
where C > 0 is a universal constant independent of n.

The exact rate of growth of the sequence (K®™) has recently been
found by Figiel, Kwapien and Pelczynski [1] who proved that K® > C \/Z )
It follows from John’s Theorem 2.2 that K < \/n.



CHAPTER 1V

§ 9. Characterizations of Hilbert spaces in the class of Banach spaces

The problems concerning isometric and isomorphic characterizations of
Hilbert spaces in the class of Banach spaces, posed in [B], pp. 213-214,
have stimulated the research activity of numerous mathematicians. Isomorphic
characterizations of Hilbert spaces have proved to be much more difficult
than the isometric characterizations.

We say that a property (P) isometrically (isomorphically) characterizes
Hilbert spaces in the class of Banach spaces if the following statement is
true: “A Banach space X has property (P) iff X is isometrically isomorphic
(is isomorphic) to a Hilbert space”. By a Hilbert space we mean any
Banach space H (separable, non-separable, or finite-dimensional) whose norm
is given by |x| = (x,x)'/?, where (-,-): HxH—K is an inner product
and K is the field of scalars (real or complex numbers).

We shall first discuss isometric characterizations of Hilbert spaces. Results
in this field are extensively presented in Day’s book [1], Chap. VII, §3.
Therefore here we shall restrict ourselves to discussing the most important
facts and giving supplementary information.

The basic isometric characterization of Hilbert spaces is due to Jordan
and von Neumann [1].

9.1. A Banach space X is isometrically isomorphic to a Hilbert space iff
it satisfies the parallelogram identity:

Ix+yl2+lx—yl? = 2012+ 1yl?) for all x,yeX.

As an immediate corollary of 9.1 we get

9.2. A Banach space X is isometrically isomorphic to a Hilbert space if
and only if every two-dimensional subspace of X is isometric to a Hilbert space.

An analogous characterization but with 2-dimensional subspaces replaced
by 3-dimensional ones was earlier discovered by Fréchet [1]. In the thirties
Aronszajn [1] found other isometric characterizations of a Hilbert space,
which, as 9.2, are of a two-dimensional character, i.e. are stated in terms of
properties of a pair of vectors in the space.
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A characterization of an essentially 3-dimensional character was given
by Kakutani [1] (see also Phillips [1]) in the case of real spaces, and by
Bohnenblust [1] in the complex case. It states that

9.3. For a Banach space X with dim X > 3 the following statements are
equivalent

(i) X is isometrically isomorphic to a Hilbert space,

(ii) every 2-dimensional subspace of X is the range of a projection of
norm 1,

(ili) every subspace of X is the range of a projection of norm 1.

Here and in the sequel, by “dim” we mean the algebraic dimension
with respect to the corresponding field of scalars.

Assume that H is a Hilbert space with 2 < dim H < oo and 2 < k
< dim H. Obviously all k-dimensional subspaces of H are isometrically
isomorphic to each other. The question ([B], Rem. XII, p. 214, properties
(4) and (5)) whether the property above characterizes Hilbert spaces has been
solved only partially, i.e. under certain dimensional restrictions. Let us say that
a real (resp. complex) Banach space X has the property H*, for k = 2,3, e
if dim X > k and all subspaces of X of real (resp. complex) dimension
k are isometrically isomorphic to each other.

94. The following two tables give the dimensional restrictions on Banach
spaces X under which the property H* implies that X is isometrically isomorphic
to a Hilbert space:

The real case The complex case
k even k+1 <dimX < o k even k+1 <dmX <
k odd k+2 < dim X € o k odd 2k < dim X € oo

The real case of k = 2,dim X < oo, was solved by Auerbach, Mazur
and Ulam [1]. The case of dim X = o is a straightforward consequence
of Dvoretzky’s [2] theorem on almost spherical sections (see 3.5). This was
observed in Dvoretzky [1]. The remaining statements are due to Gromov
[1]. The simplest unsolved case is k = 3,dim X = 4.

We shall mention two more isometric characterizations of Hilbert space.

9.5 (Foias [1], von Neumann [1]). A complex Banach space X is
isometrically isomorphic to a Hilbert space if and only if, for every linear
operator T: X—X and for every polynomial P with complex coefficients, the
inequality |P(TY|| < || T ~|s!up [P (z)] holds.

zi=1

9.6. (Auerbach [1], von Neumann [2]). A4 finite-dimensional Banach space
X is isometrically isomorphic to a Hilbert space if and only if the group of
linear isometries of X acts transitively on the unit sphere of X, i.e. for every
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pair of points x, y€ X such that ||x}| = |yl = 1, there is a linear isometry T:
X — X such that T(x) = y.

Remark. Let 1 < p < oo and let g be an arbitrary non-sigma-finite
non-atomic measure. Then the group of linear isometries of the space L7 (w)
acts transitively on the unit sphere of the space. Therefore the assumption
of 9.6 that X is finite-dimensional is essential. The question whether there
exists a separable Banach space other than a Hilbert space whose group of

linear isometries acts transitively on the unit sphere remains open (cf. [B],
Rem. X1, §5, p. 212).

Now we shall discuss various isomorphic characterizations of a Hilbert
space. The simplest among them reflects the fact that all subspaces of a fixed
dimension of a Hilbert space are isometric, and hence are “equi-isomorphic”.
More precisely, we have

9.7. For every Banach space X the following statements are equivalent:

(1) X is isomorphic to a Hilbert space,
2 sup sup d(E, ?) < o,

n Eel(X)
(3) sup sup d(E, ?) < o0,

n  EeUX)

where W, (X) (resp. (X)) denotes the family of all n-dimensional subspaces
(resp. quotient spaces) of the space X.

From the theorem of Dvoretzky, it follows that conditions (2) and (3)
can be replaced, respectively, by

29 sup sup d(E,F) < o0,
n  EFe¥,(X)

(3) sup sup d(E,F) < w0,
n  EFed"(X)

Theorem 9.7 is implicitly contained in Grothendieck [5]. The equivalence
between (1) and (2) was explicitly stated by Joichi [1], cf. here 3.1. In
connection with 9.7 note that the following question is still unanswered:
“If X is a Banach space and all infinite-dimensional subspaces of X are
isomorphic to each other, is X then isomorphic to a Hilbert space?” ([B],
Rem. XII, p. 214).

The following elegant result of Lindenstrauss and Tzafriri [3] (cf. also
Kadec and Mityagin [1]) is an isomorphic analogue of theorem 9.3.

9.8. A Banach space X is isomorphic to a Hilbert space if and only if:
(%) each subspace of X is complemented.

This theorem shows that property (7) discussed in [B] on pp. 213-214
is a feature of Banach spaces isomorphic to a Hilbert space only.
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The proof of 9.8 starts with an observation of Davis, Dean and
Singer [1] that condition (x) implies
oo > sup P,(X) = sup inf{HPH: P is a projection of X onto E}
n Ee,(X)
Next, by an ingenious use of Dvoretzky’s Theorem 3.4, it is shown that
sup P,(X) < oo implies condition (2) of 9.7.

Historical remark. Theorem 9.8 states that every Banach space which
is not isomorphic to any Hilbert space has a non-complemented subspace.
The construction of such subspaces in concrete Banach spaces was relatively
difficult. Banach and Mazur [1] showed that every isometrical isomorph of
I* in the space C is not complemented. Murray [1] constructed non-comple-
mented subspaces in the spaces 7. For a large class of Banach spaces with
a symmetric basis an elegant construction of non-complemented subspaces
was given by Sobczyk [2].

Combining 9.8 with earlier results of Grothendieck [4], we obtain

9.9. The only, up to an isomorphism, locally convex complete linear metric
spaces with property (x} are the Hilbert spaces, the space s of all scalar
sequences, and the product sx H, where H is an infinite-dimensional Hilbert
space.

In the same way as 9.8 one can prove (cf. Lindenstrauss and Tzafriri [3])

9.9. A Banach space X is isomorphic to a Hilbert space if and only if,
for every subspace Y of X and for every compact linear operator T: Y-,
there exists a linear operator T: X—Y which extends T.

An interesting characterization of a Hilbert space is due to Grothendieck
[5] (cf. also Lindenstrauss and Pelczyr’lslfi [1].

9.10. A Banach space X is isomorphic to a Hilbert space if and only if:
(%)  there is a constant K such that, for every scalar matrix (@)} j=1

(n=1,2,..) and every xy,...,x,€X of norm 1, x¥,...,x¥eX* of
norm 1, there are scalars s, , ..., s,,t,,..., t, each of absolute value < 1
such that

L,J

'Zaijx;k(xj)l < Kl iZjauSitjl‘

In contrast to the previous characterizations, it is not easy to show that
Hilbert spaces have property (xx). Interesting proofs of this fact were recently
given by Maurey [1], Maurey and Pisier [1], Krivine [3].

