NOTE 1.

On Haar’s measure

by
Stefan Banach.

§1. This Note is devoted to the theory of measure due to Al-
fred Haar [1]. Haar’s beautiful and important theory deals with
measure in those locally compact separable spaces for which the
notion of congruent sets is defined. His measure fulfils the usual
conditions of ordinary Lebesgue measure: congruent sets are of
equal measure and all Borel sets (more generally, all analytic sets)
are measurable. The theory has important applications in that
of continuous groups.

To complete the definitions of Chap. IL, §2, we shall say that
a set situated in a metrical space is compact, it every infinite subset
of the set in question has at least one point of accumulation. A met-
rical space is termed locally compaet if each point of this space
‘has a neighbourhood which is compact.

§2. In what follows we shall denote by E a fixed metrical
space, separable and locally compact, and we shall suppose that,
for the sets situated in E, the notion of congruence =is defined
so as to fulfil the following conditions: ‘

. A=DB dmplies B=A; A=B and B=C imply A=(;

ip. If A is a compact open set and A=B, then the set B is itself
open and compact;

Iy If A=B and {A.} is a (finite or infinite) sequence of open
compact sets such that ACEA,I, then there exists o sequence of sets

\Bn, such that BCZB,, (md such that A, =B, for n=1,2,.

. Whatever be the compact open set A, the class of the sets con-

gruent to A covers the whole space E;
is. If {S.} is a sequence of compact concentric spheres with radii
tending to 0, and (G} is a sequence of sets such that G,=8,, then the
relations a=lima, and b=1imb,, where a,¢G, and buneGr, imply a=b.
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§3. Given two compact open sets 4 and B, the class of the
sets congruent to A4 covers, by i,, the set B. It therefore follows
from the theorem of Borel-Lebesgue that there exists a finite system
of sets congruent to 4 which covers B. Let h(B, 4) denote the least
number of sets which constitute such a system.

It is easy to show by means of i,—i; that, for any three com-
pact open sets 4, B and O, the following propositions are valid:

ii,, OCB implies h(C,A)<<h(B,A);

i, h(B+ 0, 4)<h(B,4)+h(C,A);

il, Bz=C implies h(B,A)=h(C,A4);

iiy. h(B,A4)<h(B,()-h(C,4);

iy, If o(4,B)>0 and if {S. s a sequence of compact con-
centric spheres with radii tending to 0, then there exists & positive
integer N such that, for cvery n>N,

(3.1) h(4+ B, 8,)=h(4,8,)+h(B,8,).

All these propositions are obvious, except perhaps ii;. To
prove the latter, let us suppose, if possible, that there exists an
increasing sequence of positive integers {n, such that (3.1) does
not hold for any of the values n=mn,;. There would then exist a se-
quence of sets {G;} such that GigSni while 4-G;4=0 and B-G;50.
Consider now arbitrary points a;e A-G; and b;e B-G,. Since the
sets 4 and B are compact, the sequences {a¢;} and {b;} contain re-
spectively convergent subsequences {“i,-} and {bi’_}. Let a=:lim @,
and b= lim bii' By i; we must have a=b, and this is im})oslsible
since, by Jhypothesis, o(A4,B)=0.

We shall now suppose given a tixed compact open set G and
a sequence {S,} of concentric spheres, with radii tending to 0, which
are situated in G and therefore clearly compact. For every compact
open set 4, we write

L(A)= —/F =

We then have, by ii,
h(4,8,)<h(4,6)-h(G,8,) and h(G,8,)<h(G,4)-h(4,8,),
and hence for each wn=1,2,..., 1/h(G,4)<l.(4)<h(4,q).

Thus, {I.(A)} 18 @ bounded sequence whose terms exceed a fixed
positive number.
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§4- We now make use of the following theorem (cf. S. Ba-
nach [I, p. 34] and 8. Mazur [1]), in which . and {#,} denote
arbitrary bounded sequences of real numbers, a and b denote real

numbers, and the symbols lim, lim sup and liminf have their usual
meaning:

To every bounded sequence {&,} we can make correspond a num-
ber L@m &y termed generalized limit, in such a manner as to fulfil

the followmg eonditions:

1) Lim (aé, +by, )= a Lim &, + b Limy

n?

2) liminf & <Lim &, <limsup & ,

3) Lim&,, = Limé,,

The last condition implies that the generalized limit remains unal-

tered, when we remove from a sequence a finite number of its terms.
Let us now write, for every compact open set 4,

(4.1) (A)=Lim1,(A).

We then have, for any compact open sets A and B:

i, 0<i{A)<+ oo;

iliy, ACB implies 1(A)<I(B);

iy, A=B implies 1(A)=1(B);

iy, {4+ B)<U(4)+1(B);

iii;. o(4,B)>0 implies (A4 B)=1(4)+1(B).

§ 5. This being so, we denote, for an arbitrary set XCE, by

I'(X) the lower bound of all the numbers Zl ») where {4,} is any

sequence of compact open sets such that X CX'4,. We shall show
that the function of a set I'y thus defined, fulfi,is the following con-
ditions:

10 We have always 0<I'(X) and there exist sets X for which
we have 0<I'(X)<Atoo; this is, in particular, the case of all compact
open sets X;

20 X,CX, - implies I'(X)<T(X,);

30 X)X, implies I'(X)< }_1 (X.);

10 o (X}, Xp)>0 dmplies I'(X,+ ')+ I'(X,);
B0 X =X, implies (. 1)~ ( X,).
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Proof. 1% Let X be a compact open set. We have, by defi-
nition, I'(X)<{l(X)<+|oo.