Closely related to 9.10 is the following characterization (cf. Grothendieck
[5], Lindenstrauss and Pelczynski [1]).

9.11. A separable Banach space X is isomorphic to a Hilbert space iff X
and X* are isomorphic to subspaces of the space L' iff X and X* are iso-
morphic to quotient spaces of C.
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In the above theorem the assumption of separability of X can be drop-
ped if one replaces the spaces L' and C by “sufficiently big” &; and %,
spaces. (For the" definition see section 10.)

Let us notice that every separable Hilbert space is isometrically iso-
morphic to a subspace of L' (cf. e.g. Lindenstrauss and Pelczynski [1]).
We do not know whether 9.11 admits an isometrical version, ie. whether
every infinite dimensional Banach space X such that X and X* are isometri-
cally isomorphic to subspaces of L! is isometrically isomorphic to a Hilbert
space. For partial results see Bolker [1]. For dim X < oo the answer is
negative (R. Schneider [1]).

From the parallelogram identity one obtains by induction, for
n=2,3,... and for arbitrary elements of a Hilbert space,

n

2—nz”81x1+82x2+"'+8nxn”2 = Z ”xjHZa

=1

where ) denotes the sum extended over all sequences (¢, ..., ,) of 1.

The following isomorphic characterization of Hilbert spaces, due to Kwa-
pien [1], is related to the above identity.

9.12. A Banach space X is isomorphic to a Hilbert space if and only
if there exists a constant A such that

n

AT Y I < YUY %] <4 Y Ix)°

=1 : =1 =1

for arbitrary x,,...,x,€X and for n =2,3, ... .
From 9.12 Kwapien [1] has derived another isomorphic characterization

of Hilbert spaces. In order to state it, we shall need some additional no-

tation. Let L3 (R, X) denote the normed linear space consisting of simple
functions with values in the Banach space X and with supports of finite

+ o
Lebesgue measure in R. We define |f| = ( | || f()|*dr)? for fe L3(R, X).

By I?(R, X) we denote the completion of L3(R, X) in the norm |-|. The
Fourier transformation F: L3(R, X)—I?(R, X) is defined by the classical
formula :

FON® = Qo | e f(5)ds.

Under this notation we have

9.13. For every complex Banach space X the following statements are
equivalent:
(i) X is isomorphic to a Hilbert space.

17 — Oeuvres t. {1
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(i) There is a constant A > 0 such that

n 2n n
Y <Al Y el
i=n 0 j=—n '
for arbitrary x_,,...,xq,...,x,€X and for n =1,2,...
(i) There exists a constant A > O such that

2n n n
[ 2 éixPa<a ¥ jxl?
0 j==-n j=-n
for arbitrary x_,,...,xg,...,x,€X and for n =1,2,...
(iv) The Fourier transformation F: I3(R, X)—»I*(R, X) is a bounded Ii-
near operator.

Using 9.12 Figiel and Pisier [1] have proved that

9.14. A Banach space X is isomorphic to a Hilbert space if and only
if there exist a constant A > 0 and Banach spaces X, and X, isomorphic
to X such that X, is uniformly convex, X, is uniformly smooth and the
moduli of convexity and smoothness satisfy the inequalities Ox, (1) = At
0x, (1) < Ae? for small t > 0.

Meskov [1] improving a result of Sundaresan [1] has shown that

9.15. A real Banach space X is isomorphic to a Hilbert space if and
only if X and X* equivalent norms which are twice differentiable everywhere
except the origins of X and X*,

An operator T: X — Y is nuclear if there are xfeX* yeY(j=1,2,..)

oo}

with Y fx}| |yl < co and Tx = Y x*(x)y, for xe X. P. Qrno observed
=1 =1
(cf. Johnson, Konig, Maurey and Retherford [1])

9.16. A Banach space X is isomorphic to a Hilbert space iff every nuclear
T: X = X has summable eigenvalues.

Enflo [1] gave a non-linear characterization of Hilbert spaces.

9.17. A Banach space X is isomorphic to a Hilbert space if and only if X is
uniformly homeomorphic to a Hilbert space H, i.e. there is a homeomorphism
h: X@H such that h and h™' are uniformly continuous functions in the

metrics induced by the norms of X and H.



CHAPTER V
Classical Banach spaces

The spaces L*(u) and C(K) are distinguished among Banach spaces by
their regular properties. However, most of those properties, of both isomor p:.ic
and isometric character, extend to some wider classes of spaces, which can
easily be defined in terms of finite-dimensional structure, ie. by requiring
certain properties of finite-dimensional subspaces of a given space.

Definition (Lindenstrauss and Pelczynski [1]). Let 1 < p < o and let
4> 1. A Banach space X is an %, ; space if, for every finite-dimensional
subspace E < X, there is a finite-dimensional subspace F < X such that
F 5 E and d(F, ) < 4, where k = dim F. The space X is an %, space
provided that it is an £, ; space for some ie(l, ).

€ cClass = 2 1s the requirea class Of spaces wiic ave
The class &£, U &Z,. is th ired cl f hich h
A>1

most of the isomorphic properties of the spaces L?(u) and C(K) (for p = o).
From the point of view of the isometric theory the natural class is the
subclass of £, consisting of all those spaces X which are %, ; for every

A>1, ie the class () &, ;.
A>1

§ 10. The isometric theory of classical Banach spaces

First, we shall discuss the case 1 < p < o0, which is simpler than that
of p = co. We have

10.1. Let 1 < p < o©. A Banach space X is isometrically isomorphic to
an IF(u) space if and only if X is an &£, space for every 1 > 1.

Recall that a projection P: X— X is said to be contractive if |P| < 1.

10.2. If P is a contractive projection in a space L?(u), then Y = P(L*(w)
is an &£, space for every i > 1.

The proofs of 10.1 and 10.2 are due to the combined effort of many
mathematicians (for the history see Lacey [1]). They are based in an essential
way on the following theorem on the representation of Banach lattices,
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which (in a less general form) has been discovered by Kakutani and
Bohnenblust.

Recall that if x is a vector in a Banach lattice, then |x| is detined to
be max (x, 0)+max (—x, 0).

103. Let 1 < p < . A Banach lattice X is lattice-isometrically iso-
morphic to a Banach lattice I?(u) if and only if (|x|?+|y|P)'? = |x+y|
whenever min (|x|, |y]) = 0, for x,ye X. (If p = o, then by (| x||”+ | y||?)"/*
we mean max ([ x|, [y{).

We also have (Ando [1])

104. If X is a Banach lattice with dim X > 3, then X is lattice-isome-
trically isomorphic to a lattice I”(u) if and only if every proper sublattice
of X is the image of a positive contractive projection.

In particular, if 1 < p < oo, then every separable subspace of IF(n) is
contained in a subspace of the space which is isomorphic to a space I?(v)
and which is the image of a contractive projection.

For 1 < p < oo the spaces IP(u) are reflexive (and even uniformly
convex and uniformly smooth). We have

10.5. (L7 (w)* = L (), with p* = p/(p—1). The equality means here the
canonical isomorphism given by f— | -fdu for fel? (p).

This is a generalization of the classical theorem of Riesz [1] (cf.
[Bl, p. 72).

Theorem 10.5 remains valid for p = 1 (p* = o) in the case of sigma-
finite measures. For arbitrary measures we have only the following fact
(see e.g. Pelczynski [2]):

10.6. For every measure u there exists a measure v (which in general is
defined on another sigma-field of sets) such that the spaces L'(u) and L'(v)
are isomorphic and such that the map f—{ -fdv is an isometrical isomorphism
of L* (v) onto (L' (v))*.

The following theorem is due to Grothendieck [2]:

10.7. If X* is isometrically isomorphic to a space C(K), then X is
isometrically isomorphic to a space L!(v).

The isometric classification of spaces I”(v) reduces to the Boolean
classification of measure algebras (S, 2, u). The latter is relatively simple in
the case of sigma-finite measures. We have

10.8. If p is a sigma-finite measure, then the space L”(u) is isometrically
isomorphic to a finite or infinite product
(IP(A)x L2 (A") x LP(A"2) x ...),
where A is the set of atoms of the measure p and n,,n,,... is a sequence
of distinct cardinals and A" denotes the measure which is the product of n
copies of the measure A defined on the field of all subsets of the two-point
set {0, 1} such that A({0}) = 2({1}) = 1/2.
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Theorem 10.8 is a consequence of a profound result of Maharam [1]
stating that every homogeneous measure algebra is isomorphic to a measure
algebra of the measure A" for some cardinal n.