On the other hand, there clearly exists for each >0 a (finite
or infinite) sequence of compact open sets {4, such that Xc)4,

and I'(X)+e>21(4,). Let S be any sphere contained in X. Since
the set S is closed and compact, this set, and a fortiori the set S,
is already covered by a finite subsequence {4, )} of {4,). In view
of iii, and iii,, we thus have

LS <UZA, )< IUA, ) < SUA)<T(X) +e.

n

Hence, ¢ being arbitrary, it follows that 1(8)<<I'(X), and finally,
by iii;, that 0<I'(X).

2% and 3° are obvious.
4% o(X, X,)>0 implies that there exist two open sets @&

and G, such that X,CG,, X,C@, and ¢(G,,Gy)>0. On the other

hand, there exists for each ¢>0 a sequence of compact open sets {4}
such that

(5.1) X+ X,CXY A, and (X4 Xy)+e=D1(A).

Write AV =4,-6G; and 4= 4,-G,. Since the sets 4L and 42
are open and compact, and since their distance, like that of Gy and G,,
is positive, we have, on account of iii; and iii,,

(5.2) HARD)FUAD)y =1 AD+ AD) <U(AL).

But, since on the other hand XlC}:AE}) and X2CZA£Z), we
have the inequalities I'(.Y,)<JU(AY) and I'(X,)< DAY, so that,
by (5.2), I'(X)+I'(X,)<2X1(A4,). Hence by (5.1), ¢ being arbi-
trary, we obtain I'(X,)+I'(X,)<I'(X,+ X,), and finally by 39
(X )+ T(Xy)=TI'(X,+ X,).

5% follows at once from i, and iii,.

§6. It follows from the properties 1°--4° of the function I
.that the latter is an outer measure in the sense of Carathéodory
(cf. Chap. I1I, §4) and therefore determines in E a class of sets

measurable (27), that we shall call, simply, measurable sets. We
see at once that for each set X in E the number I'(X) is the lower
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bound of the measures (I') of the open sets containing X. It follows,
in particular, that I"is a regular outer measure (cf. Chap.II, § 6).

Finally, since the space E can be covered by a sequence of
measurable sets of finite measure (e.g. by a sequence of compact
spheres), we easily establish, for the measure I', conditions of meas-
urability (£7) similar to those of Theorem 6.6, Chap.III. In part-
icular, we shall have:

(6.1) In order that a set E be measurable, it is necessary and
sufficient that there exist a set (®s) containing E and differing from
it by at most a set of measure zero.

§ 7. We conclude this note by giving two examples of spaces E
with the notion of congruence subject to the conditions of § 2.

Example 1. Let E be a metrical space which is separable
and locally compact, and suppose that, among the one to one trans-
formations, continuous both ways, by which the whole space E
is transformed into the whole space E, there exists a class 4 of
transformations subject to the conditions:

1) Tedl implies T ‘e ol
2) If T\e®i and T,ed, then T,T,edl;
3) For every pair a, b of points of E, there exists a transformation
Tedk such that T(a)=b;
4) If {a.} and {b,} are two convergent sequences of points of E
such that lima,=1imb,, and if |T,} is a sequence of transformations
n

n
belonging to i such that the sequences {T,(an)} and {T,(b,)} are con-
vergent also, then we have lim T,(a,) = lim T,(b,).
n n

Two sets ACE and BCE will be termed congruent, if there
exists a transformation 7edZ such that T(A)=B (where T(A)
denotes the set into which 4 is transformed, i.e. the set of all the
points T'(a) for which ae 4).

It is easy to verify that the conditions i,—i, are fulfilled.

As special cases of such spaces E we may mention: Euclidean
n-dimensional space with 3% interpreted as the class of all trans-
lations and rotations; the 3-dimensional sphere with &% interpreted
as the class of all rotations.

Let us observe that, in the space considered, the sets which
are congruent to open sets are themselves open. On the other hand,
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on account of 5° p. 316, the sets congruent to sets of measure (1)
zero are themselves of measure zero. It follows therefore from (6.1)
that in the space E considered the sets which are congruent to meas-
urable sets, are themselves measurable.

Example 2. Suppose that a metrical space E, separable and
locally compact, constitutes a group, i. e. that with each pair a,b
of elements of K there is associated an element ab of E, called pro-
duct, in such a manner that the following conditions are fulfilled:

1) (ab)e=a(be) (whatever be the elements a, b and ¢ of E);

2) there exvists in B o unit-element 1 such that we have 1.a=a-1=a
for every ac¢ E;

3) to each element ae X there corresponds an inverse element
a e E which fulfils the equation aa '=1.

Suppose further that E fulfils the conditions:

4) if lima,=a and lim b,=b, then lim a,b,= ab;

n n n
5) if lima,=a, then lim a, '=a .
n n

Given any element ce¢ E and any set BCE, we denote by ¢B
the set of all the elements aeE such that a=cb where be B.

Given an element a of E, we write, for every element x¢ E,
T.(x)=ax. Thus each element a of E determines a transformation T,
clearly one to one and continuous both ways, of the space K into
itself. Denoting the class of all these transformations by %, we
see at once that the conditions 1)—4), p. 318, are fulfilled. In ac-
cordance with the definition of congruence employed in Exam-
ple 1, two sets 4 and B in the space in question are congruent if
there exists an clement ¢ such that B—=¢A.