From 10.8 and the remark after 10.4 it easily follows that every separable
space L? (u) is isometrically isomorphic to the image of a contractive projection
in the space If (for 1 < p < ).

Now we shall discuss the case p = 0.

Definition. A Banach space X is called a Lindenstrauss space if its
dual X* is isometrically isomorphic to a space L' (p).

The classical theorem of Riesz on the representation of linear functionals
on C(K) (for the proof see, for instance, Dunford and Schwartz [1] and
Semadeni [2]) combined with theorem 10.3 shows that all the spaces C(K)
are Lindenstrauss spaces. It is particularly interesting to note that the class
of Lindenstrauss spaces is essentially wider than the class of spaces C(K),
for instance ¢, is a Lindenstrauss space which is not isometrically isomorphic
to any space C(K). Also, if § is a Choquet simplex (for the definition see
Alfsen {1]), then the space Af(S) of all affine scalar functions on S is a Lin-
denstrauss space; so is the space in 11.15. Now we state several results.

10.9. For every Banach space X the following statements are equivalent:

(1) X is an &£, space for every A > 1,

(2) X is a Lindenstrauss space,

(3) the second dual X** is isometrically isomorphic to a space C(K).

10.10. A Lindenstrauss space X is isometrically isomorphic to a space
C(K) if and only if the unit ball of X has at least one extreme point and
the set of extreme points of X* is w*-closed.

Every space L*(u) is isometrically isomorphic to a space C(K).

The following is an analogue of 10.2:

10.11. If P is a contractive projection in a Ilindenstrauss space X, then
P(X) is a Lindenstrauss space.

It should be noted that not all Lindenstrauss spaces are images of
spaces C(K) under contractive projections (cf. Lazar and Lindenstrauss [1]
for details). However, we have

10.12 (Lazar and Lindenstrauss [1]). Every separable Lindenstrauss space
is isometrically isomorphic to the image of a contractive projection in a spa-
ce Af(S).

Grothendieck [4] has observed that in the class of Banach spaces
Lindenstrauss spaces can be characterized by some properties of the extension
of linear operators, and spaces L!(u) can be characterized by properties of
lifting linear operators. We have

10.13. For every Banach space X the following statements are equivalent:

(al) X is a Lindenstrauss space.
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(a2) For arbitrary Banach spaces E, F, an isometrically isomorphic embed-
ding j: F— E, a compact linear operator T: F - X and ¢ > 0, there exists
a compact linear operator T: E > X which extends T (i.e. T = Tj) and is such
that | T < (1+&) I Tl

(a3) For arbitrary Banach spaces Y, Z, an isometrically isomorphic embed-
ding j: X—>Y and a compact linear operator T: X—>Z there exists a compact
linear operator T: Y — Z such that T = Tj and |T| = |T]|.

10.14. For every Banach space X the following statements are equivalent:
(@*1) X is isometrically isomorphic to a space L!(y).

(@*2) For an arbitrary Banach space E, its quotient space F, a compact
linear operator T: X - F and & > O there exists a compact linear operator
T: X > E with IT| < (A+¢)|T| which lifts T, i.e. T= T, where @ is the
quotient map of E onto F.

(a*3) For arbitrary Banach spaces Y Z, a linear operator ¢: Y—»X and

a compact linear operator T: Z—X there exists a compact lznear operator
T: Z—~Y such that |T| = |T|| and T = oT

Other 1nterest1ng characterizations can be found in Lindenstrauss [1], [2].

Omitting in (a2), (a3) (resp. in (a*2), (a*3)) the requirement that the
linear operators T and T should be compact, we obtain characterizations
of important classes of injective (resp. projective) Banach spaces. They are
narrow subclasses of Lindenstrauss spaces (resp. of spaces L' (u)); see the
theorems below.

Recall that a compact Hausdorff space K is said to be extremally
disconnected if the closure of every open set in K is open.

10.15 (Nachbin—-Goodner—Kelley). For every Banach space X the following
Statements are equivalent:

(bl) X is isometrically isomorphic to a space C(K) with K extremally
disconnected.

(b2) For arbitrary Banach spaces E, F, an isometrically isomorphic embed-
dmg j: E—> F, and a linear operator T: E— X, there exists a linear operator
T such that T = Tj and |T| = Ty.

(b3) X satisfies (a2) with “compact linear operator” replaced by “linear
operator”,

(b4) X satisfies (a3) with “compact linear operator” replaced by “linear
operator”.

10.16. For every Banach space X the following statements are equivalent:
(b*1) X is isometrically isomorphic to a space I'(S).

(b*2) For an arbitrary Banach space E, its quotient space F and a linear

operator T: X »> F there exists a linear operator T: X > E such that 1T
= |T| and T = @T where ¢: E—~F is the quotient map.
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(b*3) X satisfies (a*2) with “compact linear operator” replaced by “linear
operator”.

(b*4) X satisfies (a*3) with “compact linear operator” replaced by “linear
operator”.

The isometrical classification of the spaces C(K) reduces to the topological
classification of compact Hausdorff spaces. For compact metric spaces this fact
has been established by Banach (see [B], Chap. IX, Théoréme 3). The general
result is due to M. H. Stone [1] and S. Eilenberg [1]. It is as follows:

10.17. Compact Hausdorff spaces K, and K, are homeomorphic if and
only if the spaces C(K,) and C(K,) are isometrically isomorphic.

D. Amir [1] and M. Cambern [1] have strengthened this result as
follows: If there is an isomorphism T of C(K,) onto C(K,) such that
IT|-IT" Y < 2, then K, and K, are homeomorphic. The constant 2 is the
best possible; there are compact metric spaces K; and K, such that
d(C(K,), C(K;)) = 2 (H. B. Cohen [1]). However, if K, and K, are count-
able compacta, then d(C(K;), C(K3)) = 3 (Y. Gordon [1]).

An isometric classification of Lindenstrauss spaces is not known. Many
interesting partial results can be found in Lindenstrauss and Wulbert [1]
and Lazar and Lindenstrauss [1]. Let us note that the space ¢, is minimal
among Lindenstrauss spaces in the following sense.

10.18 (Zippin [1]). Every infinite-dimensional Lindenstrauss space X contains
a subspace V which is isometrically isomorphic to the space c,. Moreover,
if X is separable, then the subspace V can be chosen so as to be the image
of a contractive projection in the space X. '

The class of separable Lindenstrauss spaces admits a maximal member.
More precisely:

10.19 (Pelczynski and Wojtaszczyk [1]). There exists a separable Linden-
strauss space I' with the property that for every separable Lindenstrauss space X
and for every ¢ > 0 there is an isometrically isomorphic embedding T: X I
with x| < ||Tx|| < (1+¢) x|} for xe X and such that T(X) is the image of
a contractive projection from X.

Wojtaszczyk [1] has shown that the space I' with the above properties
can be constructed in such a way that it is a Gurarii space of the universal
arrangement (cf. Gurarii [1]), ie. it has the following property:

(¥) For every pair F o E of finite-dimensional Banach spaces, for every
isometrically isomorphic embedding T: E—I and for every &€ > 0, there is an
extension T: F - T such that |le| < ||Tel < (1+¢) |le]} for ecE.

Gurarii [1] has shown that every Banach space satisfying condition (%) is
a Lindenstrauss space and that the Gurarii space is unique up to an
almost-isometry, ie., if I’y and I', are Gurarii spaces, then d(I'y, I';) = 1.
Luski [1] proved that the Gurarii space is isometrically unique.
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The reader interested in the topics of this section is referred to the
monograph by Lacey [1], which contains, among other things, proofs of the
majority of the results stated here both for the real and for the complex
scalars. Many results and an extensive bibliography on C(K) spaces can be
found in Semadeni’s book [2]. For the connections of Lindenstrauss spaces
with Choquet simplexes see Alfsen [1]. Further information can be found
in the following surveys: Bernau—Lacey [1], Edwards [1], Lindenstrauss
[2], [4], Proceedings of Conference in Swansea [1], and in the papers:
- Effross [1], [2], [3], Lazar [1], [2], [3], Lindenstrauss and Tzafriri [2].

§ 11. The isomorphic theory of ¥, spaces

The isomorphic theory of .#, spaces is, in general, much more complicated
than the metric theory of L?(u) spaces and Lindenstrauss spaces. The theory
is still far from being completed. Many problems remain open. The only
case in which the situation is clear is that of p = 2. From 9.7 it immediately
follows

11.1. A Banach space X is an &, space if and only if it is isomorphic
to a Hilbert space.

The basic theorem of the general theory of %, spaces is the following
result, due to Lindenstrauss and Rosenthal [1]. (Recall that p* = p/(p—1)
for 1 <p<oo;p*=1for p=oco; p*= o0 for p=1)

11.2. Let 1 < p < o and p # 2. For every Banach space X which is
not isomorphic. to a Hilbert space the following statements are equivalent:

(1) X is an &£, space.

(2) There is a constant ¢ > 1 such that, for every finite-dimensional
subspace E of X, there are a finite-dimensional space I, a linear operator
T:I' - X and a projection P of X onto T(I?) such that ||y| < |Ty| < ¢yl
Jor yelp, T(I}) > E, | P|| < c.

(3) X* is isomorphic to a complemented subspace of a space I7" ().

(4) X* is an & . space.

This yields the following corollary:

11.3. We have

(@) Let 1 < p < oo and let X be a Banach space which is not isomorphic
to any Hilbert space. Then X is an %, space if and only if X is isomorphic
to a complemented subspace of a space I¥(u).

(b) Every &£, space (resp. £, space) is isomorphic to a subspace of an
L' (w) space (resp. L™ (u)).

(© If X is an £, space (resp. an ¥, space), then X** is isomorphic
to a complemented subspace of a space L'(u) (resp. L*(u)).

A Hilbert space can be isomorphically embedded as a complemented
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subspace of an I?(u) space for 1 < p < oco. (The subspace of I? spanned
by the Rademacher system {sgnsin2"m¢: n = 0,1,...} is such an example.)
On the other hand, by Grothendieck [3], no complemented subspace of
a space I'(w) is isomorphic to an infinite-dimensional Hilbert space. This
is the reason why the assumption that X is not isomorphic to any Hilbert
space does not appear in (b) and (c).

The paper Lindenstrauss and Rosenthal [1] contains many interesting
characterizations of &, spaces. Here we shall quote the following analogues
of 10.13 and 10.14. Recall that a Banach space G is said to be injective
if for every pair of Banach spaces Z o Y and for every linear operator
T: Y— G, there is a linear operator T: Z > G which extends T.

11.4. For every Banach space X the following statements are equivalent:

() X is an &, space.

(2) For all Banach spaces Z and Y and any surjective linear operator
$: Z—Y, every compact linear operator T: X—Y has a compact lifting
T X >Z (ie. T= oT).

(3) For all Banach spaces Z and Y and any surjective linear operator

: Z—> X, every compact linear operator T. Y->X has a compact lifting
Y- Z.

(4) X* is an injective Banach space.

The reader interested in characterizations of %, spaces in terms of
Boolean algebras of projections (due to Lindenstrauss, Zippin and Tzafriri)
is referred to Lindenstrauss and Tzafriri [2]. Other characterizations, in
the language of operator ideals, can be found in Retherford and Stegall [1],
Lewis and Stegall [1], in the surveys by Retherford [1] and Gordon,
Lewis and Retherford [1] and in the monograph by Pietsch [1].

Now we shall discuss the problem of isomorphic classification of the
spaces &,. If 1 < p < oo, then by 113, the problem reduces to that
of isomorphic classification of complemented subspaces of spaces I?(y); also
in the general case it is closely related to the latter problem. The latter
problem is completely answered only for [P(S) spaces for 1 < p < 0. We
have (Pelczynski [3], Kothe [2], Rosenthal [2]).

115, Let 1 < p < 0. If X is a complemented subspace of a space I7(S)
(resp. of ¢o(S)), then X is isomorphic to a space IP(T) (resp. co(T)).

To classify all separable £, spaces for 1 < p < oo one has to describe
all complemented subspaces of IP. This program is far of being completed.
Lindenstrauss and Pelczynski [1] have observed that I7, 17, [?x[?> and
E, = (PxPx...)p are isomorphically distinct &£, spaces for 1 < p < 0,
p # 2. Next Rosenthal [3], [4] has discovered less trivial examples of
£, spaces.

Let o0 > p> 2. Let X, be the space of scalar sequences x = (x(n))

=l
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such that

o€

Il = max (3, pe i), (X x(nl*flog (n-+ 1)) < co.
n=1 n=

Let B, = (B, X B,,x...)», where B, is the space of all square summable

scalar sequences equipped with the norm

o0

Ixla,, = max (11732 (5 G2, (5 1)),

For 1 <p <2 we put X, = (X,)* and B, = (B,*.

11.6 (Rosenthal). Let 1 < p < oo, p # 2. The spaces X,, B,, (X,x
XXpx .. )y, X,xE, and X, X B, are isomorphically distinct 3 spaces each
dlﬁerent from LP I®, l”><l2

Taking “L,-tensor powers of X, Schechtman [1] proved

11.7. There exists infinitely many mutually non-isomorphic infinite-dimen-
sional separable £, spaces (1 < p < oo, p # 2).

Johnson and Odell [1] have proved

118. If 1 < p < w0, then every infinite-dimensional separable &, space
which does not contain l2 is isomorphic to P,

11.8. yields the following earlier result of Johnson and Zippin [1].

11.9. Let X be an infinite-dimensional £, space with 1 < p < 0. If X
is either a subspace or a quotient of IP, then X is isomorphic to IP.

The above fact is also valid for the space c,.

Now let us pass to p = 1. The problem of isomorphic classification
of complemented subspaces of spaces I'(u) is a very particular case of that
of isomorphic classification of .#; spaces. Even in the separable case neither
of these problems is satisfactorily solved.

In contrast to 11.9 we have

11.10. Among subspaces of 1; there are infinitely many isomorphically
distinct infinite dimensional ¥, spaces.

This has been established by Lindenstrauss [7]. His construction of
the required subspaces X,, X,,... of ' is inductive and based on the fact
that every separable Banach space is a linear image of I'. X, = ker h,,
where hy is a linear operator of I' onto L', and X,., = ker h,, where h,
is a linear operator of /' onto X, forn=2,3,..

We do not know whether the set of all isomorphic types of separable
&, spaces is countable (1 < p < oo, p # 2).

In contrast to 11.10 the following conjecture is probable.

ConiecTURre. Every infinite-dimensional complemented subspace of I} is
isomorphic either to I' or to I

What we know is:
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11.11 (Lewis and Stegall [1]). If X is an infinite-dimensional complemented
subspace of L' and X is isomorphic to a subspace of a separable dual space
(in particular, to a subspace of 1), then X is isomorphic to I'.

This implies that:

(a) The space L' is not isomorphic to any subspace of a separable dual
Banach space (Gelfand [1], Pelczynski [2]).

(b) The space 1' is the only (up to isomorphisms) separable infinite-di-
mensional & space which is isomorphic to a dual space.

The proof of (b) follows from 11.11, 11.3 (c) and the observation that
every dual Banach space is complemented in its second dual.

In the non-separable case it is not known whether every dual %, space
is isomorphic to a space L'(u). Also it is not known which L'(u) spaces
are isomorphic to dual spaces. For sigma-finite measures u, L'(u) is iso-
morphic to a dual space iff u is purely atomic (Pelczynski [2], Rosenthal [5]).

Now we shall discuss the situation for p = co. It seems to be the
most complicated because of new phenomena which appear both in the
separable and in the non-separable case. First, in contrast to the case of
1 < p < o (where there were only two isomorphic types of infinite-di-
mensional separable I?(u) spaces, namely I? and [?), there are infinitely
many isomorphically different separable infinite-dimensional spaces C(K).
The complete isomorphic classification of such spaces is given in the next
two theorems.

11.12 (Milutin [1]). If K is an uncountable compact metric space, then
the space C(K) is isomorphic to the space C.

For every countable compact space K, let o(K) denote the first ordinal «
such that the ath derived set of K is empty.

11.13 (Bessaga and Pelczynski [2]). Let K, and K, be countable infinite
compact spaces such that o.(K,;) < o(K,). Then the spaces C(K,) and C(K,)
are isomorphic if and only if there is a positive integer n such that
2(Ky) < a(K,) < a(K )

The theorem of Milutin 11.12 answers positively the question of Banach
(cf. [B], p. 169).

It is easy to show that if K is a countable infinite compact space
then the Banach space (C (K))* is isomorphic to I*. Hence, by 11.13, there are
uncountably many isomorphically different Banach spaces whose duals are
isometrically isomorphic. This answers another question in [B], Rem. XI, §9.

The problem of describing all isomorphic types of complemented sub-
spaces of separable spaces C(K) is open. The answer is known for ¢ being
isomorphic to ¢, (cf. 11.5) and C(w®) (Alspach [1]). This problem can be
reduced to that of isomorphic classification of complemented subspaces of
the space C. It is very likely that
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ConiecTURE. Every complemented subspace of C is isomorphic either to C
or to C(K) for some countable compact metric space K.

The following result of Rosenthal [6] strongly supports this conjecture.

11.14. If X is a complemented subspace of C such that X* is non-separable,
then X is isomorphic to C.

The class of isomorphic types of Lindenstrauss spaces is essentially
bigger than that of complemented subspaces of C (K). We have

11.15 (Benyamini and Lindenstrauss [1]). There exists a Banach space
BL with (BL)* isometrically isomorphic to I' and such that BL is not isomorphic
to any complemented subspace of any space C(K).

From the construction of Benyamini and Lindenstrauss [1] it easily
follows that, in fact, there are uncountably many isomorphically different
spaces with the above property. Combining 11.15 with 10.19, we conclude
that the Guraril’ space I' is also an example of a Lindenstrauss space which
is not isomorphic to any complemented subspace of any C(K).

Bourgain [1] gave a striking example of an infinite dimensional se-
parable #, space which does not have subspaces isomorphic to ¢,; hence,
by 10.18, it is not isomorphic to any Lindenstrauss space. .Let us note
that the results of Pelczynski [3] and Kadec and Pelczyfiski [1] imply

11.16. If 1 < p < oo, then every infinite-dimensional ¥ p Space has a com-
plemented subspace isomorphic to I°. Every infinite-dimensional complemented
subspace of a space C(K) contains isomorphically the space c,.

Our last result on separable #, spaces is the following characteri-
zation of ¢,.

11.17. Every Banach space E isomorphic to o has the following property:

(S) If F is a separable Banach space containing isometrically E, then E is
complemented in F.

Conversely, if an infinite-dimensional separable Banach space E has property
(S), then E is isomorphic to c,.

The first part of 11.17 is due to Sobczyk [1] (cf. Veech [1] for a simple
proof). The second part is due to Zippin [3]. A particular case of Zippin’s
result, assuming that E is isomorphic to a C(K) space, was earlier obtained
by Amir [2].

Now we shall be concerned with the problem of isomorphic classification
of non-separable spaces C(K). The multitude of different non-separable spaces
C(K) and the variety of their isomorphical invariants is so rich that there
is almost no hope of obtaining any complete description of the isomorphic
types of non-separable spaces C(K), even for K’s of cardinality continuum.
The results which have been obtained concern special classes of spaces
C(K) and their complemented subspaces. Among general conjectures the
following seems to be very probable. :
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Consecture. Every C(K) space is isomorphic to a space C(K,) for some
compact totally disconnected Hausdorff space K,.

The following result is due to Ditor [1].

11.18. For every compact Hausdorff space K, there exist a totally discon-
nected compact Hausdorff space K, a continuous surjection ¢: K — K, and
a contractive positive projection P: C(Ky) — ¢°(C(K)), where ¢°: C(K)

onto
— C(K,) is the isometric embedding defined by ¢°(f) = foe for fe C(K).
Hence C(K) is isometric to a complemented subspace of C(K,).

An analogous result for compact metric spaces was earlier established
by Milutin [1], cf. Pelczynski [4].

The theorem of Milutin 11.12 can be generalized only to special classes
of non-metrizable compact spaces. Recall that the topological weight of
a topological space K is the smallest cardinal n such that there exists
a base of open subsets of K of cardinality n. We have (Pelczynski [4])

11.19. Let K be a compact Hausdorff space whose topological weight is
an infinite cardinal n. If K is either a topological group or a product of
a family of metric spaces, then C(K) is isomorphic to C([0, 1]").

In particular, for every compact space K satisfying the assumptions of
11.19, the space C(K) is isomorphic to its Cartesian square. This property
is not shared by arbitrary infinite compact Hausdorff spaces. We have
(Semadeni [17) i

11.20. Let w, be the first uncountable ordinal and let [w,] be the space
of all ordinals which are < w, with the natural topology determined by the
order. Then the space C([w,]) is not isomorphic to its Cartesian square.

Numerous mathematicians have studied injective spaces (whose definition
was given before 11.4). Theorem 10.15 of Nachbin, Goodner and Kelley
suggests the following

Conyecture. Every injective Banach space is isomorphic to a space C(K)
for some extremally disconnected compact Hausdorff space K.

It is easy to see that: (1) every complemented subspace of an injective
space is injective, (2) every space [°(S) is injective, (3) a Banach space is
injective if and only if it is complemented in every Banach space containing
it isometrically, (4) every Banach space X is isometrically isomorphic to
a subspace of the space [*(S), where S is the unit sphere of X* From
the above remarks it follows that

11.21. A Banach space X is injective if and only if it is isometrically
isomorphic to a complemented subspace of a space I”(S).
Lindenstrauss [3] has shown (cf. 11.5):

11.22. Every infinite-dimensional complemented subspace of 1° (= I*(S)
for a countable infinite S) is isomorphic to 1°.
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As a corollary from this theorem we get the following earlier result
of Grothendieck [3].

11.23. Every separable injective Banach space is finite-dimensional.

Theorem 11.22 cannot be generalized to the spaces [°(S) with
uncountable S. In fact, we have

11.24 (Akilov [1]). For every measure u the space I*(u) is injective.

11.25 (Pelczynski [3], [5], Rosenthal [5]). Iet u be a sigma-finite
measure. Then the space L*(u) is isomorphic to 1°(S) if and only if the
measure p is separable (i.e. the space L(u) is separable).

Theorem 11.24 is closely related to the following

11.26. (a) An &, space isomorphic to a dual space is injective.

(b) An injective bidual space is isomorphic to an L*® ().

11.26 (a) follows from 11.4 (4) because by Diximier [1] every dual
Banach space is complemented in its second dual. 1126 (b) is due to
Haydon [1]. -

Applying deep results of Solovey and Gaifman concerning complete
Boolean algebras, Rosenthal [5] has shown that

11.27. There exists an injective Banach space which is not isomorphic to
any dual Banach space.

Let us mention that Isbell and Semadeni [1] have proved that

11.28. There exists a compact Hausdorff space K which is not extremally
disconnected and is such that C(K) is injective.

Concluding this section, let us notice that the “dual problem” to the
last conjecture is completely solved. Namely (cf. 10.16) we have

11.29 (Kothe [2]). For every Banach space X the following statements
are equivalent:

(1) X is projective, i.e. for every pair E, F of Banach spaces, for every
linear surjection h: F—E and for every linear operator T: X—E, there exists
a linear operator T: X ~F which lifts T, ie. hT = T.

(2) X is isomorphic to a space I'(S).

The reader interested in the problems discussed in this section is referred
to Lindenstrauss and Tzafriri [1], [2], Semadeni [2], Bade [1], Pelczyfski
[4] and Ditor [1], Lindenstrauss [2], [4], Rosenthal [9], and to the references
in the above mentioned books and papers, see also “Added in proof™.

§ 12. The isomorphic structure of the spaces 7 ()

The starting point for the discussion of this section is [B], Chap. XII.
We shall discuss the following question:

I Given 1 < p; < p, < . What are the Banach spaces E which are
simultaneously isomorphic to a subspace of LPt and to a subspace of LP2?
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One can ask more generally:

II. Which Banach spaces X are isomorphic to subspaces of a given
space LP(u)?

One of the basic results in this direction is theorem 3.2 of this survey,
which can be restated as follows:

12.1. A Banach space E is (isometric) isomorphic to a subspace of a space
IP(w) iff E is locally (isometrically) isomorphically representable in IP.

We shall restrict our discussion to the case where 1 < p < o0 and E
is a separable Banach space. Since every separable subspace of the space
L?(p) is isometrically isomorphic to a subspace of I?, in the sequel we
shall study isomorphic properties of the spaces L”. It turns out that the case
2 < p < oo is much simpler than that of 1 < p < 2. The following concepts
will be useful in our discussion.

Definition. Let 1 < p < co. We shall say that a subspace E of the
space L* is a standard image of 1P if there exist isomorphisms T:
P——E and U: L’—L” such that, for n # m (n,m = 1,2,...), the intersec-
tions of the supports of the functions UT(e,) and UT(e,) have measure
zero. Here e, (for n = 1,2,...) denotes the nth unit vector in the space I”.

A subspace E of the space L? will be called stable if it is closed in
the topology of the convergence in measure, ie. for every sequence

1
(fa) of elements of E, the condition lim | |f,(O/(1+]|f,(®)|)dt = 0 implies
n o0
li’{n I full, = O.

It is easy to see that

12.2. (a) Every sequence of functions in L which have pair-wise disjoint
supports spans a standard image of IP.
(b) Every standard image of I’ is complemented in I?.

Much deeper, especially for 1 < p < 2, is the next result, which shows
that the property of subspaces of L? of being stable does not depend on
the location of the subspace in the space.

123. Let 1 <p < o and p # 2. Then, for every infinite-dimensional
subspace E of the space L?, the following statements are equivalent:

(1) E is stable.

(2) No subspace of E is a standard image of IP.

(3) No subspace of E is isomorphic to IP.

Moreover, if-p > 1, conditions (1)-(3) are equivalent to those stated
below:

(4) There exists a qe[1,p) and a constant C, such that

() Il < Ifllg < Clfll,  for  feE.
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(5) For every q€[l, p) there is a C, such that () holds.

The last theorem, for p > 2, is due to Kadec and Pelczynski [1], and
for 1 < p < 2, is due to Rosenthal [7]. The following result of Kadec
and Pelczynski [1] is an immediate corollary of 12.3.

124. Let E be an infinite-dimensional subspace of a space LF with
2 < p< . Then E is stable if and only if E is isomorphic to a Hilbert
space.

“Suppose that 2 < p < oo and E is a subspace of L? which is iso-
morphic to a Hilbert space. Then, by 12.4 and by the condition 12.3 (5)
with g = 2, the orthogonal (with respect to the L? inner product) projection
of I? onto E is continuous as an operator from LP into L?. Hence, by
12.3 (2) and 12.2 (b), we get

125, Let 2 < p < w and let E be a subspace of L*. Then:

(a) if E is isomorphic to a Hilbert space, then E is complemented in L7;

(b) if E is not isomorphic to any Hilbert space, then E contains a comple-
mented subspace isomorphic to IP.

The next result is due to Johnson and Odell [1].

12.6. Suppose that E is a subspace of a space IP with 2 < p < 0.
Then E is isomorphic to a subspace of the space I° if and only if no subspace
of E is isomorphic to a Hilbert space.

The assumption of 12.6 that p > 2 is essential. For each p with
1 < p < 2, there is a subspace E of L? such that E is not isomorphic to
any subspace of I and no infinite dimensional subspace of E is stable
(Johnson and Odell [1]). '

Now we shall discuss the situation for 1 < p < 2. In this case there
are many isomorphically different stable subspaces of the space L”. The
crucial fact is the following theorem, which goes back to P. Levy [1];
however, it was stated in the Banach space language much later (by Kadec
[4] for M, and by Bretagnolle, Dacunha-Castelle and Krivine [1] and
Lindenstrauss and Pelczynski [1] in the general case).

127. If 1 < p<gq <2, then the space L? contains a subspace E,
isometrically isomorphic to L.

The proof of 12.7 employs a probabilistic technique. Its idea is the
following:

1. For every g with 1 < g <2, there exists a random variable
(= measurable function) £,: R—R which has the characteristic function

&, (s) = i exp (&, () -is)dt = exp (—|sl%)

and is such that, for each p < gq,¢,eL?(R). By L?(R") we denote here
the space L?(4), where A is the n-dimensional Lebesgue measure for R".
2. Let &,,,..., &, be independent random variables each of the same
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distribution as &, for instance let {,;€ L*(R") be defined by &,(t1, 2, ..., ts)

= £,(t). Assume that c,,...,c, are real numbers such that Yolelt =1,
n ' j=1
and let = .Zl c;&,;- Since the random variables &4, ..., §, are independent
i=

and have the same distribution and hence the same characteristic functions
as &,, we have

A = % ¢ Euis) 2, exp (—lscif)

= exp (=l 3, oY) = exp (<Is) = & (9

Hence n has the same distribution as £, and therefore

(*) | 3 cdale =lnlp = 1&l, i Flei =1,
j= i=

for every p with 1 < p < gq.
3. By (%), the linear operator T: IE—IP(R") defined by T(cy,...,c,)

= [I&l, " Z ¢;&,; is an isometric embedding. Hence L7 is locally repre-

sentable in /?. Applying 12.1 we complete the proof. ‘

By Banach [B], p. 186, Théoréme 10, and the fact that the space It
is not reflexive, it follows that if 1 < p < g < 2, then [? is not isomorphic
to any subspace of L. Hence, by 123, the subspaces E, of 12.7 are stable.

Theorem 12.7 can be generalized as follows (Maurey [1]):

128. Let 1 <p<q < 2. Then, for every measure p, there exists
a measure v such that the space Li(u) is isometrically isomorphic to a subspace
of the space LP(v).

Rosenthal [7] has discovered another property of stable subspaces
of L?, which can be called the extrapolation property.

129. If 1< p< w,p+# 2, and E is a stable subspace of the space
L?, then there exist an isomorphism U of LP onto itself and an ¢ > 0 such
that U(E) is a closed stable subspace of the space LP*%, ie. there is
a C> 0 such that || f|, < | fllp+e < Clfl, for every feE.

Combining 129 with the result of Kadec and Pelczynski [1] sho-
wing that

12.10. Every non-reflexive subspace of L* contains a standard image of I,
we obtain the following:

12.11 (Rosenthal [7]). Every reflexive subspace of the space L' is stable,
hence isomorphic to a subspace of a space I? for some p > 1.

The results of Chap. XII of [B] and Orlicz [2], Satz 2 combined with

18 — Oeuvres t. il
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123, 12.4 and 12.7 yield an answer to question (I) stated at the beginning
of this section and to the question in [B] on p. 186. We have

12.12. Let E be an infinite-dimensional Banach space and let 1 < p <g < o0.
E is isomorphic to a subspace of I¥ and to a subspace of I? if and only
if E is isomorphic to a subspace of L™@” In particular, if q <2, then
dim; I? > dim, I > dim; ¥, and if p # 2 < q, then dim,I? is incomparable
with dim; I and with dim, .

The fact that, for 2 < p < ¢, the linear dimensions of I? and [ are
incomparable has been established first by Paley [1]. The incomparability
of dim,I” and dim, I for ¢ > 2 > p is due to Orlicz [2]. For 1 < p < 0,
p # 2, there exist the subspaces of the space L, which are isomorphic to /? but
are not standard images of /F. This is a consequence of the following theorem
of Rosenthal [3], [8], and Bennett, Dor, Goodman, Johnson and Newman [1].

12.13. If either 1 < p < o0, p # 2, then there exists a non-complemented
subspace of IP which is isomorphic to the whole space.

It is not known whether every subspace of [* which is isomorphic
to I' is complemented in the whole space.

By 12.7 and the fact that, for p # g no subspace of [” is isomorphic
to /4, it follows that the assumption p > 2 in 12.5 (b) is indispensable.
The following result is related to 12.5 (a):

12.14. (a) Let 1 < p <2 and let E be an infinite-dimensional subspace
of the space I'. If E is isomorphic to the Hilbert space, then E contains
an infinite-dimensional subspace which is complemented in I7.

(b) If 1 < p < o0, p # 2, then there exists a non-complemented subspace
of IF which is isomorphic to a Hilbert space.

Part (a) is due to Pelczynski and Rosenthal [1], and part (b) — to
Rosenthal {8] for 1 < p < 4/3 and to Bennett, Dor, Goodman, Johnson and
Newman for all p with 1 < p < 2.

In connection with the table in [B], p. 215 (property (15)) let us
observe (cf. Pelczynski [3] and 5.2) that

12.15. If 1 < p < o0, p # 2, then there exists an infinite-dimensional closed
linear subspace of I? which is not isomorphic to the whole space.

The following theorem of Johnson and Zippin [1] gives a description
of subspaces with the approximation property of the spaces /.

12.16. If E is a subspace of a space I° with 1 < p < oo, and E has
the approximation property, then E is isomorphic to a complemented subspace
of a product space (Gyx G, X ..}, where G,’s are finite-dimensional subspaces
of the space [".



CHAPTER VI

§ 13. The topological structure of linear metric spaces

The content of [B], Rem. XI, § 4 was a catalyst for intensive investigations
of the topological structure of linear metric spaces and their subsets. These
investigations have lead to the following theorem.

13.1. AnpersoN-Kapec Tueorem. Every infinite-dimensional, separable,
locally convex complete linear metric space is homeomorphic to the Hilbert
space I°.

This result fully answers one of the questions raised in [B], Rem. XI,
§ 4, p. 212 and disproves the statement that the space s is not homeomorphic
to any Banach space ([B], Rem. IV, § 1, p. 206). Theorem 13.1 is a product
of combined efforts of Kadec [11], [12], Anderson [1] and Bessaga and
Pelczynski [5], [6]. For alternative or modified proofs see.Bessaga and
Pelczyniski [7] and Anderson and Bing [1]. Earlier partial results can be
found in papers by Mazur [1], Kadec [6], [7], [8], [9], [10], Kadec and
Levin [1], Klee [1], Bessaga [1].

In the proofs of 13.1 and other results on homeomorphisms of linear
metric spaces three techniques are employed:

A. Kadec’s coordinate approach. The homeomorphism between spaces X
and Y is established by setting into correspondence the points xe X and
yeY which have the same “coordinates”. The “coordinates” are defined in
metric terms with respect to suitably chosen uniformly convex norms (see
the text after 1.9 for the definition) of the spaces.

B. The decomposition method, which consists in representing the spaces
in question as infinite products, and performing on the products suitable
“algebraic computations” originated by Borsuk [1] (cf. [B], Chap. XI, §7,
Théorémes 6-8). For the purpose of stating some results, we recall the
definition of topological factors. Let X and Y be topological spaces. Y is
said to be a factor of X (written Y|X) if there is a space W such that X
is homeomorphic to Yx W. A typical result obtained with the use of the
decomposition method is the following criterion, due to Bessaga and Pel-
czynski [5], [6]:
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13.2. Let X and H be a Banach space and an infinite-dimensional Hilbert
space, respectively, both of the same topological weight. Then H|X implies
that X is homeomorphic to H.

Many applications of 13.2 depend on the following result of Bartle
.and Graves [1] (see also Michael [1], [2], [3] for a simple proof and
generalizations).

13.3. Let X be a Banach space. If Y is either a closed linear subspdce
or a quotient space of X, then Y|X.

Notice that both 13.2 and 13.3 are valid under the assumption that X
is merely a locally convex complete linear metric space.

Also the next result due to Torunczyk [3], [4], [5], and some of its
generalizations give rise to applications of the decomposition method.

134. If X is a Banach space and A is an absolute retract for metric
spaces which can be topologically embedded as a closed subset of X, then
A|(X x X X ...)p2. If H is an infinite-dimensional Hilbert space and A is a complete
absolute retract for metric spaces and the topological weight of A is less
than or equal to that of H, then A/H.

C. The absorption technique, which gives an abstract framework for
establishing homeomorphisms between certain pairs (X, E) and (Y, F) consisting
of metric spaces and their subsets, when X and Y are already known to
be homeomorphic. (The pairs (X, E) and (Y, F) are said to be homeomorphic,
in symbols (X, E) ~ (Y, F), if there is a homeomorphism h of X onto Y
which carries E onto F, and hence carries X\E onto X\F). A particular
model designed for identifying concrete spaces homeomorphic to R® can
briefly be described as follows. Consider the Hilbert cube Q = [—1,1]® and
its pseudo-interior P = (—1, 1)®, which is obviously homeomorphic to R®.
It turns out that every subset 4 < Q which is such that (Q, 4) ~ (Q, Q\P)
can be characterized by certain property involving extensions and approxima-
tions of maps and related to Anderson’s [2] theory of Z-sets, called cap
(for compact absorption property). Hence, in order to show that a metric
space E is homeomorphic to R® it is enough to represent E as a subset
of a space X homeomorphic to Q so that the complement X\E has cap.
For applying this technique it is convenient to have many models for the
Hilbert cube. An important role in this respect is played by the following
classical theorem, due to Keller [1],

13.5. Every infinite-dimensional compact convex subset of the Hilbert space
I? is homeomorphic to the Hilbert cube,

and the remark of Klee {4]

13.6. Every compact convex subset of any locally convex linear metric
space is affinely embeddable into I2.

For more details concerning the model presented here and other models
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of the absorption technique see papers by Anderson [4], Bessaga and
Pelczyniski [8], [7], [9], Toruficzyk [2] and the book by Bessaga and
Pelczynski [10], Chapters IV, V, VI, VIIL. The most general axiomatic setting
for “absorption” with miscellaneous applications is presented by Torunczyk
[2] and Geoghegan and Summerhill [1].

During the years 1966-1977 several authors attempted to extend the
Kadec Anderson theorem to Banach spaces of an arbitrary topological
weight; for the information see Bessaga and Pelczynski [1], Chap. VII, and
also Torunczyk [5], Terry [1]. The final solution has been obtained only
recently by Torunczyk [6] who proved

13.7. Let X be a complete metric space which is an absolute retract for
metric spaces and let X = wX, the density character of X. Then X is homeo-
morphic to the Hilbert space 1,(N) if and only if the following two conditions
- are satisfied:

(a) X x 1, is homeomorphic to X,

(b) every closed subset A of X with wA < X is a Z-set, Le. for every
compact K < X the identity embedding of K into X is the uniform limit
of a sequence of continuous maps of K into X\A.

In particular,

13.8. Every locally convex complete metric linear space is homeomorphic
to a Hilbert space.

Detailed proofs and other characterizations of Hilbert spaces and Hilbert
spece manifolds.can be found in Torunczyk [6].

It is natural to ask if in the Anderson—Kadec Theorem 13.1 the assumption
of local convexity is essential. The problem is open and only very special
non-locally convex spaces are known to be homeomorphic to I,. For instance
(Bessaga and Pelczynski [9]): '

) 13.9. The space S ([B], Introduction, § 7, p. 30) is homeomorphic to I*.
More generally, if X is a separable complete metric space which has at least
two different points, then the space My of all Borel measurable maps f: [0, 1]-X
with the topology of convergence in (the Lebesgue) measure is homeomorphic
to 2.

More examples are presented in Bessaga and Pelczynski [10], Chap. VI

It is known that a non-complete normed linear space cannot be homeo-
morphic to any Banach space. This easily follows from the theorem of
Mazur and Sternbach [1] that every G; linear subspace of a Banach space
must be closed. There are at least N, topologically different separable normed
linear spaces which can be distinguished by their absolute Borel types
(Klee [5], and Mazur — unpublished). Henderson and Pelczynski have pro-
ved that even among sigma-compact normed linear spaces there are at least
N, topologically different (cf. Bessaga and Pelczyfiski [10], Chapter VIII, § 5).
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It is not known whether every normed linear space is homeomorphic
to an inner product space.

Using suitable absorption models, one can prove (Bessaga and Pelczyn-
ski [8] and [10]}, Chap. VIIL, § 5, Toruaczyk [2])

13.10. If X is an infinite-dimensional normed linear space which is
a countable union of its finite-dimensional compact subsets, then X is homeo-
morphic to the subspace Y. R of R*™ consisting of all sequences having at
most finitely many non-zero coordinates. If X is a sigma-compact normed
linear space containing an infinite-dimensional compact convex subset, then X
is homeomorphic to the pseudo-boundary Q\P of the Hilbert cube.

For more details on topological classification of non-complete linear
metric spaces the reader is referred to Bessaga and Pelczynski [10],
Chap. VIII and the references therein.

Another interesting problem is to find which subsets of a given infinite-
dimensional Banach space are homeomorphic to the whole space. The
situation is completely different from that in the finite-dimensional case.
For instance, we have

13.11. Let X be an infinite-dimensional Banach space. Then the following
kinds of subsets X are homeomorphic to the whole space:

(i) spheres,
(i) arbitrary closed convex bodies (= closed convex sets with non empty

interior), in particular: closed balls, closed half-spaces, strips between itwo
half-spaces and so on,

(iii) the sets X\A, where A is sigma-compact.

This result for the space [* and several other special spaces has been
obtained by Klee [3], [6]. The general case can be reduced to that of
I> by factoring from X a separable space, homeomorphic to [, and by
applying some additional constructions, cf. Bessaga and Pelczynski [10],
Chap. VL

The investigations of topological structure of linear metric spaces resulted
in active development of the theory of infinite-dimensional manifolds. If E
is a linear metric space, then by a topological manifold modelled on E
(briefly: an E-manifold) we mean a metrizable topological space M which
has an open cover by sets homeomorphic to open subsets of E. In the
same manner one defines manifolds modelled on the Hilbert cube.

A fundamental theorem on topological classification of manifolds with
a fixed model E, an infinite-dimensional linear metric space satisfying certain
conditions, is due to Henderson (see Henderson [1], [2] and Henderson
and Schori [1]). For simplicity we state this theorem in the case of Hilbert
spaces.

13.12. Let H be an infinite-dimensional Hilbert space. Then every connected
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H-manifold is homeomorphic to an open subset of H. H-manifolds M, and
M, are homeomorphic if and only if they are of the same homotopy type,
ie. there are continuous maps f: M{—~M, and g: M,—»M, such that the
compositions gf and fg are homotopic to the identities idy, and idy,, res-
pectively.

For analogous results on infinite-dimensional differential manifolds, see
Burghelea and Kuiper [1], Eells and Elworthy [1], Elworthy [1], Moulis [1].

The systematic theory of manifolds modelled on the Hilbert cube has
been developed by Chapman [2], [3], [4], [5] and is closely related to the
simple homotopy theory of polyhedra (Chapman [5], [6], c¢f. Appendix to
Cohen [1]) and has some points in common with Borsuk’s shape theory
(Chapman [1]). Chapman [7] is an excellent source of information.

We conclude this section with some comments concerning the classifi-
cation of Banach spaces with respect to uniform homeomorphisms. Banach
spaces X and Y are uniformly homeomorphic if there exists a homeomorphism
f: X—Y such that both f and f~' are uniformly continuous.

There are non isomorphic but uniformly homeomorphic Banach spaces
(Aharoni and Lindenstrauss [1]). However, Enflo [1] has proved that a Banach
space which is uniformly homeomorphic to a Hilbert space is already iso-
morphic to the Hilbert space (cf. 9.13 here).

Combining the results of Lindenstrauss [10] and Enflo [5] we get

13.13. If 1 < p < q < o0, then, for arbitrary measures u and v, the spaces
LP(u) and Li(v) are not uniformly homeomorphic, except the case where
dim I?(y) = dim Li(v) < c0.

To state the next result (due to Lindenstrauss [10]) we recall that a clo-
sed subspace S of a metric space M is said to be a uniform retract of M
if there is a uniformly continuous map r: M—S such that r(x) = x
for xeS.

13.14. If a linear subspace Y of a Banach space X is a uniform retract
of X and »(Y) is complemented in Y**, then Y is complemented in X.

Observe that if Y is reflexive or, more generally, conjugate to a Banach
space, then »%(Y) is complemented in Y** (cf. Diximier [1]).

On the other hand, we have (see Lindenstrauss [10])

13.15. Let K be a compact metric space. Then every isometric image of C(K)
in an arbitrary metric space M is a uniform retract of M.

Combining 13.14 and 13.15 with the result of Grothendieck [3] (cf. Pel-
czynski [3]) that no separable infinite-dimensional conjugate Banach space
is complemented in a C(K), we get

13.16. If K is an infinite compact metric space, then the space C(K) is not
uniformly homeomorphic to any conjugate Banach space.

Enflo [6] has shown that
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13.17. No subset of a Hilbert space. is uniformly homeomorphic to the
space C. '

In “Added in proof” we present Aharoni’s and Ribe’s contributions to
the classification of Banach spaces with respect to uniform homeomorphisms.

Uniform homeomorphisms of locally convex complete metric spaces have
been studied by Mankiewicz [1], [2], cf. also Bessaga [1], § 11. In particular,
Mankiewicz [2] has proved that

13.18. If X is one of the spaces I*,s,1>xs and Y is a locally convex
linear metric space which is uniformly homeomorphic to X, then Y is iso-
morphic to X.

From 13.18 it immediately follows that s is not uniformly homeomorphic
to I, (a more general fact is proved in Bessaga [1], p. 282).

§ 14. Added in proof

Ad § 2. The following basic fact in the isomorphic theory of Banach
spaces, due to H. P. Rosenthal, is related to the discussion in §9 Chap. IX
and to Example 2 in §3 of this survey.

14.1. Let (x,) be a bounded sequence in a Banach space. Then (x,) contains
a subsequence equivalent to the standard vector basis of I' iff (x,) has a sub-
sequence whose no subsequence is a weak Cauchy sequence.

For the proof (for real Banach spaces) see Rosenthal [11]; Dor [1] has
adjusted Rosenthal’s proof to cover the complex spaces. For related but more
delicate results the reader is referred to the excellent survey by Rosenthal [12]
and to the papers: Odell and Rosenthal [1] and Bourgain, Fremlin and
Talagrand [1].

For further information on WCG spaces and renorming problems the
reader is referred to the lecture notes by Diestel [1] and to the book by
Diestel and Uhl [1].

Ad § 3. Theorems 13.7 and 13.8 generalize to the case of arbitrary
pe(l, o). We have

14.2 (Krivine [2]). Let 1 < p < oo. Then I is locally representable in
a Banach space X iff P is locally a-representable in X for some a > 1.

For an alternative proof of 14.2 see Rosenthal [10].
Using 14.2, Maurey and Pisier [3] have established

14.3. Let X be a Banach space, let py (resp. qx) be the supremum (resp.
infimum) of pe[l, o] such that there is a positive C = C(q, X) < oo with
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the property that, for every finite sequence (x;) of elements

IHZr(tdet lexll)”"

0

(resp. § [0 de > C ) ™),

where (r;) are the Rademacher functions.
Then IPx and 1% gre locally representable in X .

Observe that 1 < py < 2 and o = gy > 2. (The right-hand side inequa-
lities follow from Dvoretzky’s Theorem.) In the limit case pxy = 1 (resp.
gx = ) Theorem 14.3 yields 13.8 equivalence (i) and (iv) (resp. 13.7).

Entirely different criterion of local representability of I' was discovered
by Milman and Wolfson [1].

144. Let X be an infinite-dimensional Banach space with the property
that there is a C < oo such that for every n =1,2,... there is an n-dimen-
sional subspace, say E,, of X with d(E,,1?) < C/n. Then I' is locally
representable in X.

[

Ad § 4. R. C. James [14] improved 4.3 by constructing a non-reflexive
Banach space of type 2, ie. satisfying 13.8 (iv) with g = 2.

The reader interested in the subject discussed in § 4 is refered to the
books and notes: Lindenstrauss and Tzafriri [1], volume II, Maurey and
Schwartz [1] (various exposés by Maurey, Maurey and Pisier, and Pisier),
Diestel [1], and to the papers: Figiel [6], [7], [8], and Pisier [2].

Ad § 5.

14.5 (Szankowski [4]). The space of all bounded linear operators from
12 into itself fails to have the approximation property.

Ad § 8. The following result, due to Maurey and Rosenthal [1], is related
to the question whether every infinite-dimensional Banach space contains
an infinite-dimensional subspace with an unconditional basis.

14.6. There exists a Banach space which contains a weakly convergent
to zero sequence of vectors of norm one such that no infinite subsequence
of the sequence forms an unconditional basis for the subspace which it spans.

Ad § 9. The paper by Enflo, Lindenstrauss and Pisier [1] contains an
example of a Banach space X which is not isomorphic to a Hilbert space
but which has a subspace, say Y, such that both Y and X/Y are isometrically
isomorphic to 1? (cf. also Kalton and Peck [1]).

Ad §§ 10 and 11. We recommend to the reader the surveys: Rosenthal
[9], [12]. The reader might also consult the book by Diestel and Uhl [1].
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Most of the recent works on C(K) spaces concern non-separable C (K) spaces.
The reader is referred to Alspach and Benyamini [1], Argyros and Negro-
pontis [1], Benyamini [2], Dashiell [1], Dashiell and Lindenstrauss [1],
Ditor and Haydon [1], Etcheberry [1], Hagler [1], [2], Haydon [1], [2],
[3], [4], Gulko and Oskin [1], Kislyakov [1], Talagrand [1], Wolfe [1].
The separable C(K) spaces are studied in the papers: Alspach [1], Benyamini
[1], Billard [1], Zippin [1]. '

Ad § 12. The reader interested in the subject should consult the seminar
notes by Maurey and Schwartz [1] and the memoir by Johnson, Maurey,
Schechtman and Tzafriri [1]. The reader is also referred to the survey by
Rosenthal [9] and to the papers: Alspach, Enflo and Odell [1], Enflo and
Rosenthal [1], Enflo and Starbird [1], Gamlen and Gaudet [1], Stegall
(11, [2].

Ad § 13. The following result of Ribe [1] shows that, despite the example
of Aharoni and Lindenstrauss [1] mentioned in § 13, the classification of
Banach spaces with respect to uniform homeomorphisms is “close” to linear
topological classification.

14.7. If Banach spaces X and Y are uniformly homeomorphic, then there
is an a = 1 such that X is locally a-representable in Y and Y is locally
a-representable in X.

It is known, however (Enflo oral communication), that the spaces L!
and I', which are obviously locally-representable each into the other, are not
uniformly homeomorphic. On the other hand, isomorphically different Banach
spaces might have the same “uniform dimension”.

14.8 (Aharoni [1]). There is a constant K so that for every separable
metric space (X, d) there is a map T: X — ¢, satisfying the condition d(x, y)
< | Tx—Ty| < Kd(x, y) for every x,yeX. Hence every separable Banach
space is uniformly homeomorphic to a bounded subset of c,.

14.9 (Aharoni [2]). For 1 < p <2, 1 < q < o0, I? is uniformly homeo-
morphic to a subset of 1% i.e. there is a subset Z < 1 and a homeomorphism
S I > Z such that f and =1 are uniformly continuous. Moreover, I? is
uniformly homeomorphic to a bounded subset of itself.
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